Advanced Search
Article Contents
Article Contents

Approximate continuous data assimilation of the 2D Navier-Stokes equations via the Voigt-regularization with observable data

  • * Corresponding author: Adam Larios

    * Corresponding author: Adam Larios 

The first author is supported by NSF grant number DMS-1716801

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • We propose a data assimilation algorithm for the 2D Navier-Stokes equations, based on the Azouani, Olson, and Titi (AOT) algorithm, but applied to the 2D Navier-Stokes-Voigt equations. Adapting the AOT algorithm to regularized versions of Navier-Stokes has been done before, but the innovation of this work is to drive the assimilation equation with observational data, rather than data from a regularized system. We first prove that this new system is globally well-posed. Moreover, we prove that for any admissible initial data, the $ L^2 $ and $ H^1 $ norms of error are bounded by a constant times a power of the Voigt-regularization parameter $ \alpha>0 $, plus a term which decays exponentially fast in time. In particular, the large-time error goes to zero algebraically as $ \alpha $ goes to zero. Assuming more smoothness on the initial data and forcing, we also prove similar results for the $ H^2 $ norm.

    Mathematics Subject Classification: Primary: 35Q30, 37C50; Secondary: 93C20, 76B75, 34D06.


    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] D. A. AlbanezH. J. Nussenzveig Lopes and E. S. Titi, Continuous data assimilation for the three-dimensional Navier–Stokes-$\alpha$ model, Asymptotic Anal., 97 (2016), 139-164. 
    [2] D. A. F. Albanez and M. J. Benvenutti, Continuous data assimilation algorithm for simplified Bardina model, Evol. Equ. Control Theory, 7 (2018), 33-52.  doi: 10.3934/eect.2018002.
    [3] M. U. AltafE. S. TitiO. M. KnioL. ZhaoM. F. McCabe and I. Hoteit, Downscaling the 2D Benard convection equations using continuous data assimilation, Comput. Geosci, 21 (2017), 393-410.  doi: 10.1007/s10596-017-9619-2.
    [4] R. A. Anthes, Data assimilation and initialization of hurricane prediction models, J. Atmos. Sci., 31 (1974), 702-719.  doi: 10.1175/1520-0469(1974)031<0702:DAAIOH>2.0.CO;2.
    [5] A. AzouaniE. Olson and E. S. Titi, Continuous data assimilation using general interpolant observables, J. Nonlinear Sci., 24 (2014), 277-304.  doi: 10.1007/s00332-013-9189-y.
    [6] A. Azouani and E. S. Titi, Feedback control of nonlinear dissipative systems by finite determining parameters–-a reaction-diffusion paradigm, Evol. Equ. Control Theory, 3 (2014), 579-594.  doi: 10.3934/eect.2014.3.579.
    [7] L. C. Berselli and L. Bisconti, On the structural stability of the Euler-Voigt and Navier–Stokes-Voigt models, Nonlinear Anal., 75 (2012), 117-130.  doi: 10.1016/j.na.2011.08.011.
    [8] L. C. Berselli, T. Iliescu and W. J. Layton, Mathematics of Large Eddy Simulation of Turbulent Flows, Scientific Computation. Springer-Verlag, Berlin, 2006.
    [9] L. C. BerselliT.-Y. Kim and L. G. Rebholz, Analysis of a reduced-order approximate deconvolution model and its interpretation as a Navier–Stokes-Voigt regularization, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 1027-1050.  doi: 10.3934/dcdsb.2016.21.1027.
    [10] L. C. Berselli and S. Spirito, Suitable weak solutions to the 3D Navier–Stokes equations are constructed with the Voigt approximation, J. Differential Equations, 262 (2017), 3285-3316.  doi: 10.1016/j.jde.2016.11.027.
    [11] H. BessaihE. Olson and E. S. Titi, Continuous data assimilation with stochastically noisy data, Nonlinearity, 28 (2015), 729-753.  doi: 10.1088/0951-7715/28/3/729.
