doi: 10.3934/eect.2020031

Approximate continuous data assimilation of the 2D Navier-Stokes equations via the Voigt-regularization with observable data

1. 

Department of Mathematics, University of Nebraska–Lincoln, Lincoln, NE 68588, USA

2. 

Department of Mathematics, Western Washington University, Bellingham, WA 98225, USA

* Corresponding author: Adam Larios

Received  June 2019 Revised  October 2019 Published  December 2019

Fund Project: The first author is supported by NSF grant number DMS-1716801.

We propose a data assimilation algorithm for the 2D Navier-Stokes equations, based on the Azouani, Olson, and Titi (AOT) algorithm, but applied to the 2D Navier-Stokes-Voigt equations. Adapting the AOT algorithm to regularized versions of Navier-Stokes has been done before, but the innovation of this work is to drive the assimilation equation with observational data, rather than data from a regularized system. We first prove that this new system is globally well-posed. Moreover, we prove that for any admissible initial data, the $ L^2 $ and $ H^1 $ norms of error are bounded by a constant times a power of the Voigt-regularization parameter $ \alpha>0 $, plus a term which decays exponentially fast in time. In particular, the large-time error goes to zero algebraically as $ \alpha $ goes to zero. Assuming more smoothness on the initial data and forcing, we also prove similar results for the $ H^2 $ norm.

Citation: Adam Larios, Yuan Pei. Approximate continuous data assimilation of the 2D Navier-Stokes equations via the Voigt-regularization with observable data. Evolution Equations & Control Theory, doi: 10.3934/eect.2020031
References:
[1]

D. A. AlbanezH. J. Nussenzveig Lopes and E. S. Titi, Continuous data assimilation for the three-dimensional Navier–Stokes-$\alpha$ model, Asymptotic Anal., 97 (2016), 139-164.   Google Scholar

[2]

D. A. F. Albanez and M. J. Benvenutti, Continuous data assimilation algorithm for simplified Bardina model, Evol. Equ. Control Theory, 7 (2018), 33-52.  doi: 10.3934/eect.2018002.  Google Scholar

[3]

M. U. AltafE. S. TitiO. M. KnioL. ZhaoM. F. McCabe and I. Hoteit, Downscaling the 2D Benard convection equations using continuous data assimilation, Comput. Geosci, 21 (2017), 393-410.  doi: 10.1007/s10596-017-9619-2.  Google Scholar

[4]

R. A. Anthes, Data assimilation and initialization of hurricane prediction models, J. Atmos. Sci., 31 (1974), 702-719.  doi: 10.1175/1520-0469(1974)031<0702:DAAIOH>2.0.CO;2.  Google Scholar

[5]

A. AzouaniE. Olson and E. S. Titi, Continuous data assimilation using general interpolant observables, J. Nonlinear Sci., 24 (2014), 277-304.  doi: 10.1007/s00332-013-9189-y.  Google Scholar

[6]

A. Azouani and E. S. Titi, Feedback control of nonlinear dissipative systems by finite determining parameters–-a reaction-diffusion paradigm, Evol. Equ. Control Theory, 3 (2014), 579-594.  doi: 10.3934/eect.2014.3.579.  Google Scholar

[7]

L. C. Berselli and L. Bisconti, On the structural stability of the Euler-Voigt and Navier–Stokes-Voigt models, Nonlinear Anal., 75 (2012), 117-130.  doi: 10.1016/j.na.2011.08.011.  Google Scholar

[8]

L. C. Berselli, T. Iliescu and W. J. Layton, Mathematics of Large Eddy Simulation of Turbulent Flows, Scientific Computation. Springer-Verlag, Berlin, 2006.  Google Scholar

[9]

L. C. BerselliT.-Y. Kim and L. G. Rebholz, Analysis of a reduced-order approximate deconvolution model and its interpretation as a Navier–Stokes-Voigt regularization, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 1027-1050.  doi: 10.3934/dcdsb.2016.21.1027.  Google Scholar

[10]

L. C. Berselli and S. Spirito, Suitable weak solutions to the 3D Navier–Stokes equations are constructed with the Voigt approximation, J. Differential Equations, 262 (2017), 3285-3316.  doi: 10.1016/j.jde.2016.11.027.  Google Scholar

[11]

H. BessaihE. Olson and E. S. Titi, Continuous data assimilation with stochastically noisy data, Nonlinearity, 28 (2015), 729-753.  doi: 10.1088/0951-7715/28/3/729.  Google Scholar

[12]

A. Biswas, C. Foias, C. F. Mondaini and E. S. Titi, Downscaling data assimilation algorithm with applications to statistical solutions of the Navier–Stokes equations, In Annales de l'Institut Henri Poincaré C, Analyse non linéaire, 36 (2019), 295–326. doi: 10.1016/j.anihpc.2018.05.004.  Google Scholar

[13]

A. Biswas and V. R. Martinez, Higher-order synchronization for a data assimilation algorithm for the 2D Navier–Stokes equations, Nonlinear Anal. Real World Appl., 35 (2017), 132-157.  doi: 10.1016/j.nonrwa.2016.10.005.  Google Scholar

[14]

D. BlömkerK. LawA. M. Stuart and K. C. Zygalakis, Accuracy and stability of the continuous-time 3DVAR filter for the Navier–Stokes equation, Nonlinearity, 26 (2013), 2193-2219.  doi: 10.1088/0951-7715/26/8/2193.  Google Scholar

[15]

M. Böhm., On Navier–Stokes and Kelvin-Voigt equations in three dimensions in interpolation spaces, Math. Nachr., 155 (1992), 151-165.  doi: 10.1002/mana.19921550112.  Google Scholar

[16]

R. Borges and F. Ramos, Sub-grid effects of the Voigt viscoelastic regularization of a singular dyadic model of turbulence, J. Phys. A, 46 (2013), 195501, 19pp. doi: 10.1088/1751-8113/46/19/195501.  Google Scholar

[17]

C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, Spectral Methods, Scientific Computation. Springer-Verlag, Berlin, 2006. Fundamentals in single domains.  Google Scholar

[18]

C. Cao, I. G. Kevrekidis and E. S. Titi, Numerical criterion for the stabilization of steady states of the Navier–Stokes equations, Indiana Univ. Math. J., 50 (2001), 37–96. Dedicated to Professors Ciprian Foias and Roger Temam (Bloomington, IN, 2000). doi: 10.1512/iumj.2001.50.2154.  Google Scholar

[19]

Y. CaoE. Lunasin and E. S. Titi, Global well-posedness of the three-dimensional viscous and inviscid simplified Bardina turbulence models, Commun. Math. Sci., 4 (2006), 823-848.  doi: 10.4310/CMS.2006.v4.n4.a8.  Google Scholar

[20]

E. Carlson, J. Hudson and A. Larios, Parameter recovery for the 2D Navier–Stokes equations via continuous data assimilation, SIAM J. Sci. Comput. (accepted for publication). Google Scholar

[21]

D. Catania, Global existence for a regularized magnetohydrodynamic-$\alpha$ model, Ann. Univ Ferrara, 56 (2010), 1-20.  doi: 10.1007/s11565-009-0069-1.  Google Scholar

[22]

D. Catania and P. Secchi, Global existence for two regularized MHD models in three space-dimension, Port. Math., 68 (2011), 41-52.  doi: 10.4171/PM/1880.  Google Scholar

[23]

E. CelikE. Olson and E. S. Titi, Spectral filtering of interpolant observables for a discrete-in-time downscaling data assimilation algorithm, SIAM J. Appl. Dyn. Syst., 18 (2019), 1118-1142.  doi: 10.1137/18M1218480.  Google Scholar

[24]

S. ChenC. FoiasD. D. HolmE. OlsonE. S. Titi and S. Wynne, Camassa-Holm equations as a closure model for turbulent channel and pipe flow, Phys. Rev. Lett., 81 (1998), 5338-5341.  doi: 10.1103/PhysRevLett.81.5338.  Google Scholar

