-
Previous Article
On the management fourth-order Schrödinger-Hartree equation
- EECT Home
- This Issue
-
Next Article
On stochastic maximum principle for risk-sensitive of fully coupled forward-backward stochastic control of mean-field type with application
Time-varying integro-differential inclusions with Clarke sub-differential and non-local initial conditions: existence and approximate controllability
School of Mathematics and Statistics, Xidian University, Xi'an 710071, Shaanxi, China |
In this paper, we mainly consider a time-varying semi-linear integro-differential inclusion with Clarke sub-differential and a non-local initial condition. By a suitable Green function combined with a resolvent operator, we firstly formulate its mild solutions and show that it admits at least one mild solution which can exist in a well-defined ball with a radius big enough. Through constructing a proper functional, we then derive a useful characterization of the approximate controllability for its related linear system in Green function terms, and establish a sufficient condition for the approximate controllability of the time-varying semi-linear integro-differential inclusion. Lastly, we also consider the finite approximate controllability of the time-varying semi-linear integro-differential inclusion via variational method.
References:
[1] |
K. Balchandran and J. P. Dauer,
Controllability of nonlinear systems in Banach spaces: A survey, J. Optim. Theory Appl., 115 (2002), 7-28.
doi: 10.1023/A:1019668728098. |
[2] |
K. Balchandran and J. H. Kim,
Remarks on the paper "Controllability of second order differential inclusion in Banach spaces", J. Math. Anal. Appl., 324 (2006), 746-749.
doi: 10.1016/j.jmaa.2005.11.070. |
[3] |
A. E. Bashirov and N. I. Mahmudov,
On concepts of controllability for deterministic and stochastic systems, SIAM J. Control Optim., 37 (1999), 1808-1821.
doi: 10.1137/S036301299732184X. |
[4] |
M. Benchohra and M. S. Souid,
$L^1$-Solutions for implicit fractional order differential equations with nonlocal conditions, Filomat, 30 (2016), 1485-1492.
doi: 10.2298/FIL1606485B. |
[5] |
L. Byszewski,
Existence and uniqueness of a classical solutions to a functional differential abstract nonlocal Cauchy problem, J. Math. Appl. Stoch. Anal., 12 (1999), 91-97.
doi: 10.1155/S1048953399000088. |
[6] |
Y.-K. Chang and R. Ponce,
Uniform exponential stability and its applications to bounded solutions of integro-differential equations in Banach spaces, J. Integral Equations Appl., 30 (2018), 347-369.
doi: 10.1216/JIE-2018-30-3-347. |
[7] |
Y.-K. Chang and Y. Pei, Degenerate type fractional evolution hemivariational inequalities and optimal controls via fractional resolvent operators, Int. J. Control, (2018). Available from: https://doi.org/10.1080/00207179.2018.1479540.
doi: 10.1080/00207179.2018.1479540. |
[8] |
R. M. Christensen, The Theory of Linear Viscoelasticity: An Introduction, Academic Press, New York, 1982.
![]() |
[9] |
F. H. Clarke, Optimization and Nonsmooth Analysis, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1983. |
[10] |
R. F. Curtain and A. J. Pritchard, Infinite Dimensional Linear Systems Theory, Lecture Notes in Control and Information Sciences, 8. Springer-Verlag, Berlin-New York, 1978. |
[11] |
R. F. Curtain and H. J. Zwart, An Introduction to Infinite Dimensional Linear Systems Theory, Texts in Applied Mathematics, 21. Springer-Verlag, New York, 1995.
doi: 10.1007/978-1-4612-4224-6. |
[12] |
K. Deng,
Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions, J. Math. Anal. Appl., 179 (1993), 630-637.
doi: 10.1006/jmaa.1993.1373. |
[13] |
M. Dieye, M. A. Diopa and K. Ezzinbi,
On exponential stability of mild solutions for some stochastic partial integrodifferential equations, Stat. Prob. Lett., 123 (2017), 61-76.
