• Previous Article
    Continuity with respect to fractional order of the time fractional diffusion-wave equation
  • EECT Home
  • This Issue
  • Next Article
    Approximate continuous data assimilation of the 2D Navier-Stokes equations via the Voigt-regularization with observable data
September  2020, 9(3): 753-772. doi: 10.3934/eect.2020032

Existence and asymptotic stability of periodic solutions for neutral evolution equations with delay

Department of Mathematics, Shanxi Normal University, Linfen 041000, China

* Corresponding author. Qiang Li and Mei Wei

Received  July 2019 Revised  October 2019 Published  September 2020 Early access  December 2019

Fund Project: Research supported by NNSF of China (11261053) and NSF of Gansu Province (1208RJZA129)

In this paper, we are devoted to consider the periodic problem for the neutral evolution equation with delay in Banach space. By using operator semigroups theory and fixed point theorem, we establish some new existence theorems of periodic mild solutions for the equation. In addition, with the aid of a new integral inequality with delay, we present essential conditions on the nonlinear function to guarantee that the equation has an asymptotically stable periodic mild solution.

Citation: Qiang Li, Mei Wei. Existence and asymptotic stability of periodic solutions for neutral evolution equations with delay. Evolution Equations and Control Theory, 2020, 9 (3) : 753-772. doi: 10.3934/eect.2020032
References:
[1]

M. AdimyH. Bouzahir and K. Ezzinbi, Existence and stability for some partial neutral functional differential equations with infinite delay, J. Math. Anal. Appl., 294 (2004), 438-461.  doi: 10.1016/j.jmaa.2004.02.033.

[2]

M. Adimy and K. Ezzinbi, Existence and stability in the $\alpha$-norm for partial functional equations of neutral type, Ann. Mat. Pura Appl., 185 (2006), 437-460.  doi: 10.1007/s10231-005-0162-8.

[3]

R. Benkhalti and K. Ezzinbi, Periodic solutions for some partial functional differential equations, J. Appl. Math. Stochastic Anal., 2004 (2004), 9-18.  doi: 10.1155/S1048953304212011.

[4]

R. BenkhaltiA. Elazzouzi and K. Ezzinbi, Periodic solutions for some partial neutral functional differential equations, Electron, J. Differ. Equ., 2006 (2006), 1-14. 

[5]

R. BenkhaltiA. Elazzouzi and K. Ezzinbi, Periodic solutions for some nonlinear partial neutral functional differential equations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20 (2010), 545-555.  doi: 10.1142/S0218127410025600.

[6]

T. A. Burton and B. Zhang, Periodic solutions of abstract differential equations with infinite delay, J. Diffe. Equ., 90 (1991), 357-396.  doi: 10.1016/0022-0396(91)90153-Z.

[7]

P. Cannarsa and D. Sforza, Global solutions of abstract semilinear parabolic equations with memory terms, NoDEA Nonlinear Differential Equations. Appl., 10 (2003), 399-430.  doi: 10.1007/s00030-003-1004-2.

[8]

Y. Chen, The existence of periodic solutions for a class of neutral differential difference equations, J. Austral. Math. Soc. Ser. B, 33 (1992), 507-516.  doi: 10.1017/S0334270000007190.

[9]

K. Ezzinbi and J. Lui, Periodic solutions of non-densely defined delay evolutions equations, J. Appl. Math. Stochastic Anal., 15 (2002), 113-123. 

[10]

K. Ezzinbi and S. Ghnimib, Existence and regularity of solutions for neutral partial functional integrodifferential equations, Nonlinear Anal. Real World Appl., 11 (2010), 2335-2344.  doi: 10.1016/j.nonrwa.2009.07.007.

[11]

K. EzzinbiB. A. Kyelem and S. Ouaro, Periodicity in the $\alpha$-norm for partial functional differential equations in fading memory spaces, Nonlinear Anal., 97 (2014), 30-54.  doi: 10.1016/j.na.2013.10.026.

[12]

X. Fu and X. Liu, Existence of periodic solutions for abstract neutral non-autonomous equations with infinite delay, J. Math. Anal. Appl., 325 (2007), 249-267.  doi: 10.1016/j.jmaa.2006.01.048.

[13]

X. Fu, Existence of solutions and periodic solutions for abstract neutral equations with unbounded delay, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 15 (2008), 17-35. 

[14]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, Berlin, 1993. doi: 10.1007/978-1-4612-4342-7.

[15]

J. Hale, Partial neutral functional-differential equations, Rev. Roumaine Math. Pures Appl., 39 (1994), 339-344. 

[16]

E. Hernández and H. Henríquez, Existence of periodic solutions of partial neutral functional-differential equations with unbounded delay, J. Math. Anal. Appl., 221 (1998), 499-522.  doi: 10.1006/jmaa.1997.5899.

