doi: 10.3934/eect.2020032

Existence and asymptotic stability of periodic solutions for neutral evolution equations with delay

Department of Mathematics, Shanxi Normal University, Linfen 041000, China

* Corresponding author. Qiang Li and Mei Wei

Received  July 2019 Revised  October 2019 Published  December 2019

Fund Project: Research supported by NNSF of China (11261053) and NSF of Gansu Province (1208RJZA129)

In this paper, we are devoted to consider the periodic problem for the neutral evolution equation with delay in Banach space. By using operator semigroups theory and fixed point theorem, we establish some new existence theorems of periodic mild solutions for the equation. In addition, with the aid of a new integral inequality with delay, we present essential conditions on the nonlinear function to guarantee that the equation has an asymptotically stable periodic mild solution.

Citation: Qiang Li, Mei Wei. Existence and asymptotic stability of periodic solutions for neutral evolution equations with delay. Evolution Equations & Control Theory, doi: 10.3934/eect.2020032
References:
[1]

M. AdimyH. Bouzahir and K. Ezzinbi, Existence and stability for some partial neutral functional differential equations with infinite delay, J. Math. Anal. Appl., 294 (2004), 438-461.  doi: 10.1016/j.jmaa.2004.02.033.  Google Scholar

[2]

M. Adimy and K. Ezzinbi, Existence and stability in the $\alpha$-norm for partial functional equations of neutral type, Ann. Mat. Pura Appl., 185 (2006), 437-460.  doi: 10.1007/s10231-005-0162-8.  Google Scholar

[3]

R. Benkhalti and K. Ezzinbi, Periodic solutions for some partial functional differential equations, J. Appl. Math. Stochastic Anal., 2004 (2004), 9-18.  doi: 10.1155/S1048953304212011.  Google Scholar

[4]

R. BenkhaltiA. Elazzouzi and K. Ezzinbi, Periodic solutions for some partial neutral functional differential equations, Electron, J. Differ. Equ., 2006 (2006), 1-14.   Google Scholar

[5]

R. BenkhaltiA. Elazzouzi and K. Ezzinbi, Periodic solutions for some nonlinear partial neutral functional differential equations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20 (2010), 545-555.  doi: 10.1142/S0218127410025600.  Google Scholar

[6]

T. A. Burton and B. Zhang, Periodic solutions of abstract differential equations with infinite delay, J. Diffe. Equ., 90 (1991), 357-396.  doi: 10.1016/0022-0396(91)90153-Z.  Google Scholar

[7]

P. Cannarsa and D. Sforza, Global solutions of abstract semilinear parabolic equations with memory terms, NoDEA Nonlinear Differential Equations. Appl., 10 (2003), 399-430.  doi: 10.1007/s00030-003-1004-2.  Google Scholar

[8]

Y. Chen, The existence of periodic solutions for a class of neutral differential difference equations, J. Austral. Math. Soc. Ser. B, 33 (1992), 507-516.  doi: 10.1017/S0334270000007190.  Google Scholar

[9]

K. Ezzinbi and J. Lui, Periodic solutions of non-densely defined delay evolutions equations, J. Appl. Math. Stochastic Anal., 15 (2002), 113-123.   Google Scholar

[10]

K. Ezzinbi and S. Ghnimib, Existence and regularity of solutions for neutral partial functional integrodifferential equations, Nonlinear Anal. Real World Appl., 11 (2010), 2335-2344.  doi: 10.1016/j.nonrwa.2009.07.007.  Google Scholar

[11]

K. EzzinbiB. A. Kyelem and S. Ouaro, Periodicity in the $\alpha$-norm for partial functional differential equations in fading memory spaces, Nonlinear Anal., 97 (2014), 30-54.  doi: 10.1016/j.na.2013.10.026.  Google Scholar

[12]

X. Fu and X. Liu, Existence of periodic solutions for abstract neutral non-autonomous equations with infinite delay, J. Math. Anal. Appl., 325 (2007), 249-267.  doi: 10.1016/j.jmaa.2006.01.048.  Google Scholar

[13]

X. Fu, Existence of solutions and periodic solutions for abstract neutral equations with unbounded delay, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 15 (2008), 17-35.   Google Scholar

[14]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, Berlin, 1993. doi: 10.1007/978-1-4612-4342-7.  Google Scholar

[15]

J. Hale, Partial neutral functional-differential equations, Rev. Roumaine Math. Pures Appl., 39 (1994), 339-344.   Google Scholar

[16]

E. Hernández and H. Henríquez, Existence of periodic solutions of partial neutral functional-differential equations with unbounded delay, J. Math. Anal. Appl., 221 (1998), 499-522.  doi: 10.1006/jmaa.1997.5899.  Google Scholar

[17]

