• Previous Article
    Design of boundary stabilizers for the non-autonomous cubic semilinear heat equation driven by a multiplicative noise
  • EECT Home
  • This Issue
  • Next Article
    Approximate continuous data assimilation of the 2D Navier-Stokes equations via the Voigt-regularization with observable data
doi: 10.3934/eect.2020030

Remarks on the damped nonlinear Schrödinger equation

Departement of Mathematics, College of Sciences and Arts of Uglat Asugour, Qassim University, Buraydah, Kingdom of Saudi Arabia

Received  June 2019 Revised  August 2019 Published  December 2019

It is the purpose of this note to investigate the initial value problem for a focusing semi-linear damped Schrödinger equation. Indeed, in the energy sub-critical regime, one obtains global well-posedness and scattering in the energy space, depending on the order of the fractional dissipation.

Citation: Tarek Saanouni. Remarks on the damped nonlinear Schrödinger equation. Evolution Equations & Control Theory, doi: 10.3934/eect.2020030
References:
[1]

G. D. Akrivis, V. A. Dougalis, O. A. Karakashian and W. R Mckinney, Numerical approximation of singular solution of the damped nonlinear Schrödinger equation, ENUMATH 97 (Heidelberg), World Scientific River Edge, NJ, (1998), 117–124.  Google Scholar

[2]

I. V. Barashenkov, N. V. Alexeeva and E. V. Zemlianaya, Two and three dimensional oscillons in nonlinear Faraday resonance, Phys. Rev. Lett., 89 (2002), 104101. doi: 10.1103/PhysRevLett.89.104101.  Google Scholar

[3]

M. M. CavalcantiW. J. CorreaV. N. Domingos Cavalcanti and L. Tebou, Well-posedness and energy decay estimates in the Cauchy problem for the damped defocusing Schrödinger equation, J. Differential Equations, 262 (2017), 2521-2539.  doi: 10.1016/j.jde.2016.11.002.  Google Scholar

[4]

M. M. CavalcantiV. N. Domingos CavalcantiR. Fukuoka and F. Natali, Exponential stability for the 2-D defocusing Schrödinger equation with locally distributed damping, Differential Integral Equations, 22 (2009), 617-636.   Google Scholar

[5]

M. M. CavalcantiV. N. Domingos CavalcantiJ. A. Soriano and F. Natali, Qualitative aspects for the cubic nonlinear Schrödinger equations with localized damping: Exponential and polynomial stabilization, J. Differential Equations, 248 (2010), 2955-2971.  doi: 10.1016/j.jde.2010.03.023.  Google Scholar

[6]

T. Cazenave, Semilinear Schrödinger Equations, Vol. 10, Lecture Notes in Mathematics, New York University Courant Institute of Mathematical sciences, New York, 2003. doi: 10.1090/cln/010.  Google Scholar

[7]

M. Darwich, Global existence for the nonlinear fractional Schrödinger equation with fractional dissipation, Annali Dell Universita Di Ferrara, 64 (2018), 323-334.  doi: 10.1007/s11565-018-0307-5.  Google Scholar

[8]

T. Duyckaerts and F. Merle, Dynamic of threshold solutions for energy-critical NlS, Geometric and Functional Analysis, 18 (2009), 1787-1840.  doi: 10.1007/s00039-009-0707-x.  Google Scholar

[9]

G. Fibich, Self-focusing in the damped nonlinear Schrödinger equation, SIAM J. Appl. Math., 61 (2001), 1680-1705.  doi: 10.1137/S0036139999362609.  Google Scholar

[10]

M. V. GoldmanK. Rypdal and B. Hafizi, Dimensionality and dissipation in Langmuir collapse, Phys. Fluids., 23 (1980), 945-955.  doi: 10.1063/1.863074.  Google Scholar

[11]

C. D. Levermore and M. Oliver, The complex Ginzburg-Landau equation as a model problem, Lectures in Appl. Math., 31 (1996), 141-189.   Google Scholar

[12]