    [12] A. Biswas, C. Foias, C. F. Mondaini and E. S. Titi, Downscaling data assimilation algorithm with applications to statistical solutions of the Navier–Stokes equations, In Annales de l'Institut Henri Poincaré C, Analyse non linéaire, 36 (2019), 295–326. doi: 10.1016/j.anihpc.2018.05.004.
    [13] A. Biswas and V. R. Martinez, Higher-order synchronization for a data assimilation algorithm for the 2D Navier–Stokes equations, Nonlinear Anal. Real World Appl., 35 (2017), 132-157.  doi: 10.1016/j.nonrwa.2016.10.005.
    [14] D. BlömkerK. LawA. M. Stuart and K. C. Zygalakis, Accuracy and stability of the continuous-time 3DVAR filter for the Navier–Stokes equation, Nonlinearity, 26 (2013), 2193-2219.  doi: 10.1088/0951-7715/26/8/2193.
    [15] M. Böhm., On Navier–Stokes and Kelvin-Voigt equations in three dimensions in interpolation spaces, Math. Nachr., 155 (1992), 151-165.  doi: 10.1002/mana.19921550112.
    [16] R. Borges and F. Ramos, Sub-grid effects of the Voigt viscoelastic regularization of a singular dyadic model of turbulence, J. Phys. A, 46 (2013), 195501, 19pp. doi: 10.1088/1751-8113/46/19/195501.
    [17] C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, Spectral Methods, Scientific Computation. Springer-Verlag, Berlin, 2006. Fundamentals in single domains.
    [18] C. Cao, I. G. Kevrekidis and E. S. Titi, Numerical criterion for the stabilization of steady states of the Navier–Stokes equations, Indiana Univ. Math. J., 50 (2001), 37–96. Dedicated to Professors Ciprian Foias and Roger Temam (Bloomington, IN, 2000). doi: 10.1512/iumj.2001.50.2154.
    [19] Y. CaoE. Lunasin and E. S. Titi, Global well-posedness of the three-dimensional viscous and inviscid simplified Bardina turbulence models, Commun. Math. Sci., 4 (2006), 823-848.  doi: 10.4310/CMS.2006.v4.n4.a8.
    [20] E. Carlson, J. Hudson and A. Larios, Parameter recovery for the 2D Navier–Stokes equations via continuous data assimilation, SIAM J. Sci. Comput. (accepted for publication).
    [21] D. Catania, Global existence for a regularized magnetohydrodynamic-$\alpha$ model, Ann. Univ Ferrara, 56 (2010), 1-20.  doi: 10.1007/s11565-009-0069-1.
    [22] D. Catania and P. Secchi, Global existence for two regularized MHD models in three space-dimension, Port. Math., 68 (2011), 41-52.  doi: 10.4171/PM/1880.
    [23] E. CelikE. Olson and E. S. Titi, Spectral filtering of interpolant observables for a discrete-in-time downscaling data assimilation algorithm, SIAM J. Appl. Dyn. Syst., 18 (2019), 1118-1142.  doi: 10.1137/18M1218480.
    [24] S. ChenC. FoiasD. D. HolmE. OlsonE. S. Titi and S. Wynne, Camassa-Holm equations as a closure model for turbulent channel and pipe flow, Phys. Rev. Lett., 81 (1998), 5338-5341.  doi: 10.1103/PhysRevLett.81.5338.
    [25] S. Chen, C. Foias, D. D. Holm, E. Olson, E. S. Titi and S. Wynne, The Camassa-Holm equations and turbulence, Phys. D, 133 (1999), 49–65. Predictability: quantifying uncertainty in models of complex phenomena (Los Alamos, NM, 1998). doi: 10.1016/S0167-2789(99)00098-6.
    [26] S. Chen, C. Foias, D. D. Holm, E. Olson, E. S. Titi and S. Wynne, A connection between the Camassa-Holm equations and turbulent flows in channels and pipes, Phys. Fluids, 11 (1999), 2343–2353. The International Conference on Turbulence (Los Alamos, NM, 1998). doi: 10.1063/1.870096.