E. Hernández, Existence results for partial neutral integrodifferential equations with unbounded delay, J. Math. Anal. Appl., 292 (2004), 194-210.   Google Scholar

[18]

E. Hernández and M. L. Pelicer, Asymptotically almost periodic and almost periodic solutions for partial neutral differential equations, Appl. Math. Lett., 18 (2005), 1265-1272.  doi: 10.1016/j.aml.2005.02.015.  Google Scholar

[19]

N. Huy and N. Dang, Dichotomy and periodic solutions to partial functional differential equations, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 3127-3144.  doi: 10.3934/dcdsb.2017167.  Google Scholar

[20]

Y. Li, Existence and asymptotic stability of periodic solution for evolution equations with delays, J. Functional Anal., 261 (2011), 1309-1324.  doi: 10.1016/j.jfa.2011.05.001.  Google Scholar

[21]

Q. LiY. Li and P. Chen, Existence and uniqueness of periodic solutions for parabolic equation with nonlocal delay, Kodai Mathematical Journal, 39 (2016), 276-289.  doi: 10.2996/kmj/1467830137.  Google Scholar

[22]

J. Liang, Periodicity of solutions to the Cauchy problem for nonautonomous impulsive delay evolution equations in Banach spaces, Anal. Appl., 15 (2017), 457-476.  doi: 10.1142/S0219530515500281.  Google Scholar

[23]

J. LiangJ. H. Liu and T. J. Xiao, Condensing operators and periodic solutions of infinite delay impulsive evolution equations, Discrete Contin. Dyn. Syst. Ser. S, 10 (2017), 475-485.  doi: 10.3934/dcdss.2017023.  Google Scholar

[24]

J. Liu, Bounded and periodic solutions of infinite delay evolution equations, J. Math. Anal. Appl., 286 (2003), 705-712.  doi: 10.1016/S0022-247X(03)00512-2.  Google Scholar

[25]

A. Lunardi, On the linear heat equation with fading memory, SIAM J. Math. Anal., 21 (1990), 1213-1224.  doi: 10.1137/0521066.  Google Scholar

[26]

A. Pazy, Semigroup of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[27]

J. Wu and H. Xia, The existence of periodic solutions to integro-differential equations of neutral type via limiting equations, Math. Proc. Cambridge Philos. Soc., 112 (1992), 403-418.  doi: 10.1017/S0305004100071073.  Google Scholar

[28]

J. Wu, Theory and Application of Partial Functional Differential Equations, Springer-Verlag, New York, 1996. doi: 10.1007/978-1-4612-4050-1.  Google Scholar

[29]

X. Xiang and N. U. Ahmed, Existence of periodic solutions of semilinear evolution equations with time lags, Nonlinear Anal., 18 (1992), 1063-1070.  doi: 10.1016/0362-546X(92)90195-K.  Google Scholar

[30]

K. Yosida, Functional Analysis, (Sixth Edition), Springer-Verlag, Berlin, 1980.  Google Scholar

show all references

References:
[1]

M. AdimyH. Bouzahir and K. Ezzinbi, Existence and stability for some partial neutral functional differential equations with infinite delay, J. Math. Anal. Appl., 294 (2004), 438-461.  doi: 10.1016/j.jmaa.2004.02.033.  Google Scholar

[2]

M. Adimy and K. Ezzinbi, Existence and stability in the $\alpha$-norm for partial functional equations of neutral type, Ann. Mat. Pura Appl., 185 (2006), 437-460.  doi: 10.1007/s10231-005-0162-8.  Google Scholar

[3]

R. Benkhalti and K. Ezzinbi, Periodic solutions for some partial functional differential equations, J. Appl. Math. Stochastic Anal., 2004 (2004), 9-18.  doi: 10.1155/S1048953304212011.  Google Scholar

[4]

R. BenkhaltiA. Elazzouzi and K. Ezzinbi, Periodic solutions for some partial neutral functional differential equations, Electron, J. Differ. Equ., 2006 (2006), 1-14.   Google Scholar

[5]

R. BenkhaltiA. Elazzouzi and K. Ezzinbi, Periodic solutions for some nonlinear partial neutral functional differential equations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20 (2010), 545-555.  doi: 10.1142/S0218127410025600.  Google Scholar

[6]

T. A. Burton and B. Zhang, Periodic solutions of abstract differential equations with infinite delay, J. Diffe. Equ., 90 (1991), 357-396.  doi: 10.1016/0022-0396(91)90153-Z.  Google Scholar

[7]

P. Cannarsa and D. Sforza, Global solutions of abstract semilinear parabolic equations with memory terms, NoDEA Nonlinear Differential Equations. Appl., 10 (2003), 399-430.  doi: 10.1007/s00030-003-1004-2.  Google Scholar

[8]