[25]

S. Chen, C. Foias, D. D. Holm, E. Olson, E. S. Titi and S. Wynne, The Camassa-Holm equations and turbulence, Phys. D, 133 (1999), 49–65. Predictability: quantifying uncertainty in models of complex phenomena (Los Alamos, NM, 1998). doi: 10.1016/S0167-2789(99)00098-6.  Google Scholar

[26]

S. Chen, C. Foias, D. D. Holm, E. Olson, E. S. Titi and S. Wynne, A connection between the Camassa-Holm equations and turbulent flows in channels and pipes, Phys. Fluids, 11 (1999), 2343–2353. The International Conference on Turbulence (Los Alamos, NM, 1998). doi: 10.1063/1.870096.  Google Scholar

[27]

A. CheskidovD. D. HolmE. Olson and E. S. Titi, On a Leray-$\alpha$ model of turbulence, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461 (2005), 629-649.  doi: 10.1098/rspa.2004.1373.  Google Scholar

[28] P. Constantin and C. Foias, Navier–Stokes Equations, Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 1988.   Google Scholar
[29]

V. M. CuffA. A. DuncaC. C. Manica and L. G. Rebholz, The reduced order NS-$\alpha$ model for incompressible flow: theory, numerical analysis and benchmark testing, ESAIM Math. Model. Numer. Anal., 49 (2015), 641-662.  doi: 10.1051/m2an/2014053.  Google Scholar

[30] R. Daley, Atmospheric Data Analysis, Cambridge Atmospheric and Space Science Series. Cambridge University Press, 1993.   Google Scholar
[31]

R. DascaliucC. Foias and M. S. Jolly, Relations between energy and enstrophy on the global attractor of the 2-D Navier–Stokes equations, J. Dynam. Differential Equations, 17 (2005), 643-736.  doi: 10.1007/s10884-005-8269-6.  Google Scholar

[32]

R. Dascaliuc, C. Foias and M. S. Jolly, Universal bounds on the attractor of the Navier–Stokes equation in the energy, enstrophy plane, J. Math. Phys., 48 (2007), 065201, 33pp. doi: 10.1063/1.2710349.  Google Scholar

[33]

R. DascaliucC. Foias and M. S. Jolly, Some specific mathematical constraints on 2D turbulence, Phys. D, 237 (2008), 3020-3029.  doi: 10.1016/j.physd.2008.07.004.  Google Scholar

[34]

R. DascaliucC. Foias and M. S. Jolly, Estimates on enstrophy, palinstrophy, and invariant measures for 2-D turbulence, J. Differential Equations, 248 (2010), 792-819.  doi: 10.1016/j.jde.2009.11.020.  Google Scholar

[35]

G. Di Molfetta, G. Krstlulovic and M. Brachet, Self-truncation and scaling in Euler-Voigt-$\alpha$ and related fluid models, Phys. Rev. E, 92 (2015), 013020, 9pp. doi: 10.1103/PhysRevE.92.013020.  Google Scholar

[36]

M. A. EbrahimiM. Holst and E. Lunasin, The Navier–Stokes-Voight model for image inpainting, IMA J. App. Math., 78 (2013), 869-894.  doi: 10.1093/imamat/hxr069.  Google Scholar

[37]

A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements, volume 159 of Applied Mathematical Sciences, Springer-Verlag, New York, 2004. doi: 10.1007/978-1-4757-4355-5.  Google Scholar

[38]

A. Farhat, N. Glatt-Holtz, V. Martinez, S. McQuarrie and J. P. Whitehead, Data assimilation in Rayleigh-Bénard convection for large Prandtl number: analysis and computations, submitted, arXiv: 1903.01508, 2019. Google Scholar

[39]

A. FarhatM. S. Jolly and E. S. Titi, Continuous data assimilation for the 2D Bénard convection through velocity measurements alone, Phys. D, 303 (2015), 59-66.  doi: 10.1016/j.physd.2015.03.011.  Google Scholar

[40]

A. FarhatE. Lunasin and E. S. Titi, Abridged continuous data assimilation for the 2D Navier–Stokes equations utilizing measurements of only one component of the velocity field, J. Math. Fluid Mech., 18 (2016), 1-23.  doi: 10.1007/s00021-015-0225-6.  Google Scholar

[41]

A. FarhatE. Lunasin and E. S. Titi, Data assimilation algorithm for 3D Bénard convection in porous media employing only temperature measurements, J. Math. Anal. Appl., 438 (2016), 492-506.  doi: 10.1016/j.jmaa.2016.01.072.  Google Scholar

[42]

A. Farhat, E. Lunasin and E. S. Titi, On the Charney conjecture of data assimilation employing temperature measurements alone: the paradigm of 3D planetary geostrophic model, Mathematics of Climate and Weather Forecasting, 2 (2016). doi: 10.1515/mcwf-2016-0004.  Google Scholar

[43]

A. FarhatE. Lunasin and E. S. Titi., Continuous data assimilation for a 2D Bénard convection system through horizontal velocity measurements alone, J. Nonlinear Sci., 27 (2017), 1065-1087.  doi: 10.1007/s00332-017-9360-y.  Google Scholar

[44]

A. Farhat, E. Lunasin and E. S. Titi, A data assimilation algorithm: The paradigm of the 3D Leray-α model of turbulence, Partial Differential Equations Arising from Physics and Geometry, 253–273, London Math. Soc. Lecture Note Ser., 450, Cambridge Univ. Press, Cambridge, 2019.  Google Scholar

[45]

C. FoiasD. D. Holm and E. S. Titi, The three-dimensional viscous Camassa-Holm equations, and their relation to the Navier–Stokes equations and turbulence theory, J. Dynam. Differential Equations, 14 (2002), 1-35.  doi: 10.1023/A:1012984210582.  Google Scholar

[46]

C. Foias, O. Manley, R. Rosa and R. Temam, Navier–Stokes Equations and Turbulence, volume 83 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 2001. doi: 10.1017/CBO9780511546754.  Google Scholar

[47]

C. FoiasC. F. Mondaini and E. S. Titi, A discrete data assimilation scheme for the solutions of the two-dimensional Navier–Stokes equations and their statistics, SIAM J. Appl. Dyn. Syst., 15 (2016), 2109-2142.  doi: 10.1137/16M1076526.  Google Scholar

[48]

K. Foyash, M. S. Dzholli, R. Kravchenko and È. S. Titi, A unified approach to the construction of defining forms for a two-dimensional system of Navier–Stokes equations: the case of general interpolating operators, Uspekhi Mat. Nauk, 69 (2014), 177–200; translation in Russian Math. Surveys, 69 (2014), 359–381. doi: 10.1070/rm2014v069n02abeh004891.  Google Scholar

[49]

C. G. Gal and T. T. Medjo, A Navier–Stokes-Voight model with memory, Math. Methods Appl. Sci., 36 (2013), 2507-2523.  doi: 10.1002/mma.2771.  Google Scholar

[50]

H. Gao and C. Sun, Random dynamics of the 3D stochastic Navier-Stokes-Voight equations, Nonlinear Anal. Real World Appl., 13 (2012), 1197-1205.  doi: 10.1016/j.nonrwa.2011.09.013.  Google Scholar

[51]

J. García-LuengoP. Marín-Rubio and J. Real, Pullback attractors for three-dimensional non-autonomous Navier–Stokes-Voigt equations, Nonlinearity, 25 (2012), 905-930.  doi: 10.1088/0951-7715/25/4/905.  Google Scholar

[52]

Garca-Archilla, J. Novo and E. S. Titi, Uniform in time error estimates for a finite element method applied to a downscaling data assimilation algorithm, submitted, arXiv: 1807.08735. Google Scholar

[53]

