September  2020, 9(3): 721-732. doi: 10.3934/eect.2020030

Remarks on the damped nonlinear Schrödinger equation

Departement of Mathematics, College of Sciences and Arts of Uglat Asugour, Qassim University, Buraydah, Kingdom of Saudi Arabia

Received  June 2019 Revised  August 2019 Published  December 2019

It is the purpose of this note to investigate the initial value problem for a focusing semi-linear damped Schrödinger equation. Indeed, in the energy sub-critical regime, one obtains global well-posedness and scattering in the energy space, depending on the order of the fractional dissipation.

Citation: Tarek Saanouni. Remarks on the damped nonlinear Schrödinger equation. Evolution Equations & Control Theory, 2020, 9 (3) : 721-732. doi: 10.3934/eect.2020030
References:
[1]

G. D. Akrivis, V. A. Dougalis, O. A. Karakashian and W. R Mckinney, Numerical approximation of singular solution of the damped nonlinear Schrödinger equation, ENUMATH 97 (Heidelberg), World Scientific River Edge, NJ, (1998), 117–124.  Google Scholar

[2]

I. V. Barashenkov, N. V. Alexeeva and E. V. Zemlianaya, Two and three dimensional oscillons in nonlinear Faraday resonance, Phys. Rev. Lett., 89 (2002), 104101. doi: 10.1103/PhysRevLett.89.104101.  Google Scholar

[3]

M. M. CavalcantiW. J. CorreaV. N. Domingos Cavalcanti and L. Tebou, Well-posedness and energy decay estimates in the Cauchy problem for the damped defocusing Schrödinger equation, J. Differential Equations, 262 (2017), 2521-2539.  doi: 10.1016/j.jde.2016.11.002.  Google Scholar

[4]

M. M. CavalcantiV. N. Domingos CavalcantiR. Fukuoka and F. Natali, Exponential stability for the 2-D defocusing Schrödinger equation with locally distributed damping, Differential Integral Equations, 22 (2009), 617-636.   Google Scholar

[5]

M. M. CavalcantiV. N. Domingos CavalcantiJ. A. Soriano and F. Natali, Qualitative aspects for the cubic nonlinear Schrödinger equations with localized damping: Exponential and polynomial stabilization, J. Differential Equations, 248 (2010), 2955-2971.  doi: 10.1016/j.jde.2010.03.023.  Google Scholar

[6]

T. Cazenave, Semilinear Schrödinger Equations, Vol. 10, Lecture Notes in Mathematics, New York University Courant Institute of Mathematical sciences, New York, 2003. doi: 10.1090/cln/010.  Google Scholar

[7]

M. Darwich, Global existence for the nonlinear fractional Schrödinger equation with fractional dissipation, Annali Dell Universita Di Ferrara, 64 (2018), 323-334.  doi: 10.1007/s11565-018-0307-5.  Google Scholar

[8]

T. Duyckaerts and F. Merle, Dynamic of threshold solutions for energy-critical NlS, Geometric and Functional Analysis, 18 (2009), 1787-1840.  doi: 10.1007/s00039-009-0707-x.  Google Scholar

[9]

G. Fibich, Self-focusing in the damped nonlinear Schrödinger equation, SIAM J. Appl. Math., 61 (2001), 1680-1705.  doi: 10.1137/S0036139999362609.  Google Scholar

[10]

M. V. GoldmanK. Rypdal and B. Hafizi, Dimensionality and dissipation in Langmuir collapse, Phys. Fluids., 23 (1980), 945-955.  doi: 10.1063/1.863074.  Google Scholar

[11]

C. D. Levermore and M. Oliver, The complex Ginzburg-Landau equation as a model problem, Lectures in Appl. Math., 31 (1996), 141-189.   Google Scholar

[12]

P. L. Lions, Symetrie et compacité dans les espaces de Sobolev, J. F. A., 49 (1982), 315-334.  doi: 10.1016/0022-1236(82)90072-6.  Google Scholar