[17]

E. Hernández, Existence results for partial neutral integrodifferential equations with unbounded delay, J. Math. Anal. Appl., 292 (2004), 194-210. 

[18]

E. Hernández and M. L. Pelicer, Asymptotically almost periodic and almost periodic solutions for partial neutral differential equations, Appl. Math. Lett., 18 (2005), 1265-1272.  doi: 10.1016/j.aml.2005.02.015.

[19]

N. Huy and N. Dang, Dichotomy and periodic solutions to partial functional differential equations, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 3127-3144.  doi: 10.3934/dcdsb.2017167.

[20]

Y. Li, Existence and asymptotic stability of periodic solution for evolution equations with delays, J. Functional Anal., 261 (2011), 1309-1324.  doi: 10.1016/j.jfa.2011.05.001.

[21]

Q. LiY. Li and P. Chen, Existence and uniqueness of periodic solutions for parabolic equation with nonlocal delay, Kodai Mathematical Journal, 39 (2016), 276-289.  doi: 10.2996/kmj/1467830137.

[22]

J. Liang, Periodicity of solutions to the Cauchy problem for nonautonomous impulsive delay evolution equations in Banach spaces, Anal. Appl., 15 (2017), 457-476.  doi: 10.1142/S0219530515500281.

[23]

J. LiangJ. H. Liu and T. J. Xiao, Condensing operators and periodic solutions of infinite delay impulsive evolution equations, Discrete Contin. Dyn. Syst. Ser. S, 10 (2017), 475-485.  doi: 10.3934/dcdss.2017023.

[24]

J. Liu, Bounded and periodic solutions of infinite delay evolution equations, J. Math. Anal. Appl., 286 (2003), 705-712.  doi: 10.1016/S0022-247X(03)00512-2.

[25]

A. Lunardi, On the linear heat equation with fading memory, SIAM J. Math. Anal., 21 (1990), 1213-1224.  doi: 10.1137/0521066.

[26]

A. Pazy, Semigroup of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[27]

J. Wu and H. Xia, The existence of periodic solutions to integro-differential equations of neutral type via limiting equations, Math. Proc. Cambridge Philos. Soc., 112 (1992), 403-418.  doi: 10.1017/S0305004100071073.

[28]

J. Wu, Theory and Application of Partial Functional Differential Equations, Springer-Verlag, New York, 1996. doi: 10.1007/978-1-4612-4050-1.

[29]

X. Xiang and N. U. Ahmed, Existence of periodic solutions of semilinear evolution equations with time lags, Nonlinear Anal., 18 (1992), 1063-1070.  doi: 10.1016/0362-546X(92)90195-K.

[30]

K. Yosida, Functional Analysis, (Sixth Edition), Springer-Verlag, Berlin, 1980.

show all references

References:
[1]

M. AdimyH. Bouzahir and K. Ezzinbi, Existence and stability for some partial neutral functional differential equations with infinite delay, J. Math. Anal. Appl., 294 (2004), 438-461.  doi: 10.1016/j.jmaa.2004.02.033.

[2]

M. Adimy and K. Ezzinbi, Existence and stability in the $\alpha$-norm for partial functional equations of neutral type, Ann. Mat. Pura Appl., 185 (2006), 437-460.  doi: 10.1007/s10231-005-0162-8.

[3]

R. Benkhalti and K. Ezzinbi, Periodic solutions for some partial functional differential equations, J. Appl. Math. Stochastic Anal., 2004 (2004), 9-18.  doi: 10.1155/S1048953304212011.

[4]

R. BenkhaltiA. Elazzouzi and K. Ezzinbi, Periodic solutions for some partial neutral functional differential equations, Electron, J. Differ. Equ., 2006 (2006), 1-14. 

[5]

R. BenkhaltiA. Elazzouzi and K. Ezzinbi, Periodic solutions for some nonlinear partial neutral functional differential equations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20 (2010), 545-555.  doi: 10.1142/S0218127410025600.

[6]

T. A. Burton and B. Zhang, Periodic solutions of abstract differential equations with infinite delay, J. Diffe. Equ., 90 (1991), 357-396.  doi: 10.1016/0022-0396(91)90153-Z.

[7]

P. Cannarsa and D. Sforza, Global solutions of abstract semilinear parabolic equations with memory terms, NoDEA Nonlinear Differential Equations. Appl., 10 (2003), 399-430.  doi: 10.1007/s00030-003-1004-2.

[8]

Y. Chen, The existence of periodic solutions for a class of neutral differential difference equations, J. Austral. Math. Soc. Ser. B, 33 (1992), 507-516.  doi: 10.1017/S0334270000007190.