M. GeshoE. Olson and E. S. Titi, A computational study of a data assimilation algorithm for the two-dimensional Navier–Stokes equations, Commun. Comput. Phys., 19 (2016), 1094-1110.  doi: 10.4208/cicp.060515.161115a.  Google Scholar

[54]

N. Glatt-Holtz, I. Kukavica, V. Vicol and M. Ziane, Existence and regularity of invariant measures for the three dimensional stochastic primitive equations, J. Math. Phys., 55 (2014), 051504, 34pp. doi: 10.1063/1.4875104.  Google Scholar

[55]

K. HaydenE. Olson and E. S. Titi, Discrete data assimilation in the Lorenz and 2D Navier–Stokes equations, Phys. D, 240 (2011), 1416-1425.  doi: 10.1016/j.physd.2011.04.021.  Google Scholar

[56]

J. E. Hoke and R. A. Anthes, The initialization of numerical models by a dynamic-initialization technique, Monthly Weather Review, 104 (1976), 1551-1556.  doi: 10.1175/1520-0493(1976)104<1551:TIONMB>2.0.CO;2.  Google Scholar

[57]

D. Holm and E. Titi, Computational models of turbulence: The LANS-$\alpha$ model and the role of global analysis, SIAM News, 38 (2005). Feature Article. Google Scholar

[58]

H. A. Ibdah, C. F. Mondaini and E. S. Titi., Fully discrete numerical schemes of a data assimilation algorithm: uniform-in-time error estimates., IMA Journal of Numerical Analysis, (2019). Google Scholar

[59]

A. A. IlyinE. M. Lunasin and E. S. Titi, A modified-Leray-$\alpha$ subgrid scale model of turbulence, Nonlinearity, 19 (2006), 879-897.  doi: 10.1088/0951-7715/19/4/006.  Google Scholar

[60]

M. S. Jolly, V. R. Martinez, E. J. Olson and E. S. Titi, Continuous data assimilation with blurred-in-time measurements of the surface quasi-geostrophic equation, Chin. Ann. Math. Ser. B, 40 (2019), 721–764, arXiv: 1809.00106. doi: 10.1007/s11401-019-0158-0.  Google Scholar

[61]

M. S. JollyV. R. Martinez and E. S. Titi, A data assimilation algorithm for the subcritical surface quasi-geostrophic equation, Adv. Nonlinear Stud., 17 (2017), 167-192.  doi: 10.1515/ans-2016-6019.  Google Scholar

[62]

M. S. JollyT. Sadigov and E. S. Titi, A determining form for the damped driven nonlinear Schrödinger equation–-Fourier modes case, J. Differential Equations, 258 (2015), 2711-2744.  doi: 10.1016/j.jde.2014.12.023.  Google Scholar

[63]

D. A. Jones and E. S. Titi, Determining finite volume elements for the 2D Navier–Stokes equations, Phys. D, 60 (1992), 165–174. Experimental mathematics: Computational issues in nonlinear science (Los Alamos, NM, 1991). doi: 10.1016/0167-2789(92)90233-D.  Google Scholar

[64]

V. K. KalantarovB. Levant and E. S. Titi, Gevrey regularity for the attractor of the 3D Navier–Stokes-Voight equations, J. Nonlinear Sci., 19 (2009), 133-152.  doi: 10.1007/s00332-008-9029-7.  Google Scholar

[65]

V. K. Kalantarov and E. S. Titi, Global attractors and determining modes for the 3D Navier–Stokes-Voight equations, Chinese Ann. Math. B, 30 (2009), 697-714.  doi: 10.1007/s11401-009-0205-3.  Google Scholar

[66]

R. E. Kalman, A new approach to linear filtering and prediction problems, J. Basic Eng., 82 (1960), 35-45.  doi: 10.1115/1.3662552.  Google Scholar

[67] E. Kalnay, Atmospheric Modeling, Data Assimilation and Predictability, Cambridge University Press, 2003.   Google Scholar
[68]

B. Khouider and E. S. Titi, An inviscid regularization for the surface quasi-geostrophic equation, Comm. Pure Appl. Math., 61 (2008), 1331-1346.  doi: 10.1002/cpa.20218.  Google Scholar

[69]

P. KuberryA. LariosL. G. Rebholz and N. E. Wilson, Numerical approximation of the Voigt regularization for incompressible Navier–Stokes and magnetohydrodynamic flows, Comput. Math. Appl., 64 (2012), 2647-2662.  doi: 10.1016/j.camwa.2012.07.010.  Google Scholar

[70]

S. Lakshmivarahan and J. M. Lewis, Nudging methods: A critical overview, In Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II), pages 27–57. Springer, 2013. doi: 10.1007/978-3-642-35088-7_2.  Google Scholar

[71]

A. Larios, E. Lunasin and E. S. Titi, Global well-posedness for the Boussinesq-Voigt equations, preprint, arXiv: 1010.5024. Google Scholar

[72]

A. LariosE. Lunasin and E. S. Titi, Global well-posedness for the 2D Boussinesq system with anisotropic viscosity and without heat diffusion, J. Differ. Equations, 255 (2013), 2636-2654.  doi: 10.1016/j.jde.2013.07.011.  Google Scholar

[73]

A. Larios and Y. Pei, Nonlinear continuous data assimilation, submitted, arXiv: 1703.03546. Google Scholar

[74]

A. Larios and Y. Pei, On the local well-posedness and a Prodi-Serrin-type regularity criterion of the three-dimensional MHD-Boussinesq system without thermal diffusion, J. Differential Equations, 263 (2017), 1419-1450.  doi: 10.1016/j.jde.2017.03.024.  Google Scholar

[75]

A. LariosY. Pei and L. Rebholz, Global well-posedness of the velocity-vorticity-Voigt model of the 3D Navier-Stokes equations, J. Differential Equations, 266 (2019), 2435-2465.  doi: 10.1016/j.jde.2018.08.033.  Google Scholar

[76]

A. LariosM. R. PetersenE. S. Titi and B. Wingate, A computational investigation of the finite-time blow-up of the 3D incompressible Euler equations based on the Voigt regularization, Theor. Comput. Fluid Dyn., 32 (2018), 23-34.  doi: 10.1007/s00162-017-0434-0.  Google Scholar

[77]

A. LariosL. G. Rebholz and C. Zerfas, Global in time stability and accuracy of IMEX-FEM data assimilation schemes for Navier–Stokes equations, Computer Methods in Applied Mechanics and Engineering, 345 (2019), 1077-1093.  doi: 10.1016/j.cma.2018.09.004.  Google Scholar

[78]

A. Larios and E. S. Titi, On the higher-order global regularity of the inviscid Voigt-regularization of three-dimensional hydrodynamic models, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 603-627.  doi: 10.3934/dcdsb.2010.14.603.  Google Scholar

[79]

A. Larios and E. S. Titi, Higher-order global regularity of an inviscid Voigt-regularization of the three-dimensional inviscid resistive magnetohydrodynamic equations, J. Math. Fluid Mech., 16 (2014), 59-76.  doi: 10.1007/s00021-013-0136-3.  Google Scholar

[80]

A. Larios and C. Victor, Continuous data assimilation with a moving cluster of data points for a reaction diffusion equation: A computational study, Commun. Comp. Phys., 2019. (accepted for publication). Google Scholar

[81]

K. Law, A. Stuart and K. Zygalakis, A Mathematical Introduction to Data Assimilation, volume 62 of Texts in Applied Mathematics, Springer, Cham, 2015. doi: 10.1007/978-3-319-20325-6.  Google Scholar

[82]

W. J. Layton and L. G. Rebholz, On relaxation times in the Navier–Stokes-Voigt model, Int. J. Comput. Fluid Dyn., 27 (2013), 184-187.  doi: 10.1080/10618562.2013.766328.  Google Scholar

[83]