P. L. Lions, Symetrie et compacité dans les espaces de Sobolev, J. F. A., 49 (1982), 315-334.  doi: 10.1016/0022-1236(82)90072-6.  Google Scholar

[13]

C. Morosi and L. Pizzocchero, On the constants for some fractional Gagliardo–Nirenberg and Sobolev inequalities, Expositiones Mathematicae, 36 (2018), 32-77.  doi: 10.1016/j.exmath.2017.08.007.  Google Scholar

[14]

F. Natali, Exponential stabilization for the nonlinear Schrödinger equation with localized damping, J. Dyn. Control Syst., 21 (2015), 461-474.  doi: 10.1007/s10883-015-9270-y.  Google Scholar

[15]

F. Natali, A note on the exponential decay for the nonlinear Schrödinger equation, Osaka J. Math., 53 (2016), 717-729.   Google Scholar

[16]

M. Ohta and G. Todorova, Remarks on global existence and blowup for damped nonlinear Schrödinger equations, Discrete Contin. Dyn. Syst., 23 (2009), 1313-1325.  doi: 10.3934/dcds.2009.23.1313.  Google Scholar

[17]

T. PassotC. Sulem and P. L. Sulem, Linear versus nonlinear dissipation for critical NLS equation, Physica D, 203 (2005), 167-184.  doi: 10.1016/j.physd.2005.03.011.  Google Scholar

[18]

T. Saanouni, Global well-posedness of a damped Schrödinger equation in two space dimensions, Math. Meth. Appl. Sci., 37 (2014), 488-495.  doi: 10.1002/mma.2804.  Google Scholar

[19]

T. Saanouni, Remarks on damped fractional Schrödinger equation with pure power nonlinearity, Journal of Mathematical Physics, 56 (2015), 061502, 14pp. doi: 10.1063/1.4922114.  Google Scholar

[20]

M. Tsutsumi, Nonexistence of global solutions to the Cauchy problem for the damped nonlinear Schrödinger equations, SIAM J. Math. Anal., 15 (1984), 357-366.  doi: 10.1137/0515028.  Google Scholar

[21]

M. Tsutsumi, On global solutions to the initial-boundary value problem for the damped nonlinear Schrödinger equations, J. Math. Anal. Appl., 145 (1990), 328-341.  doi: 10.1016/0022-247X(90)90403-3.  Google Scholar

show all references

References:
[1]

G. D. Akrivis, V. A. Dougalis, O. A. Karakashian and W. R Mckinney, Numerical approximation of singular solution of the damped nonlinear Schrödinger equation, ENUMATH 97 (Heidelberg), World Scientific River Edge, NJ, (1998), 117–124.  Google Scholar

[2]

I. V. Barashenkov, N. V. Alexeeva and E. V. Zemlianaya, Two and three dimensional oscillons in nonlinear Faraday resonance, Phys. Rev. Lett., 89 (2002), 104101. doi: 10.1103/PhysRevLett.89.104101.  Google Scholar

[3]

M. M. CavalcantiW. J. CorreaV. N. Domingos Cavalcanti and L. Tebou, Well-posedness and energy decay estimates in the Cauchy problem for the damped defocusing Schrödinger equation, J. Differential Equations, 262 (2017), 2521-2539.  doi: 10.1016/j.jde.2016.11.002.  Google Scholar

[4]

M. M. CavalcantiV. N. Domingos CavalcantiR. Fukuoka and F. Natali, Exponential stability for the 2-D defocusing Schrödinger equation with locally distributed damping, Differential Integral Equations, 22 (2009), 617-636.   Google Scholar

[5]

M. M. CavalcantiV. N. Domingos CavalcantiJ. A. Soriano and F. Natali, Qualitative aspects for the cubic nonlinear Schrödinger equations with localized damping: Exponential and polynomial stabilization, J. Differential Equations, 248 (2010), 2955-2971.  doi: 10.1016/j.jde.2010.03.023.  Google Scholar

[6]