    [27] A. CheskidovD. D. HolmE. Olson and E. S. Titi, On a Leray-$\alpha$ model of turbulence, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461 (2005), 629-649.  doi: 10.1098/rspa.2004.1373.
    [28] P. Constantin and  C. FoiasNavier–Stokes Equations, Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 1988. 
    [29] V. M. CuffA. A. DuncaC. C. Manica and L. G. Rebholz, The reduced order NS-$\alpha$ model for incompressible flow: theory, numerical analysis and benchmark testing, ESAIM Math. Model. Numer. Anal., 49 (2015), 641-662.  doi: 10.1051/m2an/2014053.
    [30] R. DaleyAtmospheric Data Analysis, Cambridge Atmospheric and Space Science Series. Cambridge University Press, 1993. 
    [31] R. DascaliucC. Foias and M. S. Jolly, Relations between energy and enstrophy on the global attractor of the 2-D Navier–Stokes equations, J. Dynam. Differential Equations, 17 (2005), 643-736.  doi: 10.1007/s10884-005-8269-6.
    [32] R. Dascaliuc, C. Foias and M. S. Jolly, Universal bounds on the attractor of the Navier–Stokes equation in the energy, enstrophy plane, J. Math. Phys., 48 (2007), 065201, 33pp. doi: 10.1063/1.2710349.
    [33] R. DascaliucC. Foias and M. S. Jolly, Some specific mathematical constraints on 2D turbulence, Phys. D, 237 (2008), 3020-3029.  doi: 10.1016/j.physd.2008.07.004.
    [34] R. DascaliucC. Foias and M. S. Jolly, Estimates on enstrophy, palinstrophy, and invariant measures for 2-D turbulence, J. Differential Equations, 248 (2010), 792-819.  doi: 10.1016/j.jde.2009.11.020.
    [35] G. Di Molfetta, G. Krstlulovic and M. Brachet, Self-truncation and scaling in Euler-Voigt-$\alpha$ and related fluid models, Phys. Rev. E, 92 (2015), 013020, 9pp. doi: 10.1103/PhysRevE.92.013020.
    [36] M. A. EbrahimiM. Holst and E. Lunasin, The Navier–Stokes-Voight model for image inpainting, IMA J. App. Math., 78 (2013), 869-894.  doi: 10.1093/imamat/hxr069.
    [37] A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements, volume 159 of Applied Mathematical Sciences, Springer-Verlag, New York, 2004. doi: 10.1007/978-1-4757-4355-5.
    [38] A. Farhat, N. Glatt-Holtz, V. Martinez, S. McQuarrie and J. P. Whitehead, Data assimilation in Rayleigh-Bénard convection for large Prandtl number: analysis and computations, submitted, arXiv: 1903.01508, 2019.
    [39] A. FarhatM. S. Jolly and E. S. Titi, Continuous data assimilation for the 2D Bénard convection through velocity measurements alone, Phys. D, 303 (2015), 59-66.  doi: 10.1016/j.physd.2015.03.011.
    [40] A. FarhatE. Lunasin and E. S. Titi, Abridged continuous data assimilation for the 2D Navier–Stokes equations utilizing measurements of only one component of the velocity field, J. Math. Fluid Mech., 18 (2016), 1-23.  doi: 10.1007/s00021-015-0225-6.
    [41] A. FarhatE. Lunasin and E. S. Titi, Data assimilation algorithm for 3D Bénard convection in porous media employing only temperature measurements, J. Math. Anal. Appl., 438 (2016), 492-506.  doi: 10.1016/j.jmaa.2016.01.072.
    [42] A. Farhat, E. Lunasin and E. S. Titi, On the Charney conjecture of data assimilation employing temperature measurements alone: the paradigm of 3D planetary geostrophic model, Mathematics of Climate and Weather Forecasting, 2 (2016). doi: 10.1515/mcwf-2016-0004.