doi: 10.1016/j.spl.2016.10.031. |
[14] |
S. Djebali, L. Górniewicz and A. Ouahab, Solutions Set for Differential Equations and Inclusions, De Gruyter Series in Nonlinear Analysis and Applications, 18. Walter de Gruyter & Co., Berlin, 2013.
doi: 10.1515/9783110293562. |
[15] |
K. Ezzinbi and S. Ghnimi,
Existence and regularity of solutions for neutral partial functional integrodifferential equations, Nonlinear Anal. RWA, 11 (2010), 2335-2344.
doi: 10.1016/j.nonrwa.2009.07.007. |
[16] |
X. L. Fu,
Approximate controllability of semilinear non-autonomous evolution systems with state-dependent delay, Evol. Equ. Control Theo., 6 (2017), 517-534.
doi: 10.3934/eect.2017026. |
[17] |
R. C. Grimmer,
Resolvent operators for integral equations in a Banach space, Trans. Amer. Math. Soc., 273 (1982), 333-349.
doi: 10.1090/S0002-9947-1982-0664046-4. |
[18] |
R. C. Grimmer and A. J. Pritchard,
Analytic resolvent operators for integral equations in a Banach space, J. Differential Equations, 50 (1983), 234-259.
doi: 10.1016/0022-0396(83)90076-1. |
[19] |
Y. R. Jiang, N.-J. Huang and J.-C. Yao,
Solvability and opitimal control of semilinear nonlocal fractional evolution inclusion with Clarke subdifferential, Appl. Anal., 96 (2017), 2349-2366.
doi: 10.1080/00036811.2017.1321111. |
[20] |
J.-L. Lions and E. Zuazua,
The cost of controlling unstable systems: Time irreversible systems, Rev. Mat. UCM, 10 (1997), 481-523.
|
[21] |
J. H. Liu and K. Ezzinbi,
Non-autonomous integrodifferential equations with nonlocal conditions, J. Integral Equations Appl., 15 (2003), 79-93.
doi: 10.1216/jiea/1181074946. |
[22] |
Z. H. Liu and X. W. Li,
Approxiamte controllability for a class of hemivariational inequalities, Nonlinear Anal. RWA, 22 (2015), 581-591.
doi: 10.1016/j.nonrwa.2014.08.010. |
[23] |
Z. H. Liu, X. W. Li and D. Motreanu,
Approxiamte controllability for nonlinear evolution hemivariational inequalities in Hilbert spaces, SIAM J. Control Optim., 53 (2015), 3228-3244.
doi: 10.1137/140994058. |
[24] |
C. Lizama and G. M. N'Guérékata,
Bounded mild solutions for semilinear integrodifferential equations in Banach spaces, Integr. Equ. Oper. Theory, 68 (2010), 207-227.
doi: 10.1007/s00020-010-1799-2. |
[25] |
C. Lizama and G. M. N'Guérékata,
Mild solutions for abstract fractional differential equations, Appl. Anal., 92 (2013), 1731-1754.
doi: 10.1080/00036811.2012.698271. |
[26] |
Q. Lü and E. Zuazua, On the lack of controllability of fractional in time ODE and PDE, Math. Control Signals Systems, 28 (2016), Art. 10, 21 pp.
doi: 10.1007/s00498-016-0162-9. |
[27] |
L. Lu, Z. H. Liu, W. Jiang and J. L. Luo,
Solvability and optimal controls for semilinear fractional evolution hemivariational inequalities, Math. Methods Appl. Sci., 39 (2016), 5452-5464.
doi: 10.1002/mma.3930. |
[28] |
N. I. Mahmudov,
Finite-approximate controllability of evolution equations, Appl. Comput. Math., 16 (2017), 159-167.
|
[29] |
N. I. Mahmudov,
Finite-approximate controllability of fractional evolution equations: Variational approach, Fract. Calc. Appl. Anal., 21 (2018), 919-936.