T. Cazenave, Semilinear Schrödinger Equations, Vol. 10, Lecture Notes in Mathematics, New York University Courant Institute of Mathematical sciences, New York, 2003. doi: 10.1090/cln/010.  Google Scholar

[7]

M. Darwich, Global existence for the nonlinear fractional Schrödinger equation with fractional dissipation, Annali Dell Universita Di Ferrara, 64 (2018), 323-334.  doi: 10.1007/s11565-018-0307-5.  Google Scholar

[8]

T. Duyckaerts and F. Merle, Dynamic of threshold solutions for energy-critical NlS, Geometric and Functional Analysis, 18 (2009), 1787-1840.  doi: 10.1007/s00039-009-0707-x.  Google Scholar

[9]

G. Fibich, Self-focusing in the damped nonlinear Schrödinger equation, SIAM J. Appl. Math., 61 (2001), 1680-1705.  doi: 10.1137/S0036139999362609.  Google Scholar

[10]

M. V. GoldmanK. Rypdal and B. Hafizi, Dimensionality and dissipation in Langmuir collapse, Phys. Fluids., 23 (1980), 945-955.  doi: 10.1063/1.863074.  Google Scholar

[11]

C. D. Levermore and M. Oliver, The complex Ginzburg-Landau equation as a model problem, Lectures in Appl. Math., 31 (1996), 141-189.   Google Scholar

[12]

P. L. Lions, Symetrie et compacité dans les espaces de Sobolev, J. F. A., 49 (1982), 315-334.  doi: 10.1016/0022-1236(82)90072-6.  Google Scholar

[13]

C. Morosi and L. Pizzocchero, On the constants for some fractional Gagliardo–Nirenberg and Sobolev inequalities, Expositiones Mathematicae, 36 (2018), 32-77.  doi: 10.1016/j.exmath.2017.08.007.  Google Scholar

[14]

F. Natali, Exponential stabilization for the nonlinear Schrödinger equation with localized damping, J. Dyn. Control Syst., 21 (2015), 461-474.  doi: 10.1007/s10883-015-9270-y.  Google Scholar

[15]

F. Natali, A note on the exponential decay for the nonlinear Schrödinger equation, Osaka J. Math., 53 (2016), 717-729.   Google Scholar

[16]

M. Ohta and G. Todorova, Remarks on global existence and blowup for damped nonlinear Schrödinger equations, Discrete Contin. Dyn. Syst., 23 (2009), 1313-1325.  doi: 10.3934/dcds.2009.23.1313.  Google Scholar

[17]

T. PassotC. Sulem and P. L. Sulem, Linear versus nonlinear dissipation for critical NLS equation, Physica D, 203 (2005), 167-184.  doi: 10.1016/j.physd.2005.03.011.  Google Scholar

[18]

T. Saanouni, Global well-posedness of a damped Schrödinger equation in two space dimensions, Math. Meth. Appl. Sci., 37 (2014), 488-495.  doi: 10.1002/mma.2804.  Google Scholar

[19]

T. Saanouni, Remarks on damped fractional Schrödinger equation with pure power nonlinearity, Journal of Mathematical Physics, 56 (2015), 061502, 14pp. doi: 10.1063/1.4922114.  Google Scholar

[20]

M. Tsutsumi, Nonexistence of global solutions to the Cauchy problem for the damped nonlinear Schrödinger equations, SIAM J. Math. Anal., 15 (1984), 357-366.  doi: 10.1137/0515028.  Google Scholar

[21]

M. Tsutsumi, On global solutions to the initial-boundary value problem for the damped nonlinear Schrödinger equations, J. Math. Anal. Appl., 145 (1990), 328-341.  doi: 10.1016/0022-247X(90)90403-3.  Google Scholar

[1]

Alp Eden, Elİf Kuz. Almost cubic nonlinear Schrödinger equation: Existence, uniqueness and scattering. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1803-1823. doi: 10.3934/cpaa.2009.8.1803

[2]