D. Leoni, P. Clark, A. Mazzino and L. Biferale, Unraveling turbulence via physics-informed data-assimilation and spectral nudging, preprint, arXiv: 1804.08766. Google Scholar

[84]

D. Leoni, P. Clark, A. Mazzino and L. Biferale, Synchronization to big-data: Nudging the Navier-Stokes equations for data assimilation of turbulent flows, arXiv preprint, arXiv: 1905.05860. Google Scholar

[85] M. LesieurO. Metais and P. Comte, Large-Eddy Simulations of Turbulence, Cambridge University Press, New York, 2005.  doi: 10.1017/CBO9780511755507.  Google Scholar
[86]

B. LevantF. Ramos and E. S. Titi, On the statistical properties of the 3D incompressible Navier–Stokes-Voigt model, Commun. Math. Sci., 8 (2010), 277-293.  doi: 10.4310/CMS.2010.v8.n1.a14.  Google Scholar

[87]

J. Lewis and S. Lakshmivarahan, Sasakiś pivotal contribution: Calculus of variations applied to weather map analysis, Monthly Weather Review, 136 (2008), 3553-3567.   Google Scholar

[88]

H. Li and Y. Qin, Pullback attractors for three-dimensional Navier–Stokes-Voigt equations with delays, Bound. Value Probl., 2013 (2013), 17pp. doi: 10.1186/1687-2770-2013-191.  Google Scholar

[89]

E. Lunasin and E. S. Titi, Finite determining parameters feedback control for distributed nonlinear dissipative systems–-a computational study, Evol. Equ. Control Theory, 6 (2017), 535-557.  doi: 10.3934/eect.2017027.  Google Scholar

[90]

P. A. MarkowichE. S. Titi and S. Trabelsi, Continuous data assimilation for the three-dimensional Brinkman–Forchheimer-extended Darcy model, Nonlinearity, 29 (2016), 1292-1328.  doi: 10.1088/0951-7715/29/4/1292.  Google Scholar

[91]

C. F. Mondaini and E. S. Titi, Uniform-in-time error estimates for the postprocessing Galerkin method applied to a data assimilation algorithm, SIAM J. Numer. Anal., 56 (2018), 78-110.  doi: 10.1137/16M110962X.  Google Scholar

[92]

C. J. Niche, Decay characterization of solutions to Navier–Stokes-Voigt equations in terms of the initial datum, J. Differential Equations, 260 (2016), 4440-4453.  doi: 10.1016/j.jde.2015.11.014.  Google Scholar

[93]

L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa (3), 13 (1959), 115–162.  Google Scholar

[94]

E. Olson and E. S. Titi, Determining modes for continuous data assimilation in 2D turbulence, J. Statist. Phys., 113 (2003), 799–840. Progress in statistical hydrodynamics (Santa Fe, NM, 2002). doi: 10.1023/A:1027312703252.  Google Scholar

[95]

E. Olson and E. S. Titi, Viscosity versus vorticity stretching: Global well-posedness for a family of Navier–Stokes-alpha-like models, Nonlinear Anal., 66 (2007), 2427-2458.  doi: 10.1016/j.na.2006.03.030.  Google Scholar

[96]

A. P. Oskolkov, The uniqueness and solvability in the large of boundary value problems for the equations of motion of aqueous solutions of polymers, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 38 (1973), 98–136. Boundary value problems of mathematical physics and related questions in the theory of functions, 7.  Google Scholar

[97]

A. P. Oskolkov, On the theory of unsteady flows of Kelvin-Voigt fluids, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 115 (1982), 191–202,310. Boundary value problems of mathematical physics and related questions in the theory of functions, 14.  Google Scholar

[98]

Y. Pei, Continuous data assimilation for the 3D primitive equations of the ocean, Comm. Pure Appl. Math., 18 (2019), 643-661.  doi: 10.3934/cpaa.2019032.  Google Scholar

[99]

F. Ramos and E. S. Titi, Invariant measures for the 3D Navier–Stokes-Voigt equations and their Navier–Stokes limit, Discrete Contin. Dyn. Syst., 28 (2010), 375-403.  doi: 10.3934/dcds.2010.28.375.  Google Scholar

[100]

L. G. Rebholz and C. Zerfas, Simple and efficient continuous data assimilation of evolution equations via algebraic nudging, 2018. arXiv: 1810.03512. Google Scholar

[101] J. C. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 2001.  doi: 10.1007/978-94-010-0732-0.  Google Scholar
[102]

J. C. Robinson, Attractors and finite-dimensional behaviour in the 2D Navier-Stokes equations, ISRN Math. Anal., 2013 (2013), pages Art. ID 291823, 29pp. doi: 10.1155/2013/291823.  Google Scholar

[103]

P. Sagaut, Large Eddy Simulation for Incompressible Flows, Scientific Computation. Springer-Verlag, Berlin, third edition, 2006. An introduction, Translated from the 1998 French original, With forewords by Marcel Lesieur and Massimo Germano, With a foreword by Charles Meneveau.  Google Scholar

[104]

J. Shen, T. Tang and L.-L. Wang, Spectral Methods, volume 41 of Springer Series in Computational Mathematics, Springer, Heidelberg, 2011. Algorithms, analysis and applications. doi: 10.1007/978-3-540-71041-7.  Google Scholar

[105]

Q. B. Tang, Dynamics of stochastic three dimensional Navier-Stokes-Voigt equations on unbounded domains, J. Math. Anal. Appl., 419 (2014), 583-605.  doi: 10.1016/j.jmaa.2014.05.003.  Google Scholar

[106]

R. Temam, Navier–Stokes Equations: Theory and Numerical Analysis, AMS Chelsea Publishing, Providence, RI, 2001. Theory and numerical analysis, Reprint of the 1984 edition. doi: 10.1090/chel/343.  Google Scholar

[107]

X. M. Wang, A remark on the characterization of the gradient of a distribution, Appl. Anal., 51 (1993), 35-40.  doi: 10.1080/00036819308840202.  Google Scholar

[108]

C. Zhao and H. Zhu, Upper bound of decay rate for solutions to the Navier-Stokes-Voigt equations in $\mathbb{R}^3$, Appl. Math. Comput., 256 (2015), 183-191.  doi: 10.1016/j.amc.2014.12.131.  Google Scholar

show all references

References:
[1]

D. A. AlbanezH. J. Nussenzveig Lopes and E. S. Titi, Continuous data assimilation for the three-dimensional Navier–Stokes-$\alpha$ model, Asymptotic Anal., 97 (2016), 139-164.   Google Scholar

[2]

D. A. F. Albanez and M. J. Benvenutti, Continuous data assimilation algorithm for simplified Bardina model, Evol. Equ. Control Theory, 7 (2018), 33-52.  doi: 10.3934/eect.2018002.  Google Scholar

[3]

M. U. AltafE. S. TitiO. M. KnioL. ZhaoM. F. McCabe and I. Hoteit, Downscaling the 2D Benard convection equations using continuous data assimilation, Comput. Geosci, 21 (2017), 393-410.  doi: 10.1007/s10596-017-9619-2.  Google Scholar

[4]

R. A. Anthes, Data assimilation and initialization of hurricane prediction models, J. Atmos. Sci., 31 (1974), 702-719.  doi: 10.1175/1520-0469(1974)031<0702:DAAIOH>2.0.CO;2.  Google Scholar

[5]

A. AzouaniE. Olson and E. S. Titi, Continuous data assimilation using general interpolant observables, J. Nonlinear Sci., 24 (2014), 277-304.  doi: 10.1007/s00332-013-9189-y.  Google Scholar

[6]

A. Azouani and E. S. Titi, Feedback control of nonlinear dissipative systems by finite determining parameters–-a reaction-diffusion paradigm, Evol. Equ. Control Theory, 3 (2014), 579-594.  doi: 10.3934/eect.2014.3.579.  Google Scholar

[7]