Y. Chen, The existence of periodic solutions for a class of neutral differential difference equations, J. Austral. Math. Soc. Ser. B, 33 (1992), 507-516.  doi: 10.1017/S0334270000007190.  Google Scholar

[9]

K. Ezzinbi and J. Lui, Periodic solutions of non-densely defined delay evolutions equations, J. Appl. Math. Stochastic Anal., 15 (2002), 113-123.   Google Scholar

[10]

K. Ezzinbi and S. Ghnimib, Existence and regularity of solutions for neutral partial functional integrodifferential equations, Nonlinear Anal. Real World Appl., 11 (2010), 2335-2344.  doi: 10.1016/j.nonrwa.2009.07.007.  Google Scholar

[11]

K. EzzinbiB. A. Kyelem and S. Ouaro, Periodicity in the $\alpha$-norm for partial functional differential equations in fading memory spaces, Nonlinear Anal., 97 (2014), 30-54.  doi: 10.1016/j.na.2013.10.026.  Google Scholar

[12]

X. Fu and X. Liu, Existence of periodic solutions for abstract neutral non-autonomous equations with infinite delay, J. Math. Anal. Appl., 325 (2007), 249-267.  doi: 10.1016/j.jmaa.2006.01.048.  Google Scholar

[13]

X. Fu, Existence of solutions and periodic solutions for abstract neutral equations with unbounded delay, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 15 (2008), 17-35.   Google Scholar

[14]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, Berlin, 1993. doi: 10.1007/978-1-4612-4342-7.  Google Scholar

[15]

J. Hale, Partial neutral functional-differential equations, Rev. Roumaine Math. Pures Appl., 39 (1994), 339-344.   Google Scholar

[16]

E. Hernández and H. Henríquez, Existence of periodic solutions of partial neutral functional-differential equations with unbounded delay, J. Math. Anal. Appl., 221 (1998), 499-522.  doi: 10.1006/jmaa.1997.5899.  Google Scholar

[17]

E. Hernández, Existence results for partial neutral integrodifferential equations with unbounded delay, J. Math. Anal. Appl., 292 (2004), 194-210.   Google Scholar

[18]

E. Hernández and M. L. Pelicer, Asymptotically almost periodic and almost periodic solutions for partial neutral differential equations, Appl. Math. Lett., 18 (2005), 1265-1272.  doi: 10.1016/j.aml.2005.02.015.  Google Scholar

[19]

N. Huy and N. Dang, Dichotomy and periodic solutions to partial functional differential equations, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 3127-3144.  doi: 10.3934/dcdsb.2017167.  Google Scholar

[20]

Y. Li, Existence and asymptotic stability of periodic solution for evolution equations with delays, J. Functional Anal., 261 (2011), 1309-1324.  doi: 10.1016/j.jfa.2011.05.001.  Google Scholar

[21]

Q. LiY. Li and P. Chen, Existence and uniqueness of periodic solutions for parabolic equation with nonlocal delay, Kodai Mathematical Journal, 39 (2016), 276-289.  doi: 10.2996/kmj/1467830137.  Google Scholar

[22]

J. Liang, Periodicity of solutions to the Cauchy problem for nonautonomous impulsive delay evolution equations in Banach spaces, Anal. Appl., 15 (2017), 457-476.  doi: 10.1142/S0219530515500281.  Google Scholar

[23]

J. LiangJ. H. Liu and T. J. Xiao, Condensing operators and periodic solutions of infinite delay impulsive evolution equations, Discrete Contin. Dyn. Syst. Ser. S, 10 (2017), 475-485.  doi: 10.3934/dcdss.2017023.  Google Scholar

[24]

J. Liu, Bounded and periodic solutions of infinite delay evolution equations, J. Math. Anal. Appl., 286 (2003), 705-712.  doi: 10.1016/S0022-247X(03)00512-2.  Google Scholar

[25]

A. Lunardi, On the linear heat equation with fading memory, SIAM J. Math. Anal., 21 (1990), 1213-1224.  doi: 10.1137/0521066.  Google Scholar

[26]

A. Pazy, Semigroup of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[27]

J. Wu and H. Xia, The existence of periodic solutions to integro-differential equations of neutral type via limiting equations, Math. Proc. Cambridge Philos. Soc., 112 (1992), 403-418.  doi: 10.1017/S0305004100071073.  Google Scholar

[28]

J. Wu, Theory and Application of Partial Functional Differential Equations, Springer-Verlag, New York, 1996. doi: 10.1007/978-1-4612-4050-1.  Google Scholar

[29]

X. Xiang and N. U. Ahmed, Existence of periodic solutions of semilinear evolution equations with time lags, Nonlinear Anal., 18 (1992), 1063-1070.  doi: 10.1016/0362-546X(92)90195-K.  Google Scholar

[30]