[9]

K. Ezzinbi and J. Lui, Periodic solutions of non-densely defined delay evolutions equations, J. Appl. Math. Stochastic Anal., 15 (2002), 113-123. 

[10]

K. Ezzinbi and S. Ghnimib, Existence and regularity of solutions for neutral partial functional integrodifferential equations, Nonlinear Anal. Real World Appl., 11 (2010), 2335-2344.  doi: 10.1016/j.nonrwa.2009.07.007.

[11]

K. EzzinbiB. A. Kyelem and S. Ouaro, Periodicity in the $\alpha$-norm for partial functional differential equations in fading memory spaces, Nonlinear Anal., 97 (2014), 30-54.  doi: 10.1016/j.na.2013.10.026.

[12]

X. Fu and X. Liu, Existence of periodic solutions for abstract neutral non-autonomous equations with infinite delay, J. Math. Anal. Appl., 325 (2007), 249-267.  doi: 10.1016/j.jmaa.2006.01.048.

[13]

X. Fu, Existence of solutions and periodic solutions for abstract neutral equations with unbounded delay, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 15 (2008), 17-35. 

[14]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, Berlin, 1993. doi: 10.1007/978-1-4612-4342-7.

[15]

J. Hale, Partial neutral functional-differential equations, Rev. Roumaine Math. Pures Appl., 39 (1994), 339-344. 

[16]

E. Hernández and H. Henríquez, Existence of periodic solutions of partial neutral functional-differential equations with unbounded delay, J. Math. Anal. Appl., 221 (1998), 499-522.  doi: 10.1006/jmaa.1997.5899.

[17]

E. Hernández, Existence results for partial neutral integrodifferential equations with unbounded delay, J. Math. Anal. Appl., 292 (2004), 194-210. 

[18]

E. Hernández and M. L. Pelicer, Asymptotically almost periodic and almost periodic solutions for partial neutral differential equations, Appl. Math. Lett., 18 (2005), 1265-1272.  doi: 10.1016/j.aml.2005.02.015.

[19]

N. Huy and N. Dang, Dichotomy and periodic solutions to partial functional differential equations, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 3127-3144.  doi: 10.3934/dcdsb.2017167.

[20]

Y. Li, Existence and asymptotic stability of periodic solution for evolution equations with delays, J. Functional Anal., 261 (2011), 1309-1324.  doi: 10.1016/j.jfa.2011.05.001.

[21]

Q. LiY. Li and P. Chen, Existence and uniqueness of periodic solutions for parabolic equation with nonlocal delay, Kodai Mathematical Journal, 39 (2016), 276-289.  doi: 10.2996/kmj/1467830137.

[22]

J. Liang, Periodicity of solutions to the Cauchy problem for nonautonomous impulsive delay evolution equations in Banach spaces, Anal. Appl., 15 (2017), 457-476.  doi: 10.1142/S0219530515500281.

[23]

J. LiangJ. H. Liu and T. J. Xiao, Condensing operators and periodic solutions of infinite delay impulsive evolution equations, Discrete Contin. Dyn. Syst. Ser. S, 10 (2017), 475-485.  doi: 10.3934/dcdss.2017023.

[24]

J. Liu, Bounded and periodic solutions of infinite delay evolution equations, J. Math. Anal. Appl., 286 (2003), 705-712.  doi: 10.1016/S0022-247X(03)00512-2.

[25]

A. Lunardi, On the linear heat equation with fading memory, SIAM J. Math. Anal., 21 (1990), 1213-1224.  doi: 10.1137/0521066.

[26]

A. Pazy, Semigroup of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[27]

J. Wu and H. Xia, The existence of periodic solutions to integro-differential equations of neutral type via limiting equations, Math. Proc. Cambridge Philos. Soc., 112 (1992), 403-418.  doi: 10.1017/S0305004100071073.

[28]

J. Wu, Theory and Application of Partial Functional Differential Equations, Springer-Verlag, New York, 1996. doi: 10.1007/978-1-4612-4050-1.

[29]

X. Xiang and N. U. Ahmed, Existence of periodic solutions of semilinear evolution equations with time lags, Nonlinear Anal., 18 (1992), 1063-1070.  doi: 10.1016/0362-546X(92)90195-K.