L. C. Berselli and L. Bisconti, On the structural stability of the Euler-Voigt and Navier–Stokes-Voigt models, Nonlinear Anal., 75 (2012), 117-130.  doi: 10.1016/j.na.2011.08.011.  Google Scholar

[8]

L. C. Berselli, T. Iliescu and W. J. Layton, Mathematics of Large Eddy Simulation of Turbulent Flows, Scientific Computation. Springer-Verlag, Berlin, 2006.  Google Scholar

[9]

L. C. BerselliT.-Y. Kim and L. G. Rebholz, Analysis of a reduced-order approximate deconvolution model and its interpretation as a Navier–Stokes-Voigt regularization, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 1027-1050.  doi: 10.3934/dcdsb.2016.21.1027.  Google Scholar

[10]

L. C. Berselli and S. Spirito, Suitable weak solutions to the 3D Navier–Stokes equations are constructed with the Voigt approximation, J. Differential Equations, 262 (2017), 3285-3316.  doi: 10.1016/j.jde.2016.11.027.  Google Scholar

[11]

H. BessaihE. Olson and E. S. Titi, Continuous data assimilation with stochastically noisy data, Nonlinearity, 28 (2015), 729-753.  doi: 10.1088/0951-7715/28/3/729.  Google Scholar

[12]

A. Biswas, C. Foias, C. F. Mondaini and E. S. Titi, Downscaling data assimilation algorithm with applications to statistical solutions of the Navier–Stokes equations, In Annales de l'Institut Henri Poincaré C, Analyse non linéaire, 36 (2019), 295–326. doi: 10.1016/j.anihpc.2018.05.004.  Google Scholar

[13]

A. Biswas and V. R. Martinez, Higher-order synchronization for a data assimilation algorithm for the 2D Navier–Stokes equations, Nonlinear Anal. Real World Appl., 35 (2017), 132-157.  doi: 10.1016/j.nonrwa.2016.10.005.  Google Scholar

[14]

D. BlömkerK. LawA. M. Stuart and K. C. Zygalakis, Accuracy and stability of the continuous-time 3DVAR filter for the Navier–Stokes equation, Nonlinearity, 26 (2013), 2193-2219.  doi: 10.1088/0951-7715/26/8/2193.  Google Scholar

[15]

M. Böhm., On Navier–Stokes and Kelvin-Voigt equations in three dimensions in interpolation spaces, Math. Nachr., 155 (1992), 151-165.  doi: 10.1002/mana.19921550112.  Google Scholar

[16]

R. Borges and F. Ramos, Sub-grid effects of the Voigt viscoelastic regularization of a singular dyadic model of turbulence, J. Phys. A, 46 (2013), 195501, 19pp. doi: 10.1088/1751-8113/46/19/195501.  Google Scholar

[17]

C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, Spectral Methods, Scientific Computation. Springer-Verlag, Berlin, 2006. Fundamentals in single domains.  Google Scholar

[18]

C. Cao, I. G. Kevrekidis and E. S. Titi, Numerical criterion for the stabilization of steady states of the Navier–Stokes equations, Indiana Univ. Math. J., 50 (2001), 37–96. Dedicated to Professors Ciprian Foias and Roger Temam (Bloomington, IN, 2000). doi: 10.1512/iumj.2001.50.2154.  Google Scholar

[19]

Y. CaoE. Lunasin and E. S. Titi, Global well-posedness of the three-dimensional viscous and inviscid simplified Bardina turbulence models, Commun. Math. Sci., 4 (2006), 823-848.  doi: 10.4310/CMS.2006.v4.n4.a8.  Google Scholar

[20]

E. Carlson, J. Hudson and A. Larios, Parameter recovery for the 2D Navier–Stokes equations via continuous data assimilation, SIAM J. Sci. Comput. (accepted for publication). Google Scholar

[21]

D. Catania, Global existence for a regularized magnetohydrodynamic-$\alpha$ model, Ann. Univ Ferrara, 56 (2010), 1-20.  doi: 10.1007/s11565-009-0069-1.  Google Scholar

[22]

D. Catania and P. Secchi, Global existence for two regularized MHD models in three space-dimension, Port. Math., 68 (2011), 41-52.  doi: 10.4171/PM/1880.  Google Scholar

[23]

E. CelikE. Olson and E. S. Titi, Spectral filtering of interpolant observables for a discrete-in-time downscaling data assimilation algorithm, SIAM J. Appl. Dyn. Syst., 18 (2019), 1118-1142.  doi: 10.1137/18M1218480.  Google Scholar

[24]

S. ChenC. FoiasD. D. HolmE. OlsonE. S. Titi and S. Wynne, Camassa-Holm equations as a closure model for turbulent channel and pipe flow, Phys. Rev. Lett., 81 (1998), 5338-5341.  doi: 10.1103/PhysRevLett.81.5338.  Google Scholar

[25]

S. Chen, C. Foias, D. D. Holm, E. Olson, E. S. Titi and S. Wynne, The Camassa-Holm equations and turbulence, Phys. D, 133 (1999), 49–65. Predictability: quantifying uncertainty in models of complex phenomena (Los Alamos, NM, 1998). doi: 10.1016/S0167-2789(99)00098-6.  Google Scholar

[26]

S. Chen, C. Foias, D. D. Holm, E. Olson, E. S. Titi and S. Wynne, A connection between the Camassa-Holm equations and turbulent flows in channels and pipes, Phys. Fluids, 11 (1999), 2343–2353. The International Conference on Turbulence (Los Alamos, NM, 1998). doi: 10.1063/1.870096.  Google Scholar

[27]

A. CheskidovD. D. HolmE. Olson and E. S. Titi, On a Leray-$\alpha$ model of turbulence, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461 (2005), 629-649.  doi: 10.1098/rspa.2004.1373.  Google Scholar

[28] P. Constantin and C. Foias, Navier–Stokes Equations, Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 1988.   Google Scholar
[29]

V. M. CuffA. A. DuncaC. C. Manica and L. G. Rebholz, The reduced order NS-$\alpha$ model for incompressible flow: theory, numerical analysis and benchmark testing, ESAIM Math. Model. Numer. Anal., 49 (2015), 641-662.  doi: 10.1051/m2an/2014053.  Google Scholar

[30] R. Daley, Atmospheric Data Analysis, Cambridge Atmospheric and Space Science Series. Cambridge University Press, 1993.   Google Scholar
[31]

R. DascaliucC. Foias and M. S. Jolly, Relations between energy and enstrophy on the global attractor of the 2-D Navier–Stokes equations, J. Dynam. Differential Equations, 17 (2005), 643-736.  doi: 10.1007/s10884-005-8269-6.  Google Scholar

[32]

R. Dascaliuc, C. Foias and M. S. Jolly, Universal bounds on the attractor of the Navier–Stokes equation in the energy, enstrophy plane, J. Math. Phys., 48 (2007), 065201, 33pp. doi: 10.1063/1.2710349.  Google Scholar

[33]

R. DascaliucC. Foias and M. S. Jolly, Some specific mathematical constraints on 2D turbulence, Phys. D, 237 (2008), 3020-3029.  doi: 10.1016/j.physd.2008.07.004.  Google Scholar

[34]

R. DascaliucC. Foias and M. S. Jolly, Estimates on enstrophy, palinstrophy, and invariant measures for 2-D turbulence, J. Differential Equations, 248 (2010), 792-819.  doi: 10.1016/j.jde.2009.11.020.  Google Scholar

[35]

G. Di Molfetta, G. Krstlulovic and M. Brachet, Self-truncation and scaling in Euler-Voigt-$\alpha$ and related fluid models, Phys. Rev. E, 92 (2015), 013020, 9pp. doi: 10.1103/PhysRevE.92.013020.  Google Scholar

[36]

M. A. EbrahimiM. Holst and E. Lunasin, The Navier–Stokes-Voight model for image inpainting, IMA J. App. Math., 78 (2013), 869-894.  doi: 10.1093/imamat/hxr069.  Google Scholar