doi: 10.1515/fca-2018-0050. |
[30] |
N. I. Mahmudov,
Variational approach to finite-approximate controllability of Sobolev-type fractional systems, J. Optim. Theory Appl., 184 (2020), 671-686.
doi: 10.1007/s10957-018-1255-z. |
[31] |
L. Mahto, S. Abbas, M. Hafayed and H. M. Srivastava, Approximate controllability of sub-diffusion equation with impulsive condition, Mathematics, 7 (2019), 190. Available from: https://doi.org/10.3390/math7020190.
doi: 10.3390/math7020190. |
[32] |
M. A. Meyers and K. K. Chawla, Mechanical Behavior of Materials, Cambridge University Press, Cambridge, 2009.
doi: 10.1017/CBO9780511810947.![]() ![]() |
[33] |
S. Migórski, A. Ochal and M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities: Models and Analysis of Contact Problems, Advances in Mechanics and Mathematics, 26. Springer, New York, 2013.
doi: 10.1007/978-1-4614-4232-5. |
[34] |
D. Motreanu, V. V. Motreanu and N. S. Papageorgiou,
Positive solutions and multiple solutions at non-resonance, resonance and near resonance for hemivariational inequalities with $p$-Laplacian, Trans. Amer. Math. Soc., 360 (2008), 2527-2545.
doi: 10.1090/S0002-9947-07-04449-2. |
[35] |
P. D. Panagiotopoulos,
Nonconvex superpotentials in sense of F. H. Clarke and applications, Mech. Res. Comm., 8 (1981), 335-340.
doi: 10.1016/0093-6413(81)90064-1. |
[36] |
P. D. Panagiotopoulos, Hemivariational Inequalities: Applications in Mechanics and Engineering, Springer-Verlag, Berlin, 1993.
doi: 10.1007/978-3-642-51677-1. |
[37] |
R. Ravi Kumar,
Nonlocal Cauchy problem for analytic resolvent integrodifferential equations in Banach spaces, Appl. Math. Comput., 204 (2008), 352-362.
doi: 10.1016/j.amc.2008.06.050. |
[38] |
R. Ravi Kumar,
Regularity of solutions of evolution integrodifferential equations with deviating argument, Appl. Math. Comput., 217 (2011), 9111-9121.
doi: 10.1016/j.amc.2011.03.136. |
[39] |
R. Sakthivel, Y. Ren, A. Debbouche and N. I. Mahmudov,
Approximate controllability of fractional stochastic differential inclusions with nonlocal conditions, Appl. Anal., 95 (2016), 2361-2382.
doi: 10.1080/00036811.2015.1090562. |
[40] |
R.-N. Wang, K. Ezzinbi and P. X. Zhu,
Non-autonomous impulsive Cauchy problems of parabolic type involving nonlocal initial conditions, J. Integral Equations Appl., 26 (2014), 275-299.
doi: 10.1216/JIE-2014-26-2-275. |
[41] |
J.-Z. Xiao and X.-H. Zhu,
Approximate controllability for abstract semilinear impulsive functional differential inclusions based on Hausdorff product measures, Topol. Method Nonlinear Anal., 52 (2018), 353-372.
doi: 10.12775/TMNA.2018.030. |
[42] |
Y.-B. Xiao, X. M. Yang and N.-J. Huang,
Some equivalence results for well-posedness of hemivariational inequalities, J. Global Optim., 61 (2015), 789-802.
doi: 10.1007/s10898-014-0198-7. |
[43] |
Z. M. Yan and X. M. Jia,
Approximate controllability of partial fractional neutral stochastic functional integro-differential inclusions with state-dependent delay, Collect. Math., 66 (2015), 93-124.
doi: 10.1007/s13348-014-0109-8. |
[44] |
M. Yang and Q. R. Wang,
Existence of mild soltions for a class of Hilfer fractional evolution equations with nonlocal conditions, Fract. Calc. Appl. Anal., 20 (2017), 679-705.