    [43] A. FarhatE. Lunasin and E. S. Titi., Continuous data assimilation for a 2D Bénard convection system through horizontal velocity measurements alone, J. Nonlinear Sci., 27 (2017), 1065-1087.  doi: 10.1007/s00332-017-9360-y.
    [44] A. Farhat, E. Lunasin and E. S. Titi, A data assimilation algorithm: The paradigm of the 3D Leray-α model of turbulence, Partial Differential Equations Arising from Physics and Geometry, 253–273, London Math. Soc. Lecture Note Ser., 450, Cambridge Univ. Press, Cambridge, 2019.
    [45] C. FoiasD. D. Holm and E. S. Titi, The three-dimensional viscous Camassa-Holm equations, and their relation to the Navier–Stokes equations and turbulence theory, J. Dynam. Differential Equations, 14 (2002), 1-35.  doi: 10.1023/A:1012984210582.
    [46] C. Foias, O. Manley, R. Rosa and R. Temam, Navier–Stokes Equations and Turbulence, volume 83 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 2001. doi: 10.1017/CBO9780511546754.
    [47] C. FoiasC. F. Mondaini and E. S. Titi, A discrete data assimilation scheme for the solutions of the two-dimensional Navier–Stokes equations and their statistics, SIAM J. Appl. Dyn. Syst., 15 (2016), 2109-2142.  doi: 10.1137/16M1076526.
    [48] K. Foyash, M. S. Dzholli, R. Kravchenko and È. S. Titi, A unified approach to the construction of defining forms for a two-dimensional system of Navier–Stokes equations: the case of general interpolating operators, Uspekhi Mat. Nauk, 69 (2014), 177–200; translation in Russian Math. Surveys, 69 (2014), 359–381. doi: 10.1070/rm2014v069n02abeh004891.
    [49] C. G. Gal and T. T. Medjo, A Navier–Stokes-Voight model with memory, Math. Methods Appl. Sci., 36 (2013), 2507-2523.  doi: 10.1002/mma.2771.
    [50] H. Gao and C. Sun, Random dynamics of the 3D stochastic Navier-Stokes-Voight equations, Nonlinear Anal. Real World Appl., 13 (2012), 1197-1205.  doi: 10.1016/j.nonrwa.2011.09.013.
    [51] J. García-LuengoP. Marín-Rubio and J. Real, Pullback attractors for three-dimensional non-autonomous Navier–Stokes-Voigt equations, Nonlinearity, 25 (2012), 905-930.  doi: 10.1088/0951-7715/25/4/905.
    [52] Garca-Archilla, J. Novo and E. S. Titi, Uniform in time error estimates for a finite element method applied to a downscaling data assimilation algorithm, submitted, arXiv: 1807.08735.
    [53] M. GeshoE. Olson and E. S. Titi, A computational study of a data assimilation algorithm for the two-dimensional Navier–Stokes equations, Commun. Comput. Phys., 19 (2016), 1094-1110.  doi: 10.4208/cicp.060515.161115a.
    [54] N. Glatt-Holtz, I. Kukavica, V. Vicol and M. Ziane, Existence and regularity of invariant measures for the three dimensional stochastic primitive equations, J. Math. Phys., 55 (2014), 051504, 34pp. doi: 10.1063/1.4875104.
    [55] K. HaydenE. Olson and E. S. Titi, Discrete data assimilation in the Lorenz and 2D Navier–Stokes equations, Phys. D, 240 (2011), 1416-1425.  doi: 10.1016/j.physd.2011.04.021.
    [56] J. E. Hoke and R. A. Anthes, The initialization of numerical models by a dynamic-initialization technique, Monthly Weather Review, 104 (1976), 1551-1556.  doi: 10.1175/1520-0493(1976)104<1551:TIONMB>2.0.CO;2.
    [57] D. Holm and E. Titi, Computational models of turbulence: The LANS-$\alpha$ model and the role of global analysis, SIAM News, 38 (2005). Feature Article.
    [58] H. A. Ibdah, C. F. Mondaini and E. S. Titi., Fully discrete numerical schemes of a data assimilation algorithm: uniform-in-time error estimates., IMA Journal of Numerical Analysis, (2019).