[37]

A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements, volume 159 of Applied Mathematical Sciences, Springer-Verlag, New York, 2004. doi: 10.1007/978-1-4757-4355-5.  Google Scholar

[38]

A. Farhat, N. Glatt-Holtz, V. Martinez, S. McQuarrie and J. P. Whitehead, Data assimilation in Rayleigh-Bénard convection for large Prandtl number: analysis and computations, submitted, arXiv: 1903.01508, 2019. Google Scholar

[39]

A. FarhatM. S. Jolly and E. S. Titi, Continuous data assimilation for the 2D Bénard convection through velocity measurements alone, Phys. D, 303 (2015), 59-66.  doi: 10.1016/j.physd.2015.03.011.  Google Scholar

[40]

A. FarhatE. Lunasin and E. S. Titi, Abridged continuous data assimilation for the 2D Navier–Stokes equations utilizing measurements of only one component of the velocity field, J. Math. Fluid Mech., 18 (2016), 1-23.  doi: 10.1007/s00021-015-0225-6.  Google Scholar

[41]

A. FarhatE. Lunasin and E. S. Titi, Data assimilation algorithm for 3D Bénard convection in porous media employing only temperature measurements, J. Math. Anal. Appl., 438 (2016), 492-506.  doi: 10.1016/j.jmaa.2016.01.072.  Google Scholar

[42]

A. Farhat, E. Lunasin and E. S. Titi, On the Charney conjecture of data assimilation employing temperature measurements alone: the paradigm of 3D planetary geostrophic model, Mathematics of Climate and Weather Forecasting, 2 (2016). doi: 10.1515/mcwf-2016-0004.  Google Scholar

[43]

A. FarhatE. Lunasin and E. S. Titi., Continuous data assimilation for a 2D Bénard convection system through horizontal velocity measurements alone, J. Nonlinear Sci., 27 (2017), 1065-1087.  doi: 10.1007/s00332-017-9360-y.  Google Scholar

[44]

A. Farhat, E. Lunasin and E. S. Titi, A data assimilation algorithm: The paradigm of the 3D Leray-α model of turbulence, Partial Differential Equations Arising from Physics and Geometry, 253–273, London Math. Soc. Lecture Note Ser., 450, Cambridge Univ. Press, Cambridge, 2019.  Google Scholar

[45]

C. FoiasD. D. Holm and E. S. Titi, The three-dimensional viscous Camassa-Holm equations, and their relation to the Navier–Stokes equations and turbulence theory, J. Dynam. Differential Equations, 14 (2002), 1-35.  doi: 10.1023/A:1012984210582.  Google Scholar

[46]

C. Foias, O. Manley, R. Rosa and R. Temam, Navier–Stokes Equations and Turbulence, volume 83 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 2001. doi: 10.1017/CBO9780511546754.  Google Scholar

[47]

C. FoiasC. F. Mondaini and E. S. Titi, A discrete data assimilation scheme for the solutions of the two-dimensional Navier–Stokes equations and their statistics, SIAM J. Appl. Dyn. Syst., 15 (2016), 2109-2142.  doi: 10.1137/16M1076526.  Google Scholar

[48]

K. Foyash, M. S. Dzholli, R. Kravchenko and È. S. Titi, A unified approach to the construction of defining forms for a two-dimensional system of Navier–Stokes equations: the case of general interpolating operators, Uspekhi Mat. Nauk, 69 (2014), 177–200; translation in Russian Math. Surveys, 69 (2014), 359–381. doi: 10.1070/rm2014v069n02abeh004891.  Google Scholar

[49]

C. G. Gal and T. T. Medjo, A Navier–Stokes-Voight model with memory, Math. Methods Appl. Sci., 36 (2013), 2507-2523.  doi: 10.1002/mma.2771.  Google Scholar

[50]

H. Gao and C. Sun, Random dynamics of the 3D stochastic Navier-Stokes-Voight equations, Nonlinear Anal. Real World Appl., 13 (2012), 1197-1205.  doi: 10.1016/j.nonrwa.2011.09.013.  Google Scholar

[51]

J. García-LuengoP. Marín-Rubio and J. Real, Pullback attractors for three-dimensional non-autonomous Navier–Stokes-Voigt equations, Nonlinearity, 25 (2012), 905-930.  doi: 10.1088/0951-7715/25/4/905.  Google Scholar

[52]

Garca-Archilla, J. Novo and E. S. Titi, Uniform in time error estimates for a finite element method applied to a downscaling data assimilation algorithm, submitted, arXiv: 1807.08735. Google Scholar

[53]

M. GeshoE. Olson and E. S. Titi, A computational study of a data assimilation algorithm for the two-dimensional Navier–Stokes equations, Commun. Comput. Phys., 19 (2016), 1094-1110.  doi: 10.4208/cicp.060515.161115a.  Google Scholar

[54]

N. Glatt-Holtz, I. Kukavica, V. Vicol and M. Ziane, Existence and regularity of invariant measures for the three dimensional stochastic primitive equations, J. Math. Phys., 55 (2014), 051504, 34pp. doi: 10.1063/1.4875104.  Google Scholar

[55]

K. HaydenE. Olson and E. S. Titi, Discrete data assimilation in the Lorenz and 2D Navier–Stokes equations, Phys. D, 240 (2011), 1416-1425.  doi: 10.1016/j.physd.2011.04.021.  Google Scholar

[56]

J. E. Hoke and R. A. Anthes, The initialization of numerical models by a dynamic-initialization technique, Monthly Weather Review, 104 (1976), 1551-1556.  doi: 10.1175/1520-0493(1976)104<1551:TIONMB>2.0.CO;2.  Google Scholar

[57]

D. Holm and E. Titi, Computational models of turbulence: The LANS-$\alpha$ model and the role of global analysis, SIAM News, 38 (2005). Feature Article. Google Scholar

[58]

H. A. Ibdah, C. F. Mondaini and E. S. Titi., Fully discrete numerical schemes of a data assimilation algorithm: uniform-in-time error estimates., IMA Journal of Numerical Analysis, (2019). Google Scholar

[59]

A. A. IlyinE. M. Lunasin and E. S. Titi, A modified-Leray-$\alpha$ subgrid scale model of turbulence, Nonlinearity, 19 (2006), 879-897.  doi: 10.1088/0951-7715/19/4/006.  Google Scholar

[60]

M. S. Jolly, V. R. Martinez, E. J. Olson and E. S. Titi, Continuous data assimilation with blurred-in-time measurements of the surface quasi-geostrophic equation, Chin. Ann. Math. Ser. B, 40 (2019), 721–764, arXiv: 1809.00106. doi: 10.1007/s11401-019-0158-0.  Google Scholar

[61]

M. S. JollyV. R. Martinez and E. S. Titi, A data assimilation algorithm for the subcritical surface quasi-geostrophic equation, Adv. Nonlinear Stud., 17 (2017), 167-192.  doi: 10.1515/ans-2016-6019.  Google Scholar

[62]

M. S. JollyT. Sadigov and E. S. Titi, A determining form for the damped driven nonlinear Schrödinger equation–-Fourier modes case, J. Differential Equations, 258 (2015), 2711-2744.  doi: 10.1016/j.jde.2014.12.023.  Google Scholar

[63]

D. A. Jones and E. S. Titi, Determining finite volume elements for the 2D Navier–Stokes equations, Phys. D, 60 (1992), 165–174. Experimental mathematics: Computational issues in nonlinear science (Los Alamos, NM, 1991). doi: 10.1016/0167-2789(92)90233-D.  Google Scholar

[64]

V. K. KalantarovB. Levant and E. S. Titi, Gevrey regularity for the attractor of the 3D Navier–Stokes-Voight equations, J. Nonlinear Sci., 19 (2009), 133-152.  doi: 10.1007/s00332-008-9029-7.  Google Scholar