doi: 10.1515/fca-2017-0036. |
[45] |
Y. Zhou, Fractional Evolution Equations and Inclusions: Analysis and Control, Elsevier/Academic Press, London, 2016.
![]() ![]() |
show all references
References:
[1] |
K. Balchandran and J. P. Dauer,
Controllability of nonlinear systems in Banach spaces: A survey, J. Optim. Theory Appl., 115 (2002), 7-28.
doi: 10.1023/A:1019668728098. |
[2] |
K. Balchandran and J. H. Kim,
Remarks on the paper "Controllability of second order differential inclusion in Banach spaces", J. Math. Anal. Appl., 324 (2006), 746-749.
doi: 10.1016/j.jmaa.2005.11.070. |
[3] |
A. E. Bashirov and N. I. Mahmudov,
On concepts of controllability for deterministic and stochastic systems, SIAM J. Control Optim., 37 (1999), 1808-1821.
doi: 10.1137/S036301299732184X. |
[4] |
M. Benchohra and M. S. Souid,
$L^1$-Solutions for implicit fractional order differential equations with nonlocal conditions, Filomat, 30 (2016), 1485-1492.
doi: 10.2298/FIL1606485B. |
[5] |
L. Byszewski,
Existence and uniqueness of a classical solutions to a functional differential abstract nonlocal Cauchy problem, J. Math. Appl. Stoch. Anal., 12 (1999), 91-97.
doi: 10.1155/S1048953399000088. |
[6] |
Y.-K. Chang and R. Ponce,
Uniform exponential stability and its applications to bounded solutions of integro-differential equations in Banach spaces, J. Integral Equations Appl., 30 (2018), 347-369.
doi: 10.1216/JIE-2018-30-3-347. |
[7] |
Y.-K. Chang and Y. Pei, Degenerate type fractional evolution hemivariational inequalities and optimal controls via fractional resolvent operators, Int. J. Control, (2018). Available from: https://doi.org/10.1080/00207179.2018.1479540.
doi: 10.1080/00207179.2018.1479540. |
[8] |
R. M. Christensen, The Theory of Linear Viscoelasticity: An Introduction, Academic Press, New York, 1982.
![]() |
[9] |
F. H. Clarke, Optimization and Nonsmooth Analysis, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1983. |
[10] |
R. F. Curtain and A. J. Pritchard, Infinite Dimensional Linear Systems Theory, Lecture Notes in Control and Information Sciences, 8. Springer-Verlag, Berlin-New York, 1978. |
[11] |
R. F. Curtain and H. J. Zwart, An Introduction to Infinite Dimensional Linear Systems Theory, Texts in Applied Mathematics, 21. Springer-Verlag, New York, 1995.
doi: 10.1007/978-1-4612-4224-6. |
[12] |
K. Deng,
Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions, J. Math. Anal. Appl., 179 (1993), 630-637.
doi: 10.1006/jmaa.1993.1373. |
[13] |
M. Dieye, M. A. Diopa and K. Ezzinbi,
On exponential stability of mild solutions for some stochastic partial integrodifferential equations, Stat. Prob. Lett., 123 (2017), 61-76.
doi: 10.1016/j.spl.2016.10.031. |
[14] |
S. Djebali, L. Górniewicz and A. Ouahab, Solutions Set for Differential Equations and Inclusions, De Gruyter Series in Nonlinear Analysis and Applications, 18. Walter de Gruyter & Co., Berlin, 2013.
doi: 10.1515/9783110293562. |
[15] |
K. Ezzinbi and S. Ghnimi,
Existence and regularity of solutions for neutral partial functional integrodifferential equations, Nonlinear Anal. RWA, 11 (2010), 2335-2344.
doi: 10.1016/j.nonrwa.2009.07.007. |
[16] |
X. L. Fu,
Approximate controllability of semilinear non-autonomous evolution systems with state-dependent delay, Evol. Equ. Control Theo., 6 (2017), 517-534.
doi: 10.3934/eect.2017026. |
[17] |
R. C. Grimmer,
Resolvent operators for integral equations in a Banach space, Trans. Amer. Math. Soc., 273 (1982), 333-349.