[13]

C. Morosi and L. Pizzocchero, On the constants for some fractional Gagliardo–Nirenberg and Sobolev inequalities, Expositiones Mathematicae, 36 (2018), 32-77.  doi: 10.1016/j.exmath.2017.08.007.  Google Scholar

[14]

F. Natali, Exponential stabilization for the nonlinear Schrödinger equation with localized damping, J. Dyn. Control Syst., 21 (2015), 461-474.  doi: 10.1007/s10883-015-9270-y.  Google Scholar

[15]

F. Natali, A note on the exponential decay for the nonlinear Schrödinger equation, Osaka J. Math., 53 (2016), 717-729.   Google Scholar

[16]

M. Ohta and G. Todorova, Remarks on global existence and blowup for damped nonlinear Schrödinger equations, Discrete Contin. Dyn. Syst., 23 (2009), 1313-1325.  doi: 10.3934/dcds.2009.23.1313.  Google Scholar

[17]

T. PassotC. Sulem and P. L. Sulem, Linear versus nonlinear dissipation for critical NLS equation, Physica D, 203 (2005), 167-184.  doi: 10.1016/j.physd.2005.03.011.  Google Scholar

[18]

T. Saanouni, Global well-posedness of a damped Schrödinger equation in two space dimensions, Math. Meth. Appl. Sci., 37 (2014), 488-495.  doi: 10.1002/mma.2804.  Google Scholar

[19]

T. Saanouni, Remarks on damped fractional Schrödinger equation with pure power nonlinearity, Journal of Mathematical Physics, 56 (2015), 061502, 14pp. doi: 10.1063/1.4922114.  Google Scholar

[20]

M. Tsutsumi, Nonexistence of global solutions to the Cauchy problem for the damped nonlinear Schrödinger equations, SIAM J. Math. Anal., 15 (1984), 357-366.  doi: 10.1137/0515028.  Google Scholar

[21]

M. Tsutsumi, On global solutions to the initial-boundary value problem for the damped nonlinear Schrödinger equations, J. Math. Anal. Appl., 145 (1990), 328-341.  doi: 10.1016/0022-247X(90)90403-3.  Google Scholar

show all references

References:
[1]

G. D. Akrivis, V. A. Dougalis, O. A. Karakashian and W. R Mckinney, Numerical approximation of singular solution of the damped nonlinear Schrödinger equation, ENUMATH 97 (Heidelberg), World Scientific River Edge, NJ, (1998), 117–124.  Google Scholar

[2]

I. V. Barashenkov, N. V. Alexeeva and E. V. Zemlianaya, Two and three dimensional oscillons in nonlinear Faraday resonance, Phys. Rev. Lett., 89 (2002), 104101. doi: 10.1103/PhysRevLett.89.104101.  Google Scholar

[3]

M. M. CavalcantiW. J. CorreaV. N. Domingos Cavalcanti and L. Tebou, Well-posedness and energy decay estimates in the Cauchy problem for the damped defocusing Schrödinger equation, J. Differential Equations, 262 (2017), 2521-2539.  doi: 10.1016/j.jde.2016.11.002.  Google Scholar

[4]

M. M. CavalcantiV. N. Domingos CavalcantiR. Fukuoka and F. Natali, Exponential stability for the 2-D defocusing Schrödinger equation with locally distributed damping, Differential Integral Equations, 22 (2009), 617-636.   Google Scholar

[5]

M. M. CavalcantiV. N. Domingos CavalcantiJ. A. Soriano and F. Natali, Qualitative aspects for the cubic nonlinear Schrödinger equations with localized damping: Exponential and polynomial stabilization, J. Differential Equations, 248 (2010), 2955-2971.  doi: 10.1016/j.jde.2010.03.023.  Google Scholar

[6]

T. Cazenave, Semilinear Schrödinger Equations, Vol. 10, Lecture Notes in Mathematics, New York University Courant Institute of Mathematical sciences, New York, 2003. doi: 10.1090/cln/010.  Google Scholar