[65]

V. K. Kalantarov and E. S. Titi, Global attractors and determining modes for the 3D Navier–Stokes-Voight equations, Chinese Ann. Math. B, 30 (2009), 697-714.  doi: 10.1007/s11401-009-0205-3.  Google Scholar

[66]

R. E. Kalman, A new approach to linear filtering and prediction problems, J. Basic Eng., 82 (1960), 35-45.  doi: 10.1115/1.3662552.  Google Scholar

[67] E. Kalnay, Atmospheric Modeling, Data Assimilation and Predictability, Cambridge University Press, 2003.   Google Scholar
[68]

B. Khouider and E. S. Titi, An inviscid regularization for the surface quasi-geostrophic equation, Comm. Pure Appl. Math., 61 (2008), 1331-1346.  doi: 10.1002/cpa.20218.  Google Scholar

[69]

P. KuberryA. LariosL. G. Rebholz and N. E. Wilson, Numerical approximation of the Voigt regularization for incompressible Navier–Stokes and magnetohydrodynamic flows, Comput. Math. Appl., 64 (2012), 2647-2662.  doi: 10.1016/j.camwa.2012.07.010.  Google Scholar

[70]

S. Lakshmivarahan and J. M. Lewis, Nudging methods: A critical overview, In Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II), pages 27–57. Springer, 2013. doi: 10.1007/978-3-642-35088-7_2.  Google Scholar

[71]

A. Larios, E. Lunasin and E. S. Titi, Global well-posedness for the Boussinesq-Voigt equations, preprint, arXiv: 1010.5024. Google Scholar

[72]

A. LariosE. Lunasin and E. S. Titi, Global well-posedness for the 2D Boussinesq system with anisotropic viscosity and without heat diffusion, J. Differ. Equations, 255 (2013), 2636-2654.  doi: 10.1016/j.jde.2013.07.011.  Google Scholar

[73]

A. Larios and Y. Pei, Nonlinear continuous data assimilation, submitted, arXiv: 1703.03546. Google Scholar

[74]

A. Larios and Y. Pei, On the local well-posedness and a Prodi-Serrin-type regularity criterion of the three-dimensional MHD-Boussinesq system without thermal diffusion, J. Differential Equations, 263 (2017), 1419-1450.  doi: 10.1016/j.jde.2017.03.024.  Google Scholar

[75]

A. LariosY. Pei and L. Rebholz, Global well-posedness of the velocity-vorticity-Voigt model of the 3D Navier-Stokes equations, J. Differential Equations, 266 (2019), 2435-2465.  doi: 10.1016/j.jde.2018.08.033.  Google Scholar

[76]

A. LariosM. R. PetersenE. S. Titi and B. Wingate, A computational investigation of the finite-time blow-up of the 3D incompressible Euler equations based on the Voigt regularization, Theor. Comput. Fluid Dyn., 32 (2018), 23-34.  doi: 10.1007/s00162-017-0434-0.  Google Scholar

[77]

A. LariosL. G. Rebholz and C. Zerfas, Global in time stability and accuracy of IMEX-FEM data assimilation schemes for Navier–Stokes equations, Computer Methods in Applied Mechanics and Engineering, 345 (2019), 1077-1093.  doi: 10.1016/j.cma.2018.09.004.  Google Scholar

[78]

A. Larios and E. S. Titi, On the higher-order global regularity of the inviscid Voigt-regularization of three-dimensional hydrodynamic models, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 603-627.  doi: 10.3934/dcdsb.2010.14.603.  Google Scholar

[79]

A. Larios and E. S. Titi, Higher-order global regularity of an inviscid Voigt-regularization of the three-dimensional inviscid resistive magnetohydrodynamic equations, J. Math. Fluid Mech., 16 (2014), 59-76.  doi: 10.1007/s00021-013-0136-3.  Google Scholar

[80]

A. Larios and C. Victor, Continuous data assimilation with a moving cluster of data points for a reaction diffusion equation: A computational study, Commun. Comp. Phys., 2019. (accepted for publication). Google Scholar

[81]

K. Law, A. Stuart and K. Zygalakis, A Mathematical Introduction to Data Assimilation, volume 62 of Texts in Applied Mathematics, Springer, Cham, 2015. doi: 10.1007/978-3-319-20325-6.  Google Scholar

[82]

W. J. Layton and L. G. Rebholz, On relaxation times in the Navier–Stokes-Voigt model, Int. J. Comput. Fluid Dyn., 27 (2013), 184-187.  doi: 10.1080/10618562.2013.766328.  Google Scholar

[83]

D. Leoni, P. Clark, A. Mazzino and L. Biferale, Unraveling turbulence via physics-informed data-assimilation and spectral nudging, preprint, arXiv: 1804.08766. Google Scholar

[84]

D. Leoni, P. Clark, A. Mazzino and L. Biferale, Synchronization to big-data: Nudging the Navier-Stokes equations for data assimilation of turbulent flows, arXiv preprint, arXiv: 1905.05860. Google Scholar

[85] M. LesieurO. Metais and P. Comte, Large-Eddy Simulations of Turbulence, Cambridge University Press, New York, 2005.  doi: 10.1017/CBO9780511755507.  Google Scholar
[86]

B. LevantF. Ramos and E. S. Titi, On the statistical properties of the 3D incompressible Navier–Stokes-Voigt model, Commun. Math. Sci., 8 (2010), 277-293.  doi: 10.4310/CMS.2010.v8.n1.a14.  Google Scholar

[87]

J. Lewis and S. Lakshmivarahan, Sasakiś pivotal contribution: Calculus of variations applied to weather map analysis, Monthly Weather Review, 136 (2008), 3553-3567.   Google Scholar

[88]

H. Li and Y. Qin, Pullback attractors for three-dimensional Navier–Stokes-Voigt equations with delays, Bound. Value Probl., 2013 (2013), 17pp. doi: 10.1186/1687-2770-2013-191.  Google Scholar

[89]

E. Lunasin and E. S. Titi, Finite determining parameters feedback control for distributed nonlinear dissipative systems–-a computational study, Evol. Equ. Control Theory, 6 (2017), 535-557.  doi: 10.3934/eect.2017027.  Google Scholar

[90]

P. A. MarkowichE. S. Titi and S. Trabelsi, Continuous data assimilation for the three-dimensional Brinkman–Forchheimer-extended Darcy model, Nonlinearity, 29 (2016), 1292-1328.  doi: 10.1088/0951-7715/29/4/1292.  Google Scholar

[91]

C. F. Mondaini and E. S. Titi, Uniform-in-time error estimates for the postprocessing Galerkin method applied to a data assimilation algorithm, SIAM J. Numer. Anal., 56 (2018), 78-110.  doi: 10.1137/16M110962X.  Google Scholar

[92]

C. J. Niche, Decay characterization of solutions to Navier–Stokes-Voigt equations in terms of the initial datum, J. Differential Equations, 260 (2016), 4440-4453.  doi: 10.1016/j.jde.2015.11.014.  Google Scholar

[93]

L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa (3), 13 (1959), 115–162.  Google Scholar

[94]

E. Olson and E. S. Titi, Determining modes for continuous data assimilation in 2D turbulence, J. Statist. Phys., 113 (2003), 799–840. Progress in statistical hydrodynamics (Santa Fe, NM, 2002). doi: 10.1023/A:1027312703252.  Google Scholar

[95]

E. Olson and E. S. Titi, Viscosity versus vorticity stretching: Global well-posedness for a family of Navier–Stokes-alpha-like models, Nonlinear Anal., 66 (2007), 2427-2458.  doi: 10.1016/j.na.2006.03.030.  Google Scholar

[96]

A. P. Oskolkov, The uniqueness and solvability in the large of boundary value problems for the equations of motion of aqueous solutions of polymers, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 38 (1973), 98–136. Boundary value problems of mathematical physics and related questions in the theory of functions, 7.  Google Scholar