doi: 10.1090/S0002-9947-1982-0664046-4. |
[18] |
R. C. Grimmer and A. J. Pritchard,
Analytic resolvent operators for integral equations in a Banach space, J. Differential Equations, 50 (1983), 234-259.
doi: 10.1016/0022-0396(83)90076-1. |
[19] |
Y. R. Jiang, N.-J. Huang and J.-C. Yao,
Solvability and opitimal control of semilinear nonlocal fractional evolution inclusion with Clarke subdifferential, Appl. Anal., 96 (2017), 2349-2366.
doi: 10.1080/00036811.2017.1321111. |
[20] |
J.-L. Lions and E. Zuazua,
The cost of controlling unstable systems: Time irreversible systems, Rev. Mat. UCM, 10 (1997), 481-523.
|
[21] |
J. H. Liu and K. Ezzinbi,
Non-autonomous integrodifferential equations with nonlocal conditions, J. Integral Equations Appl., 15 (2003), 79-93.
doi: 10.1216/jiea/1181074946. |
[22] |
Z. H. Liu and X. W. Li,
Approxiamte controllability for a class of hemivariational inequalities, Nonlinear Anal. RWA, 22 (2015), 581-591.
doi: 10.1016/j.nonrwa.2014.08.010. |
[23] |
Z. H. Liu, X. W. Li and D. Motreanu,
Approxiamte controllability for nonlinear evolution hemivariational inequalities in Hilbert spaces, SIAM J. Control Optim., 53 (2015), 3228-3244.
doi: 10.1137/140994058. |
[24] |
C. Lizama and G. M. N'Guérékata,
Bounded mild solutions for semilinear integrodifferential equations in Banach spaces, Integr. Equ. Oper. Theory, 68 (2010), 207-227.
doi: 10.1007/s00020-010-1799-2. |
[25] |
C. Lizama and G. M. N'Guérékata,
Mild solutions for abstract fractional differential equations, Appl. Anal., 92 (2013), 1731-1754.
doi: 10.1080/00036811.2012.698271. |
[26] |
Q. Lü and E. Zuazua, On the lack of controllability of fractional in time ODE and PDE, Math. Control Signals Systems, 28 (2016), Art. 10, 21 pp.
doi: 10.1007/s00498-016-0162-9. |
[27] |
L. Lu, Z. H. Liu, W. Jiang and J. L. Luo,
Solvability and optimal controls for semilinear fractional evolution hemivariational inequalities, Math. Methods Appl. Sci., 39 (2016), 5452-5464.
doi: 10.1002/mma.3930. |
[28] |
N. I. Mahmudov,
Finite-approximate controllability of evolution equations, Appl. Comput. Math., 16 (2017), 159-167.
|
[29] |
N. I. Mahmudov,
Finite-approximate controllability of fractional evolution equations: Variational approach, Fract. Calc. Appl. Anal., 21 (2018), 919-936.
doi: 10.1515/fca-2018-0050. |
[30] |
N. I. Mahmudov,
Variational approach to finite-approximate controllability of Sobolev-type fractional systems, J. Optim. Theory Appl., 184 (2020), 671-686.
doi: 10.1007/s10957-018-1255-z. |
[31] |
L. Mahto, S. Abbas, M. Hafayed and H. M. Srivastava, Approximate controllability of sub-diffusion equation with impulsive condition, Mathematics, 7 (2019), 190. Available from: https://doi.org/10.3390/math7020190.
doi: 10.3390/math7020190. |
[32] |
M. A. Meyers and K. K. Chawla, Mechanical Behavior of Materials, Cambridge University Press, Cambridge, 2009.
doi: 10.1017/CBO9780511810947.![]() ![]() |
[33] |
S. Migórski, A. Ochal and M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities: Models and Analysis of Contact Problems, Advances in Mechanics and Mathematics, 26. Springer, New York, 2013.
doi: 10.1007/978-1-4614-4232-5. |
[34] |
D. Motreanu, V. V. Motreanu and N. S. Papageorgiou,
Positive solutions and multiple solutions at non-resonance, resonance and near resonance for hemivariational inequalities with $p$-Laplacian, Trans. Amer. Math. Soc., 360 (2008), 2527-2545.
doi: 10.1090/S0002-9947-07-04449-2. |
[35] |
P. D. Panagiotopoulos,
Nonconvex superpotentials in sense of F. H. Clarke and applications, Mech. Res. Comm., 8 (1981), 335-340.
doi: 10.1016/0093-6413(81)90064-1. |
[36] |
P. D. Panagiotopoulos, Hemivariational Inequalities: Applications in Mechanics and Engineering, Springer-Verlag, Berlin, 1993.
doi: 10.1007/978-3-642-51677-1. |
[37] |
R. Ravi Kumar,
Nonlocal Cauchy problem for analytic resolvent integrodifferential equations in Banach spaces, Appl. Math. Comput., 204 (2008), 352-362.
doi: 10.1016/j.amc.2008.06.050. |
[38] |
R. Ravi Kumar,
Regularity of solutions of evolution integrodifferential equations with deviating argument, Appl. Math. Comput., 217 (2011), 9111-9121.
doi: 10.1016/j.amc.2011.03.136. |
[39] |
R. Sakthivel, Y. Ren, A. Debbouche and N. I. Mahmudov,
Approximate controllability of fractional stochastic differential inclusions with nonlocal conditions, Appl. Anal., 95 (2016), 2361-2382.
doi: 10.1080/00036811.2015.1090562. |
[40] |
R.-N. Wang, K. Ezzinbi and P. X. Zhu,
Non-autonomous impulsive Cauchy problems of parabolic type involving nonlocal initial conditions, J. Integral Equations Appl., 26 (2014), 275-299.
doi: 10.1216/JIE-2014-26-2-275. |
[41] |
J.-Z. Xiao and X.-H. Zhu,
Approximate controllability for abstract semilinear impulsive functional differential inclusions based on Hausdorff product measures, Topol. Method Nonlinear Anal., 52 (2018), 353-372.
doi: 10.12775/TMNA.2018.030. |
[42] |
Y.-B. Xiao, X. M. Yang and N.-J. Huang,
Some equivalence results for well-posedness of hemivariational inequalities, J. Global Optim., 61 (2015), 789-802.
doi: 10.1007/s10898-014-0198-7. |
[43] |
Z. M. Yan and X. M. Jia,
Approximate controllability of partial fractional neutral stochastic functional integro-differential inclusions with state-dependent delay, Collect. Math., 66 (2015), 93-124.
doi: 10.1007/s13348-014-0109-8. |
[44] |
M. Yang and Q. R. Wang,
Existence of mild soltions for a class of Hilfer fractional evolution equations with nonlocal conditions, Fract. Calc. Appl. Anal., 20 (2017), 679-705.
doi: 10.1515/fca-2017-0036. |
[45] |
Y. Zhou, Fractional Evolution Equations and Inclusions: Analysis and Control, Elsevier/Academic Press, London, 2016.
![]() ![]() |
[1] |
Avadhesh Kumar, Ankit Kumar, Ramesh Kumar Vats, Parveen Kumar. Approximate controllability of neutral delay integro-differential inclusion of order $ \alpha\in (1, 2) $ with non-instantaneous impulses. Evolution Equations and Control Theory, 2021 doi: 10.3934/eect.2021058 |
[2] |
Kyudong Choi. Persistence of Hölder continuity for non-local integro-differential equations. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1741-1771. doi: 10.3934/dcds.2013.33.1741 |
[3] |
V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations and Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066 |
[4] |
Dariusz Idczak, Stanisław Walczak. Necessary optimality conditions for an integro-differential Bolza problem via Dubovitskii-Milyutin method. Discrete and Continuous Dynamical Systems - B, 2019, 24 (5) : 2281-2292. doi: 10.3934/dcdsb.2019095 |
[5] |
Yin Yang, Sujuan Kang, Vasiliy I. Vasil'ev. The Jacobi spectral collocation method for fractional integro-differential equations with non-smooth solutions. Electronic Research Archive, 2020, 28 (3) : 1161-1189. doi: 10.3934/era.2020064 |
[6] |
Sertan Alkan. A new solution method for nonlinear fractional integro-differential equations. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1065-1077. doi: 10.3934/dcdss.2015.8.1065 |
[7] |
Tomás Caraballo, P.E. Kloeden. Non-autonomous attractors for integro-differential evolution equations. Discrete and Continuous Dynamical Systems - S, 2009, 2 (1) : 17-36. doi: 10.3934/dcdss.2009.2.17 |
[8] |
Michel Chipot, Senoussi Guesmia. On a class of integro-differential problems. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1249-1262. doi: 10.3934/cpaa.2010.9.1249 |
[9] |
Walter Allegretto, Yanping Lin, Shuqing Ma. On the box method for a non-local parabolic variational inequality. Discrete and Continuous Dynamical Systems - B, 2001, 1 (1) : 71-88. doi: 10.3934/dcdsb.2001.1.71 |
[10] |
Huy Tuan Nguyen, Huu Can Nguyen, Renhai Wang, Yong Zhou. Initial value problem for fractional Volterra integro-differential equations with Caputo derivative. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6483-6510. doi: 10.3934/dcdsb.2021030 |
[11] |
Ankit Kumar, Kamal Jeet, Ramesh Kumar Vats. Controllability of Hilfer fractional integro-differential equations of Sobolev-type with a nonlocal condition in a Banach space. Evolution Equations and Control Theory, 2022, 11 (2) : 605-619. doi: 10.3934/eect.2021016 |
[12] |
Tao Wang. Global dynamics of a non-local delayed differential equation in the half plane. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2475-2492. doi: 10.3934/cpaa.2014.13.2475 |
[13] |
Zhaoquan Xu, Chufen Wu. Spreading speeds for a class of non-local convolution differential equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4479-4492. doi: 10.3934/dcdsb.2020108 |
[14] |
Olivier Bonnefon, Jérôme Coville, Jimmy Garnier, Lionel Roques. Inside dynamics of solutions of integro-differential equations. Discrete and Continuous Dynamical Systems - B, 2014, 19 (10) : 3057-3085. doi: 10.3934/dcdsb.2014.19.3057 |
[15] |
Nestor Guillen, Russell W. Schwab. Neumann homogenization via integro-differential operators. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3677-3703. doi: 10.3934/dcds.2016.36.3677 |
[16] |
Paola Loreti, Daniela Sforza. Observability of $N$-dimensional integro-differential systems. Discrete and Continuous Dynamical Systems - S, 2016, 9 (3) : 745-757. doi: 10.3934/dcdss.2016026 |
[17] |
Mohammed Al Horani, Angelo Favini, Hiroki Tanabe. Singular integro-differential equations with applications. Evolution Equations and Control Theory, 2021 doi: 10.3934/eect.2021051 |
[18] |
Mohammed Al Horani, Angelo Favini, Hiroki Tanabe. Inverse problems on degenerate integro-differential equations. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022025 |
[19] |
Faranak Rabiei, Fatin Abd Hamid, Zanariah Abd Majid, Fudziah Ismail. Numerical solutions of Volterra integro-differential equations using General Linear Method. Numerical Algebra, Control and Optimization, 2019, 9 (4) : 433-444. doi: 10.3934/naco.2019042 |
[20] |
Cyril Imbert, Sylvia Serfaty. Repeated games for non-linear parabolic integro-differential equations and integral curvature flows. Discrete and Continuous Dynamical Systems, 2011, 29 (4) : 1517-1552. doi: 10.3934/dcds.2011.29.1517 |
2020 Impact Factor: 1.081
Tools
Metrics
Other articles
by authors
[Back to Top]