    [59] A. A. IlyinE. M. Lunasin and E. S. Titi, A modified-Leray-$\alpha$ subgrid scale model of turbulence, Nonlinearity, 19 (2006), 879-897.  doi: 10.1088/0951-7715/19/4/006.
    [60] M. S. Jolly, V. R. Martinez, E. J. Olson and E. S. Titi, Continuous data assimilation with blurred-in-time measurements of the surface quasi-geostrophic equation, Chin. Ann. Math. Ser. B, 40 (2019), 721–764, arXiv: 1809.00106. doi: 10.1007/s11401-019-0158-0.
    [61] M. S. JollyV. R. Martinez and E. S. Titi, A data assimilation algorithm for the subcritical surface quasi-geostrophic equation, Adv. Nonlinear Stud., 17 (2017), 167-192.  doi: 10.1515/ans-2016-6019.
    [62] M. S. JollyT. Sadigov and E. S. Titi, A determining form for the damped driven nonlinear Schrödinger equation–-Fourier modes case, J. Differential Equations, 258 (2015), 2711-2744.  doi: 10.1016/j.jde.2014.12.023.
    [63] D. A. Jones and E. S. Titi, Determining finite volume elements for the 2D Navier–Stokes equations, Phys. D, 60 (1992), 165–174. Experimental mathematics: Computational issues in nonlinear science (Los Alamos, NM, 1991). doi: 10.1016/0167-2789(92)90233-D.
    [64] V. K. KalantarovB. Levant and E. S. Titi, Gevrey regularity for the attractor of the 3D Navier–Stokes-Voight equations, J. Nonlinear Sci., 19 (2009), 133-152.  doi: 10.1007/s00332-008-9029-7.
    [65] V. K. Kalantarov and E. S. Titi, Global attractors and determining modes for the 3D Navier–Stokes-Voight equations, Chinese Ann. Math. B, 30 (2009), 697-714.  doi: 10.1007/s11401-009-0205-3.
    [66] R. E. Kalman, A new approach to linear filtering and prediction problems, J. Basic Eng., 82 (1960), 35-45.  doi: 10.1115/1.3662552.
    [67] E. KalnayAtmospheric Modeling, Data Assimilation and Predictability, Cambridge University Press, 2003. 
    [68] B. Khouider and E. S. Titi, An inviscid regularization for the surface quasi-geostrophic equation, Comm. Pure Appl. Math., 61 (2008), 1331-1346.  doi: 10.1002/cpa.20218.
    [69] P. KuberryA. LariosL. G. Rebholz and N. E. Wilson, Numerical approximation of the Voigt regularization for incompressible Navier–Stokes and magnetohydrodynamic flows, Comput. Math. Appl., 64 (2012), 2647-2662.  doi: 10.1016/j.camwa.2012.07.010.
    [70] S. Lakshmivarahan and J. M. Lewis, Nudging methods: A critical overview, In Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II), pages 27–57. Springer, 2013. doi: 10.1007/978-3-642-35088-7_2.
    [71] A. Larios, E. Lunasin and E. S. Titi, Global well-posedness for the Boussinesq-Voigt equations, preprint, arXiv: 1010.5024.
    [72] A. LariosE. Lunasin and E. S. Titi, Global well-posedness for the 2D Boussinesq system with anisotropic viscosity and without heat diffusion, J. Differ. Equations, 255 (2013), 2636-2654.  doi: 10.1016/j.jde.2013.07.011.
    [73] A. Larios and Y. Pei, Nonlinear continuous data assimilation, submitted, arXiv: 1703.03546.
    [74] A. Larios and Y. Pei, On the local well-posedness and a Prodi-Serrin-type regularity criterion of the three-dimensional MHD-Boussinesq system without thermal diffusion, J. Differential Equations, 263 (2017), 1419-1450.  doi: 10.1016/j.jde.2017.03.024.