K. Yosida, Functional Analysis, (Sixth Edition), Springer-Verlag, Berlin, 1980.  Google Scholar

[1]

Hongbin Chen, Yi Li. Existence, uniqueness, and stability of periodic solutions of an equation of duffing type. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 793-807. doi: 10.3934/dcds.2007.18.793

[2]

M.I. Gil’. Existence and stability of periodic solutions of semilinear neutral type systems. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 809-820. doi: 10.3934/dcds.2001.7.809

[3]

Telma Silva, Adélia Sequeira, Rafael F. Santos, Jorge Tiago. Existence, uniqueness, stability and asymptotic behavior of solutions for a mathematical model of atherosclerosis. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 343-362. doi: 10.3934/dcdss.2016.9.343

[4]

Nguyen Minh Man, Nguyen Van Minh. On the existence of quasi periodic and almost periodic solutions of neutral functional differential equations. Communications on Pure & Applied Analysis, 2004, 3 (2) : 291-300. doi: 10.3934/cpaa.2004.3.291

[5]

Miguel V. S. Frasson, Patricia H. Tacuri. Asymptotic behaviour of solutions to linear neutral delay differential equations with periodic coefficients. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1105-1117. doi: 10.3934/cpaa.2014.13.1105

[6]

Xin Lai, Xinfu Chen, Mingxin Wang, Cong Qin, Yajing Zhang. Existence, uniqueness, and stability of bubble solutions of a chemotaxis model. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 805-832. doi: 10.3934/dcds.2016.36.805

[7]

Hongmei Cheng, Rong Yuan. Existence and asymptotic stability of traveling fronts for nonlocal monostable evolution equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 3007-3022. doi: 10.3934/dcdsb.2017160

[8]

Radjesvarane Alexandre, Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, Tong Yang. Local existence with mild regularity for the Boltzmann equation. Kinetic & Related Models, 2013, 6 (4) : 1011-1041. doi: 10.3934/krm.2013.6.1011

[9]

Andrea L. Bertozzi, Dejan Slepcev. Existence and uniqueness of solutions to an aggregation equation with degenerate diffusion. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1617-1637. doi: 10.3934/cpaa.2010.9.1617

[10]

Riccardo Adami, Diego Noja, Cecilia Ortoleva. Asymptotic stability for standing waves of a NLS equation with subcritical concentrated nonlinearity in dimension three: Neutral modes. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 5837-5879. doi: 10.3934/dcds.2016057

[11]

Jifeng Chu, Zaitao Liang, Fangfang Liao, Shiping Lu. Existence and stability of periodic solutions for relativistic singular equations. Communications on Pure & Applied Analysis, 2017, 16 (2) : 591-609. doi: 10.3934/cpaa.2017029

[12]

T. Tachim Medjo. Existence and uniqueness of strong periodic solutions of the primitive equations of the ocean. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1491-1508. doi: 10.3934/dcds.2010.26.1491

[13]

Tomás Caraballo, María J. Garrido–Atienza, Björn Schmalfuss, José Valero. Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 439-455. doi: 10.3934/dcdsb.2010.14.439

[14]

Zongming Guo, Xiaohong Guan, Yonggang Zhao. Uniqueness and asymptotic behavior of solutions of a biharmonic equation with supercritical exponent. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2613-2636. doi: 10.3934/dcds.2019109

[15]

Vladimir E. Fedorov, Natalia D. Ivanova. Identification problem for a degenerate evolution equation with overdetermination on the solution semigroup kernel. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 687-696. doi: 10.3934/dcdss.2016022

[16]

Daoyi Xu, Weisong Zhou. Existence-uniqueness and exponential estimate of pathwise solutions of retarded stochastic evolution systems with time smooth diffusion coefficients. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2161-2180. doi: 10.3934/dcds.2017093

[17]

Wei Wang, Kai Liu, Xiulian Wang. Sensitivity to small delays of mean square stability for stochastic neutral evolution equations. Communications on Pure & Applied Analysis, 2020, 19 (4) : 2403-2418. doi: 10.3934/cpaa.2020105

[18]

Rafael Ortega. Stability and index of periodic solutions of a nonlinear telegraph equation. Communications on Pure & Applied Analysis, 2005, 4 (4) : 823-837. doi: 10.3934/cpaa.2005.4.823

[19]

Anatoli F. Ivanov, Sergei Trofimchuk. Periodic solutions and their stability of a differential-difference equation. Conference Publications, 2009, 2009 (Special) : 385-393. doi: 10.3934/proc.2009.2009.385

[20]

Shihui Zhu. Existence and uniqueness of global weak solutions of the Camassa-Holm equation with a forcing. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5201-5221. doi: 10.3934/dcds.2016026

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (46)
  • HTML views (116)
  • Cited by (0)

Other articles
by authors

[Back to Top]