[7]

M. Darwich, Global existence for the nonlinear fractional Schrödinger equation with fractional dissipation, Annali Dell Universita Di Ferrara, 64 (2018), 323-334.  doi: 10.1007/s11565-018-0307-5.  Google Scholar

[8]

T. Duyckaerts and F. Merle, Dynamic of threshold solutions for energy-critical NlS, Geometric and Functional Analysis, 18 (2009), 1787-1840.  doi: 10.1007/s00039-009-0707-x.  Google Scholar

[9]

G. Fibich, Self-focusing in the damped nonlinear Schrödinger equation, SIAM J. Appl. Math., 61 (2001), 1680-1705.  doi: 10.1137/S0036139999362609.  Google Scholar

[10]

M. V. GoldmanK. Rypdal and B. Hafizi, Dimensionality and dissipation in Langmuir collapse, Phys. Fluids., 23 (1980), 945-955.  doi: 10.1063/1.863074.  Google Scholar

[11]

C. D. Levermore and M. Oliver, The complex Ginzburg-Landau equation as a model problem, Lectures in Appl. Math., 31 (1996), 141-189.   Google Scholar

[12]

P. L. Lions, Symetrie et compacité dans les espaces de Sobolev, J. F. A., 49 (1982), 315-334.  doi: 10.1016/0022-1236(82)90072-6.  Google Scholar

[13]

C. Morosi and L. Pizzocchero, On the constants for some fractional Gagliardo–Nirenberg and Sobolev inequalities, Expositiones Mathematicae, 36 (2018), 32-77.  doi: 10.1016/j.exmath.2017.08.007.  Google Scholar

[14]

F. Natali, Exponential stabilization for the nonlinear Schrödinger equation with localized damping, J. Dyn. Control Syst., 21 (2015), 461-474.  doi: 10.1007/s10883-015-9270-y.  Google Scholar

[15]

F. Natali, A note on the exponential decay for the nonlinear Schrödinger equation, Osaka J. Math., 53 (2016), 717-729.   Google Scholar

[16]

M. Ohta and G. Todorova, Remarks on global existence and blowup for damped nonlinear Schrödinger equations, Discrete Contin. Dyn. Syst., 23 (2009), 1313-1325.  doi: 10.3934/dcds.2009.23.1313.  Google Scholar

[17]

T. PassotC. Sulem and P. L. Sulem, Linear versus nonlinear dissipation for critical NLS equation, Physica D, 203 (2005), 167-184.  doi: 10.1016/j.physd.2005.03.011.  Google Scholar

[18]

T. Saanouni, Global well-posedness of a damped Schrödinger equation in two space dimensions, Math. Meth. Appl. Sci., 37 (2014), 488-495.  doi: 10.1002/mma.2804.  Google Scholar

[19]

T. Saanouni, Remarks on damped fractional Schrödinger equation with pure power nonlinearity, Journal of Mathematical Physics, 56 (2015), 061502, 14pp. doi: 10.1063/1.4922114.  Google Scholar

[20]

M. Tsutsumi, Nonexistence of global solutions to the Cauchy problem for the damped nonlinear Schrödinger equations, SIAM J. Math. Anal., 15 (1984), 357-366.  doi: 10.1137/0515028.  Google Scholar

[21]

M. Tsutsumi, On global solutions to the initial-boundary value problem for the damped nonlinear Schrödinger equations, J. Math. Anal. Appl., 145 (1990), 328-341.  doi: 10.1016/0022-247X(90)90403-3.  Google Scholar

[1]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[2]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[3]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[4]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[5]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[6]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[7]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[8]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[9]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[10]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[11]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[12]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[13]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[14]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[15]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[16]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[17]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[18]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[19]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[20]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (168)
  • HTML views (380)
  • Cited by (0)

Other articles
by authors

[Back to Top]