    [75] A. LariosY. Pei and L. Rebholz, Global well-posedness of the velocity-vorticity-Voigt model of the 3D Navier-Stokes equations, J. Differential Equations, 266 (2019), 2435-2465.  doi: 10.1016/j.jde.2018.08.033.
    [76] A. LariosM. R. PetersenE. S. Titi and B. Wingate, A computational investigation of the finite-time blow-up of the 3D incompressible Euler equations based on the Voigt regularization, Theor. Comput. Fluid Dyn., 32 (2018), 23-34.  doi: 10.1007/s00162-017-0434-0.
    [77] A. LariosL. G. Rebholz and C. Zerfas, Global in time stability and accuracy of IMEX-FEM data assimilation schemes for Navier–Stokes equations, Computer Methods in Applied Mechanics and Engineering, 345 (2019), 1077-1093.  doi: 10.1016/j.cma.2018.09.004.
    [78] A. Larios and E. S. Titi, On the higher-order global regularity of the inviscid Voigt-regularization of three-dimensional hydrodynamic models, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 603-627.  doi: 10.3934/dcdsb.2010.14.603.
    [79] A. Larios and E. S. Titi, Higher-order global regularity of an inviscid Voigt-regularization of the three-dimensional inviscid resistive magnetohydrodynamic equations, J. Math. Fluid Mech., 16 (2014), 59-76.  doi: 10.1007/s00021-013-0136-3.
    [80] A. Larios and C. Victor, Continuous data assimilation with a moving cluster of data points for a reaction diffusion equation: A computational study, Commun. Comp. Phys., 2019. (accepted for publication).
    [81] K. Law, A. Stuart and K. Zygalakis, A Mathematical Introduction to Data Assimilation, volume 62 of Texts in Applied Mathematics, Springer, Cham, 2015. doi: 10.1007/978-3-319-20325-6.
    [82] W. J. Layton and L. G. Rebholz, On relaxation times in the Navier–Stokes-Voigt model, Int. J. Comput. Fluid Dyn., 27 (2013), 184-187.  doi: 10.1080/10618562.2013.766328.
    [83] D. Leoni, P. Clark, A. Mazzino and L. Biferale, Unraveling turbulence via physics-informed data-assimilation and spectral nudging, preprint, arXiv: 1804.08766.
    [84] D. Leoni, P. Clark, A. Mazzino and L. Biferale, Synchronization to big-data: Nudging the Navier-Stokes equations for data assimilation of turbulent flows, arXiv preprint, arXiv: 1905.05860.
    [85] M. LesieurO. Metais and  P. ComteLarge-Eddy Simulations of Turbulence, Cambridge University Press, New York, 2005.  doi: 10.1017/CBO9780511755507.
    [86] B. LevantF. Ramos and E. S. Titi, On the statistical properties of the 3D incompressible Navier–Stokes-Voigt model, Commun. Math. Sci., 8 (2010), 277-293.  doi: 10.4310/CMS.2010.v8.n1.a14.
    [87] J. Lewis and S. Lakshmivarahan, Sasakiś pivotal contribution: Calculus of variations applied to weather map analysis, Monthly Weather Review, 136 (2008), 3553-3567. 
    [88] H. Li and Y. Qin, Pullback attractors for three-dimensional Navier–Stokes-Voigt equations with delays, Bound. Value Probl., 2013 (2013), 17pp. doi: 10.1186/1687-2770-2013-191.
    [89] E. Lunasin and E. S. Titi, Finite determining parameters feedback control for distributed nonlinear dissipative systems–-a computational study, Evol. Equ. Control Theory, 6 (2017), 535-557.  doi: 10.3934/eect.2017027.
    [90] P. A. MarkowichE. S. Titi and S. Trabelsi, Continuous data assimilation for the three-dimensional Brinkman–Forchheimer-extended Darcy model, Nonlinearity, 29 (2016), 1292-1328.  doi: 10.1088/0951-7715/29/4/1292.
    [91] C. F. Mondaini and E. S. Titi, Uniform-in-time error estimates for the postprocessing Galerkin method applied to a data assimilation algorithm, SIAM J. Numer. Anal., 56 (2018), 78-110.  doi: 10.1137/16M110962X.