[30]

K. Yosida, Functional Analysis, (Sixth Edition), Springer-Verlag, Berlin, 1980.

[1]

Qi Yao, Linshan Wang, Yangfan Wang. Existence-uniqueness and stability of the mild periodic solutions to a class of delayed stochastic partial differential equations and its applications. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4727-4743. doi: 10.3934/dcdsb.2020310

[2]

Hongbin Chen, Yi Li. Existence, uniqueness, and stability of periodic solutions of an equation of duffing type. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 793-807. doi: 10.3934/dcds.2007.18.793

[3]

M.I. Gil’. Existence and stability of periodic solutions of semilinear neutral type systems. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 809-820. doi: 10.3934/dcds.2001.7.809

[4]

Telma Silva, Adélia Sequeira, Rafael F. Santos, Jorge Tiago. Existence, uniqueness, stability and asymptotic behavior of solutions for a mathematical model of atherosclerosis. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 343-362. doi: 10.3934/dcdss.2016.9.343

[5]

Pallavi Bedi, Anoop Kumar, Thabet Abdeljawad, Aziz Khan. S-asymptotically $ \omega $-periodic mild solutions and stability analysis of Hilfer fractional evolution equations. Evolution Equations and Control Theory, 2021, 10 (4) : 733-748. doi: 10.3934/eect.2020089

[6]

Nguyen Minh Man, Nguyen Van Minh. On the existence of quasi periodic and almost periodic solutions of neutral functional differential equations. Communications on Pure and Applied Analysis, 2004, 3 (2) : 291-300. doi: 10.3934/cpaa.2004.3.291

[7]

Miguel V. S. Frasson, Patricia H. Tacuri. Asymptotic behaviour of solutions to linear neutral delay differential equations with periodic coefficients. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1105-1117. doi: 10.3934/cpaa.2014.13.1105

[8]

Priscila Santos Ramos, J. Vanterler da C. Sousa, E. Capelas de Oliveira. Existence and uniqueness of mild solutions for quasi-linear fractional integro-differential equations. Evolution Equations and Control Theory, 2022, 11 (1) : 1-24. doi: 10.3934/eect.2020100

[9]

Xin Lai, Xinfu Chen, Mingxin Wang, Cong Qin, Yajing Zhang. Existence, uniqueness, and stability of bubble solutions of a chemotaxis model. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 805-832. doi: 10.3934/dcds.2016.36.805

[10]

Hongmei Cheng, Rong Yuan. Existence and asymptotic stability of traveling fronts for nonlocal monostable evolution equations. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 3007-3022. doi: 10.3934/dcdsb.2017160

[11]

Andrea L. Bertozzi, Dejan Slepcev. Existence and uniqueness of solutions to an aggregation equation with degenerate diffusion. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1617-1637. doi: 10.3934/cpaa.2010.9.1617

[12]

Xiaoming Fu, Quentin Griette, Pierre Magal. Existence and uniqueness of solutions for a hyperbolic Keller–Segel equation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 1931-1966. doi: 10.3934/dcdsb.2020326

[13]

Radjesvarane Alexandre, Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, Tong Yang. Local existence with mild regularity for the Boltzmann equation. Kinetic and Related Models, 2013, 6 (4) : 1011-1041. doi: 10.3934/krm.2013.6.1011

[14]

Jifeng Chu, Zaitao Liang, Fangfang Liao, Shiping Lu. Existence and stability of periodic solutions for relativistic singular equations. Communications on Pure and Applied Analysis, 2017, 16 (2) : 591-609. doi: 10.3934/cpaa.2017029

[15]

T. Tachim Medjo. Existence and uniqueness of strong periodic solutions of the primitive equations of the ocean. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1491-1508. doi: 10.3934/dcds.2010.26.1491

[16]

Riccardo Adami, Diego Noja, Cecilia Ortoleva. Asymptotic stability for standing waves of a NLS equation with subcritical concentrated nonlinearity in dimension three: Neutral modes. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 5837-5879. doi: 10.3934/dcds.2016057

[17]

Tomás Caraballo, María J. Garrido–Atienza, Björn Schmalfuss, José Valero. Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 439-455. doi: 10.3934/dcdsb.2010.14.439

[18]

Zongming Guo, Xiaohong Guan, Yonggang Zhao. Uniqueness and asymptotic behavior of solutions of a biharmonic equation with supercritical exponent. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2613-2636. doi: 10.3934/dcds.2019109

[19]

Vladimir E. Fedorov, Natalia D. Ivanova. Identification problem for a degenerate evolution equation with overdetermination on the solution semigroup kernel. Discrete and Continuous Dynamical Systems - S, 2016, 9 (3) : 687-696. doi: 10.3934/dcdss.2016022

[20]

Rafael Ortega. Stability and index of periodic solutions of a nonlinear telegraph equation. Communications on Pure and Applied Analysis, 2005, 4 (4) : 823-837. doi: 10.3934/cpaa.2005.4.823

2020 Impact Factor: 1.081

Metrics

  • PDF downloads (348)
  • HTML views (479)
  • Cited by (0)

Other articles
by authors

[Back to Top]