Younghun Hong. Scattering for a nonlinear Schrödinger equation with a potential. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1571-1601. doi: 10.3934/cpaa.2016003

[3]

J. Colliander, Justin Holmer, Monica Visan, Xiaoyi Zhang. Global existence and scattering for rough solutions to generalized nonlinear Schrödinger equations on $R$. Communications on Pure & Applied Analysis, 2008, 7 (3) : 467-489. doi: 10.3934/cpaa.2008.7.467

[4]

Mohamad Darwich. On the $L^2$-critical nonlinear Schrödinger Equation with a nonlinear damping. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2377-2394. doi: 10.3934/cpaa.2014.13.2377

[5]

Benjamin Dodson. Global well-posedness and scattering for the defocusing, cubic nonlinear Schrödinger equation when $n = 3$ via a linear-nonlinear decomposition. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1905-1926. doi: 10.3934/dcds.2013.33.1905

[6]

Congming Peng, Dun Zhao. Global existence and blowup on the energy space for the inhomogeneous fractional nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3335-3356. doi: 10.3934/dcdsb.2018323

[7]

Jianbo Cui, Jialin Hong, Liying Sun. On global existence and blow-up for damped stochastic nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6837-6854. doi: 10.3934/dcdsb.2019169

[8]

Mohammad A. Rammaha, Daniel Toundykov, Zahava Wilstein. Global existence and decay of energy for a nonlinear wave equation with $p$-Laplacian damping. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4361-4390. doi: 10.3934/dcds.2012.32.4361

[9]

Rémi Carles. Global existence results for nonlinear Schrödinger equations with quadratic potentials. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 385-398. doi: 10.3934/dcds.2005.13.385

[10]

Zaihui Gan, Boling Guo, Jian Zhang. Blowup and global existence of the nonlinear Schrödinger equations with multiple potentials. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1303-1312. doi: 10.3934/cpaa.2009.8.1303

[11]

Masahoto Ohta, Grozdena Todorova. Remarks on global existence and blowup for damped nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (4) : 1313-1325. doi: 10.3934/dcds.2009.23.1313

[12]

Brenton LeMesurier. Modeling thermal effects on nonlinear wave motion in biopolymers by a stochastic discrete nonlinear Schrödinger equation with phase damping. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 317-327. doi: 10.3934/dcdss.2008.1.317

[13]

Yue Liu. Existence of unstable standing waves for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2008, 7 (1) : 193-209. doi: 10.3934/cpaa.2008.7.193

[14]

François Genoud. Existence and stability of high frequency standing waves for a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1229-1247. doi: 10.3934/dcds.2009.25.1229

[15]

Hongzi Cong, Lufang Mi, Yunfeng Shi, Yuan Wu. On the existence of full dimensional KAM torus for nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6599-6630. doi: 10.3934/dcds.2019287

[16]

Wided Kechiche. Regularity of the global attractor for a nonlinear Schrödinger equation with a point defect. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1233-1252. doi: 10.3934/cpaa.2017060

[17]

Daiwen Huang, Jingjun Zhang. Global smooth solutions for the nonlinear Schrödinger equation with magnetic effect. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1753-1773. doi: 10.3934/dcdss.2016073

[18]

Takahisa Inui. Global dynamics of solutions with group invariance for the nonlinear schrödinger equation. Communications on Pure & Applied Analysis, 2017, 16 (2) : 557-590. doi: 10.3934/cpaa.2017028

[19]

Georgios Fotopoulos, Markus Harju, Valery Serov. Inverse fixed angle scattering and backscattering for a nonlinear Schrödinger equation in 2D. Inverse Problems & Imaging, 2013, 7 (1) : 183-197. doi: 10.3934/ipi.2013.7.183

[20]

Satoshi Masaki. A sharp scattering condition for focusing mass-subcritical nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1481-1531. doi: 10.3934/cpaa.2015.14.1481

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (52)
  • HTML views (115)
  • Cited by (0)

Other articles
by authors

[Back to Top]