    [92] C. J. Niche, Decay characterization of solutions to Navier–Stokes-Voigt equations in terms of the initial datum, J. Differential Equations, 260 (2016), 4440-4453.  doi: 10.1016/j.jde.2015.11.014.
    [93] L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa (3), 13 (1959), 115–162.
    [94] E. Olson and E. S. Titi, Determining modes for continuous data assimilation in 2D turbulence, J. Statist. Phys., 113 (2003), 799–840. Progress in statistical hydrodynamics (Santa Fe, NM, 2002). doi: 10.1023/A:1027312703252.
    [95] E. Olson and E. S. Titi, Viscosity versus vorticity stretching: Global well-posedness for a family of Navier–Stokes-alpha-like models, Nonlinear Anal., 66 (2007), 2427-2458.  doi: 10.1016/j.na.2006.03.030.
    [96] A. P. Oskolkov, The uniqueness and solvability in the large of boundary value problems for the equations of motion of aqueous solutions of polymers, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 38 (1973), 98–136. Boundary value problems of mathematical physics and related questions in the theory of functions, 7.
    [97] A. P. Oskolkov, On the theory of unsteady flows of Kelvin-Voigt fluids, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 115 (1982), 191–202,310. Boundary value problems of mathematical physics and related questions in the theory of functions, 14.
    [98] Y. Pei, Continuous data assimilation for the 3D primitive equations of the ocean, Comm. Pure Appl. Math., 18 (2019), 643-661.  doi: 10.3934/cpaa.2019032.
    [99] F. Ramos and E. S. Titi, Invariant measures for the 3D Navier–Stokes-Voigt equations and their Navier–Stokes limit, Discrete Contin. Dyn. Syst., 28 (2010), 375-403.  doi: 10.3934/dcds.2010.28.375.
    [100] L. G. Rebholz and C. Zerfas, Simple and efficient continuous data assimilation of evolution equations via algebraic nudging, 2018. arXiv: 1810.03512.
    [101] J. C. RobinsonInfinite-Dimensional Dynamical Systems, Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 2001.  doi: 10.1007/978-94-010-0732-0.
    [102] J. C. Robinson, Attractors and finite-dimensional behaviour in the 2D Navier-Stokes equations, ISRN Math. Anal., 2013 (2013), pages Art. ID 291823, 29pp. doi: 10.1155/2013/291823.
    [103] P. Sagaut, Large Eddy Simulation for Incompressible Flows, Scientific Computation. Springer-Verlag, Berlin, third edition, 2006. An introduction, Translated from the 1998 French original, With forewords by Marcel Lesieur and Massimo Germano, With a foreword by Charles Meneveau.
    [104] J. Shen, T. Tang and L.-L. Wang, Spectral Methods, volume 41 of Springer Series in Computational Mathematics, Springer, Heidelberg, 2011. Algorithms, analysis and applications. doi: 10.1007/978-3-540-71041-7.
    [105] Q. B. Tang, Dynamics of stochastic three dimensional Navier-Stokes-Voigt equations on unbounded domains, J. Math. Anal. Appl., 419 (2014), 583-605.  doi: 10.1016/j.jmaa.2014.05.003.
    [106] R. Temam, Navier–Stokes Equations: Theory and Numerical Analysis, AMS Chelsea Publishing, Providence, RI, 2001. Theory and numerical analysis, Reprint of the 1984 edition. doi: 10.1090/chel/343.
    [107] X. M. Wang, A remark on the characterization of the gradient of a distribution, Appl. Anal., 51 (1993), 35-40.  doi: 10.1080/00036819308840202.
    [108] C. Zhao and H. Zhu, Upper bound of decay rate for solutions to the Navier-Stokes-Voigt equations in $\mathbb{R}^3$, Appl. Math. Comput., 256 (2015), 183-191.  doi: 10.1016/j.amc.2014.12.131.
  • 加载中

Article Metrics

HTML views(2263) PDF downloads(304) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint