• Previous Article
    Uniform stability in a vectorial full Von Kármán thermoelastic system with solenoidal dissipation and free boundary conditions
  • EECT Home
  • This Issue
  • Next Article
    On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay
doi: 10.3934/eect.2020039

Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces

1. 

Department of Mathematics, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam

2. 

Department of Mathematics, Hung Vuong University, Nong Trang, Viet Tri, Phu Tho, Vietnam

3. 

Department of Mathematics, Haiphong University, 171 Phan Dang Luu, Kien An, Haiphong, Vietnam

* Corresponding author: anhctmath@hnue.edu.vn

Dedicated to the memory of Professor Geneviève Raugel

Received  June 2019 Revised  December 2019 Published  March 2020

Fund Project: This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.02-2018.303

We consider a three-dimensional Navier-Stokes-Voigt equations with memory in lacking instantaneous kinematic viscosity, in presence of Ekman type damping and singularly oscillating external forces depending on a positive parameter $ \varepsilon $. Under suitable assumptions on the memory term and on the external forces, we prove the existence and the uniform (w.r.t. $ \varepsilon $) boundedness as well as the convergence as $ \varepsilon $ tends to $ 0 $ of uniform attractors $ \mathcal A ^\varepsilon $ of a family of processes associated to the model.

Citation: Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, doi: 10.3934/eect.2020039
References:
[1]

C. T. AnhD. T. P. Thanh and N. D. Toan, Averaging of nonclassical diffusion equations with memory and singularly oscillating forces, Z. Anal. Anwend., 37 (2018), 299-314.  doi: 10.4171/ZAA/1615.  Google Scholar

[2]

C. T. Anh and P. T. Trang, Pull-back attractors for three dimensional Navier-Stokes-Voigt equations in some unbounded domain, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 223-251.  doi: 10.1017/S0308210511001491.  Google Scholar

[3]

C. T. Anh and P. T. Trang, Decay rate of solutions to the 3D Navier-Stokes-Voigt equations in $H^m$ spaces, Appl. Math. Lett., 61 (2016), 1-7.  doi: 10.1016/j.aml.2016.04.015.  Google Scholar

[4]

C. T. Anh and P. T. Trang, On the regularity and convergence of solutions to the 3D Navier-Stokes-Voigt equations, Comput. Math. Appl., 73 (2017), 601-615.  doi: 10.1016/j.camwa.2016.12.023.  Google Scholar

[5]

S. Borini and V. Pata, Uniform attractors for a strongly damped wave equation with linear memory, Asymptot. Anal., 20 (1999), 263-277.   Google Scholar

[6]

F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, Springer, New York, 2013. doi: 10.1007/978-1-4614-5975-0.  Google Scholar

[7]

Y. CaoE. LunasinE. S. Titi and S. Edriss, Global well-posedness of the three-dimensional viscous and inviscid simplified Bardina turbulence models, Commun. Math. Sci., 4 (2006), 823-848.  doi: 10.4310/CMS.2006.v4.n4.a8.  Google Scholar

[8]

V. V. ChepyzhovM. Conti and V. Pata, Averaging of equations of viscoelasticity with singularly oscillating external forces, J. Math. Pures Appl., 108 (2017), 841-868.  doi: 10.1016/j.matpur.2017.05.007.  Google Scholar

[9]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society Colloquium Publications, Vol. 49, American Mathematical Society, Providence, RI, 2002.  Google Scholar

[10]

M. ContiE. M. Marchini and V. Pata, Nonclassical diffusion with memory, Math. Methods Appl. Sci., 38 (2015), 948-958.  doi: 10.1002/mma.3120.  Google Scholar

[11]

C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 37 (1970), 297-308.  doi: 10.1007/BF00251609.  Google Scholar

[12]

F. Di PlinioA. GiorginiV. Pata and R. Temam, Navier-Stokes-Voigt equations with memory in 3D lacking instantaneous kinematic viscosity, J. Nonlinear Sci., 28 (2018), 653-686.  doi: 10.1007/s00332-017-9422-1.  Google Scholar

[13]

S. GattiA. MiranvilleV. Pata and S. Zelik, Attractors for semilinear equations of viscoelasticity with very low dissipation, Rocky Mountain Journal of Mathematics, 38 (2008), 1117-1138.  doi: 10.1216/RMJ-2008-38-4-1117.  Google Scholar

[14]

J. García-LuengoP. Marín-Rubio and J. Real, Pullback attractors for three-dimensional non-autonomous Navier-Stokes-Voigt equations, Nonlinearity, 25 (2012), 905-930.  doi: 10.1088/0951-7715/25/4/905.  Google Scholar

[15]

C. G. Gal and T. Tachim-Medjo, A Navier-Stokes-Voigt model with memory, Math. Methods Appl. Sci., 36 (2013), 2507-2523.  doi: 10.1002/mma.2771.  Google Scholar

[16]

V. K. Kalantarov, Attractors for some nonlinear problems of mathematical physics, Zap. Nauchn. Sem. Lenigrad. Otdel. Math. Inst. Steklov. (LOMI), 152 (1986), 50-54.  doi: 10.1007/BF01094186.  Google Scholar

[17]

V. K. Kalantarov and E. S. Titi, Global attractor and determining modes for the 3D Navier-Stokes-Voight equations, Chin. Ann. Math. Ser. B, 30 (2009), 697-714.  doi: 10.1007/s11401-009-0205-3.  Google Scholar

[18]

J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, Vol. Ⅲ, Springer-Verlag, Berlin-Heidelberg, 1973.  Google Scholar

[19]

C. J. Niche, Decay characterization of solutions to Navier-Stokes-Voigt equations in terms of the initial datum, J. Differential Equations, 260 (2016), 4440-4453.  doi: 10.1016/j.jde.2015.11.014.  Google Scholar

[20]

A. P. Oskolkov, The uniqueness and solvability in the large of boundary value problems for the equations of motion of aqueous solutions of polymers, Zap. Nauchn. Sem. Leningrad. Otdel. Math. Inst. Steklov. (LOMI), 38 (1973), 98-136.   Google Scholar

[21]

V. Pata, Exponential stability in linear viscoelasticity with almost flat memory kernels, Commun. Pure Appl. Anal., 9 (2010), 721-730.  doi: 10.3934/cpaa.2010.9.721.  Google Scholar

[22]

V. Pata, Uniform estimates of Gronwall type, J. Math. Anal. Appl., 373 (2011), 264-270.  doi: 10.1016/j.jmaa.2010.07.006.  Google Scholar

[23]

V. Pata and A. Zucchi, Attractors for a damped hyperbolic equation with linear memory, Adv. Math. Sci. Appl., 11 (2001), 505-529.   Google Scholar

[24]

Y. QinX. Yang and X. Liu, Averaging of a 3D Navier-Stokes-Voight equation with singularly oscillating forces, Nonlinear Anal. Real World Appl., 13 (2012), 893-904.  doi: 10.1016/j.nonrwa.2011.08.025.  Google Scholar

[25]

R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, American Mathematical Society, Chelsea Publishing, Providence, RI, 2001. Google Scholar

[26]

X. G. YangL. Li and Y. Lu, Regularity of uniform attractor for 3D non-autonomous Navier-Stokes-Voigt equation, Appl. Math. Comput., 334 (2018), 11-29.  doi: 10.1016/j.amc.2018.03.096.  Google Scholar

[27]

G. Yue and C. K. Zhong, Attractors for autonomous and nonautonomous 3D Navier-Stokes-Voight equations, Discrete Contin. Dyn. Syst. Ser. B, 16 (2011), 985-1002.  doi: 10.3934/dcdsb.2011.16.985.  Google Scholar

[28]

C. Zhao and H. Zhu, Upper bound of decay rate for solutions to the Navier-Stokes-Voigt equations in $ \mathbb{R}^3$, Appl. Math. Comp., 256 (2015), 183-191.  doi: 10.1016/j.amc.2014.12.131.  Google Scholar

show all references

References:
[1]

C. T. AnhD. T. P. Thanh and N. D. Toan, Averaging of nonclassical diffusion equations with memory and singularly oscillating forces, Z. Anal. Anwend., 37 (2018), 299-314.  doi: 10.4171/ZAA/1615.  Google Scholar

[2]

C. T. Anh and P. T. Trang, Pull-back attractors for three dimensional Navier-Stokes-Voigt equations in some unbounded domain, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 223-251.  doi: 10.1017/S0308210511001491.  Google Scholar

[3]

C. T. Anh and P. T. Trang, Decay rate of solutions to the 3D Navier-Stokes-Voigt equations in $H^m$ spaces, Appl. Math. Lett., 61 (2016), 1-7.  doi: 10.1016/j.aml.2016.04.015.  Google Scholar

[4]

C. T. Anh and P. T. Trang, On the regularity and convergence of solutions to the 3D Navier-Stokes-Voigt equations, Comput. Math. Appl., 73 (2017), 601-615.  doi: 10.1016/j.camwa.2016.12.023.  Google Scholar

[5]

S. Borini and V. Pata, Uniform attractors for a strongly damped wave equation with linear memory, Asymptot. Anal., 20 (1999), 263-277.   Google Scholar

[6]

F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, Springer, New York, 2013. doi: 10.1007/978-1-4614-5975-0.  Google Scholar

[7]

Y. CaoE. LunasinE. S. Titi and S. Edriss, Global well-posedness of the three-dimensional viscous and inviscid simplified Bardina turbulence models, Commun. Math. Sci., 4 (2006), 823-848.  doi: 10.4310/CMS.2006.v4.n4.a8.  Google Scholar

[8]

V. V. ChepyzhovM. Conti and V. Pata, Averaging of equations of viscoelasticity with singularly oscillating external forces, J. Math. Pures Appl., 108 (2017), 841-868.  doi: 10.1016/j.matpur.2017.05.007.  Google Scholar

[9]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society Colloquium Publications, Vol. 49, American Mathematical Society, Providence, RI, 2002.  Google Scholar

[10]

M. ContiE. M. Marchini and V. Pata, Nonclassical diffusion with memory, Math. Methods Appl. Sci., 38 (2015), 948-958.  doi: 10.1002/mma.3120.  Google Scholar

[11]

C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 37 (1970), 297-308.  doi: 10.1007/BF00251609.  Google Scholar

[12]

F. Di PlinioA. GiorginiV. Pata and R. Temam, Navier-Stokes-Voigt equations with memory in 3D lacking instantaneous kinematic viscosity, J. Nonlinear Sci., 28 (2018), 653-686.  doi: 10.1007/s00332-017-9422-1.  Google Scholar

[13]

S. GattiA. MiranvilleV. Pata and S. Zelik, Attractors for semilinear equations of viscoelasticity with very low dissipation, Rocky Mountain Journal of Mathematics, 38 (2008), 1117-1138.  doi: 10.1216/RMJ-2008-38-4-1117.  Google Scholar

[14]

J. García-LuengoP. Marín-Rubio and J. Real, Pullback attractors for three-dimensional non-autonomous Navier-Stokes-Voigt equations, Nonlinearity, 25 (2012), 905-930.  doi: 10.1088/0951-7715/25/4/905.  Google Scholar

[15]

C. G. Gal and T. Tachim-Medjo, A Navier-Stokes-Voigt model with memory, Math. Methods Appl. Sci., 36 (2013), 2507-2523.  doi: 10.1002/mma.2771.  Google Scholar

[16]

V. K. Kalantarov, Attractors for some nonlinear problems of mathematical physics, Zap. Nauchn. Sem. Lenigrad. Otdel. Math. Inst. Steklov. (LOMI), 152 (1986), 50-54.  doi: 10.1007/BF01094186.  Google Scholar

[17]

V. K. Kalantarov and E. S. Titi, Global attractor and determining modes for the 3D Navier-Stokes-Voight equations, Chin. Ann. Math. Ser. B, 30 (2009), 697-714.  doi: 10.1007/s11401-009-0205-3.  Google Scholar

[18]

J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, Vol. Ⅲ, Springer-Verlag, Berlin-Heidelberg, 1973.  Google Scholar

[19]

C. J. Niche, Decay characterization of solutions to Navier-Stokes-Voigt equations in terms of the initial datum, J. Differential Equations, 260 (2016), 4440-4453.  doi: 10.1016/j.jde.2015.11.014.  Google Scholar

[20]

A. P. Oskolkov, The uniqueness and solvability in the large of boundary value problems for the equations of motion of aqueous solutions of polymers, Zap. Nauchn. Sem. Leningrad. Otdel. Math. Inst. Steklov. (LOMI), 38 (1973), 98-136.   Google Scholar

[21]

V. Pata, Exponential stability in linear viscoelasticity with almost flat memory kernels, Commun. Pure Appl. Anal., 9 (2010), 721-730.  doi: 10.3934/cpaa.2010.9.721.  Google Scholar

[22]

V. Pata, Uniform estimates of Gronwall type, J. Math. Anal. Appl., 373 (2011), 264-270.  doi: 10.1016/j.jmaa.2010.07.006.  Google Scholar

[23]

V. Pata and A. Zucchi, Attractors for a damped hyperbolic equation with linear memory, Adv. Math. Sci. Appl., 11 (2001), 505-529.   Google Scholar

[24]

Y. QinX. Yang and X. Liu, Averaging of a 3D Navier-Stokes-Voight equation with singularly oscillating forces, Nonlinear Anal. Real World Appl., 13 (2012), 893-904.  doi: 10.1016/j.nonrwa.2011.08.025.  Google Scholar

[25]

R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, American Mathematical Society, Chelsea Publishing, Providence, RI, 2001. Google Scholar

[26]

X. G. YangL. Li and Y. Lu, Regularity of uniform attractor for 3D non-autonomous Navier-Stokes-Voigt equation, Appl. Math. Comput., 334 (2018), 11-29.  doi: 10.1016/j.amc.2018.03.096.  Google Scholar

[27]

G. Yue and C. K. Zhong, Attractors for autonomous and nonautonomous 3D Navier-Stokes-Voight equations, Discrete Contin. Dyn. Syst. Ser. B, 16 (2011), 985-1002.  doi: 10.3934/dcdsb.2011.16.985.  Google Scholar

[28]

C. Zhao and H. Zhu, Upper bound of decay rate for solutions to the Navier-Stokes-Voigt equations in $ \mathbb{R}^3$, Appl. Math. Comp., 256 (2015), 183-191.  doi: 10.1016/j.amc.2014.12.131.  Google Scholar

[1]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[2]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[3]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[4]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[5]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[6]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[7]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[8]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[9]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[10]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[11]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[12]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[13]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[14]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[15]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[16]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[17]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[18]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[19]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[20]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (138)
  • HTML views (334)
  • Cited by (0)

[Back to Top]