[97]

A. P. Oskolkov, On the theory of unsteady flows of Kelvin-Voigt fluids, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 115 (1982), 191–202,310. Boundary value problems of mathematical physics and related questions in the theory of functions, 14.  Google Scholar

[98]

Y. Pei, Continuous data assimilation for the 3D primitive equations of the ocean, Comm. Pure Appl. Math., 18 (2019), 643-661.  doi: 10.3934/cpaa.2019032.  Google Scholar

[99]

F. Ramos and E. S. Titi, Invariant measures for the 3D Navier–Stokes-Voigt equations and their Navier–Stokes limit, Discrete Contin. Dyn. Syst., 28 (2010), 375-403.  doi: 10.3934/dcds.2010.28.375.  Google Scholar

[100]

L. G. Rebholz and C. Zerfas, Simple and efficient continuous data assimilation of evolution equations via algebraic nudging, 2018. arXiv: 1810.03512. Google Scholar

[101] J. C. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 2001.  doi: 10.1007/978-94-010-0732-0.  Google Scholar
[102]

J. C. Robinson, Attractors and finite-dimensional behaviour in the 2D Navier-Stokes equations, ISRN Math. Anal., 2013 (2013), pages Art. ID 291823, 29pp. doi: 10.1155/2013/291823.  Google Scholar

[103]

P. Sagaut, Large Eddy Simulation for Incompressible Flows, Scientific Computation. Springer-Verlag, Berlin, third edition, 2006. An introduction, Translated from the 1998 French original, With forewords by Marcel Lesieur and Massimo Germano, With a foreword by Charles Meneveau.  Google Scholar

[104]

J. Shen, T. Tang and L.-L. Wang, Spectral Methods, volume 41 of Springer Series in Computational Mathematics, Springer, Heidelberg, 2011. Algorithms, analysis and applications. doi: 10.1007/978-3-540-71041-7.  Google Scholar

[105]

Q. B. Tang, Dynamics of stochastic three dimensional Navier-Stokes-Voigt equations on unbounded domains, J. Math. Anal. Appl., 419 (2014), 583-605.  doi: 10.1016/j.jmaa.2014.05.003.  Google Scholar

[106]

R. Temam, Navier–Stokes Equations: Theory and Numerical Analysis, AMS Chelsea Publishing, Providence, RI, 2001. Theory and numerical analysis, Reprint of the 1984 edition. doi: 10.1090/chel/343.  Google Scholar

[107]

X. M. Wang, A remark on the characterization of the gradient of a distribution, Appl. Anal., 51 (1993), 35-40.  doi: 10.1080/00036819308840202.  Google Scholar

[108]

C. Zhao and H. Zhu, Upper bound of decay rate for solutions to the Navier-Stokes-Voigt equations in $\mathbb{R}^3$, Appl. Math. Comput., 256 (2015), 183-191.  doi: 10.1016/j.amc.2014.12.131.  Google Scholar

[1]

Luigi C. Berselli, Tae-Yeon Kim, Leo G. Rebholz. Analysis of a reduced-order approximate deconvolution model and its interpretation as a Navier-Stokes-Voigt regularization. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1027-1050. doi: 10.3934/dcdsb.2016.21.1027

[2]

Fabio Ramos, Edriss S. Titi. Invariant measures for the $3$D Navier-Stokes-Voigt equations and their Navier-Stokes limit. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 375-403. doi: 10.3934/dcds.2010.28.375

[3]

Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2019, 0 (0) : 0-0. doi: 10.3934/eect.2020039

[4]

Débora A. F. Albanez, Maicon J. Benvenutti. Continuous data assimilation algorithm for simplified Bardina model. Evolution Equations & Control Theory, 2018, 7 (1) : 33-52. doi: 10.3934/eect.2018002

[5]

Fei Jiang, Song Jiang, Junpin Yin. Global weak solutions to the two-dimensional Navier-Stokes equations of compressible heat-conducting flows with symmetric data and forces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 567-587. doi: 10.3934/dcds.2014.34.567

[6]

Xinguang Yang, Baowei Feng, Thales Maier de Souza, Taige Wang. Long-time dynamics for a non-autonomous Navier-Stokes-Voigt equation in Lipschitz domains. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 363-386. doi: 10.3934/dcdsb.2018084

[7]

Yuan Pei. Continuous data assimilation for the 3D primitive equations of the ocean. Communications on Pure & Applied Analysis, 2019, 18 (2) : 643-661. doi: 10.3934/cpaa.2019032

[8]

Juan Carlos De los Reyes, Estefanía Loayza-Romero. Total generalized variation regularization in data assimilation for Burgers' equation. Inverse Problems & Imaging, 2019, 13 (4) : 755-786. doi: 10.3934/ipi.2019035

[9]

Bingkang Huang, Lan Zhang. A global existence of classical solutions to the two-dimensional Vlasov-Fokker-Planck and magnetohydrodynamics equations with large initial data. Kinetic & Related Models, 2019, 12 (2) : 357-396. doi: 10.3934/krm.2019016

[10]

Gabriela Planas, Eduardo Hernández. Asymptotic behaviour of two-dimensional time-delayed Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1245-1258. doi: 10.3934/dcds.2008.21.1245

[11]

Laiqing Meng, Jia Yuan, Xiaoxin Zheng. Global existence of almost energy solution to the two-dimensional chemotaxis-Navier-Stokes equations with partial diffusion. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3413-3441. doi: 10.3934/dcds.2019141

[12]

Michael Herty, Adrian Fazekas, Giuseppe Visconti. A two-dimensional data-driven model for traffic flow on highways. Networks & Heterogeneous Media, 2018, 13 (2) : 217-240. doi: 10.3934/nhm.2018010

[13]

Michele Campiti, Giovanni P. Galdi, Matthias Hieber. Global existence of strong solutions for $2$-dimensional Navier-Stokes equations on exterior domains with growing data at infinity. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1613-1627. doi: 10.3934/cpaa.2014.13.1613

[14]

Adam Larios, E. S. Titi. On the higher-order global regularity of the inviscid Voigt-regularization of three-dimensional hydrodynamic models. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 603-627. doi: 10.3934/dcdsb.2010.14.603

[15]

Xin Zhong. Global well-posedness to the cauchy problem of two-dimensional density-dependent boussinesq equations with large initial data and vacuum. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6713-6745. doi: 10.3934/dcds.2019292

[16]

Issam S. Strub, Julie Percelay, Olli-Pekka Tossavainen, Alexandre M. Bayen. Comparison of two data assimilation algorithms for shallow water flows. Networks & Heterogeneous Media, 2009, 4 (2) : 409-430. doi: 10.3934/nhm.2009.4.409

[17]

Qing Yi. On the Stokes approximation equations for two-dimensional compressible flows. Kinetic & Related Models, 2013, 6 (1) : 205-218. doi: 10.3934/krm.2013.6.205

[18]

Joshua Hudson, Michael Jolly. Numerical efficacy study of data assimilation for the 2D magnetohydrodynamic equations. Journal of Computational Dynamics, 2019, 6 (1) : 131-145. doi: 10.3934/jcd.2019006

[19]

Alexandre J. Chorin, Fei Lu, Robert N. Miller, Matthias Morzfeld, Xuemin Tu. Sampling, feasibility, and priors in data assimilation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4227-4246. doi: 10.3934/dcds.2016.36.4227

[20]

Seung-Yeal Ha, Bingkang Huang, Qinghua Xiao, Xiongtao Zhang. A global existence of classical solutions to the two-dimensional kinetic-fluid model for flocking with large initial data. Communications on Pure & Applied Analysis, 2020, 19 (2) : 835-882. doi: 10.3934/cpaa.2020039

2018 Impact Factor: 1.048

Article outline

[Back to Top]