March  2021, 10(1): 1-23. doi: 10.3934/eect.2020039

Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces

1. 

Department of Mathematics, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam

2. 

Department of Mathematics, Hung Vuong University, Nong Trang, Viet Tri, Phu Tho, Vietnam

3. 

Department of Mathematics, Haiphong University, 171 Phan Dang Luu, Kien An, Haiphong, Vietnam

* Corresponding author: anhctmath@hnue.edu.vn

Dedicated to the memory of Professor Geneviève Raugel

Received  June 2019 Revised  December 2019 Published  March 2021 Early access  March 2020

Fund Project: This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.02-2018.303

We consider a three-dimensional Navier-Stokes-Voigt equations with memory in lacking instantaneous kinematic viscosity, in presence of Ekman type damping and singularly oscillating external forces depending on a positive parameter $ \varepsilon $. Under suitable assumptions on the memory term and on the external forces, we prove the existence and the uniform (w.r.t. $ \varepsilon $) boundedness as well as the convergence as $ \varepsilon $ tends to $ 0 $ of uniform attractors $ \mathcal A ^\varepsilon $ of a family of processes associated to the model.

Citation: Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations and Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039
References:
[1]

C. T. AnhD. T. P. Thanh and N. D. Toan, Averaging of nonclassical diffusion equations with memory and singularly oscillating forces, Z. Anal. Anwend., 37 (2018), 299-314.  doi: 10.4171/ZAA/1615.

[2]

C. T. Anh and P. T. Trang, Pull-back attractors for three dimensional Navier-Stokes-Voigt equations in some unbounded domain, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 223-251.  doi: 10.1017/S0308210511001491.

[3]

C. T. Anh and P. T. Trang, Decay rate of solutions to the 3D Navier-Stokes-Voigt equations in $H^m$ spaces, Appl. Math. Lett., 61 (2016), 1-7.  doi: 10.1016/j.aml.2016.04.015.

[4]

C. T. Anh and P. T. Trang, On the regularity and convergence of solutions to the 3D Navier-Stokes-Voigt equations, Comput. Math. Appl., 73 (2017), 601-615.  doi: 10.1016/j.camwa.2016.12.023.

[5]

S. Borini and V. Pata, Uniform attractors for a strongly damped wave equation with linear memory, Asymptot. Anal., 20 (1999), 263-277. 

[6]

F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, Springer, New York, 2013. doi: 10.1007/978-1-4614-5975-0.

[7]

Y. CaoE. LunasinE. S. Titi and S. Edriss, Global well-posedness of the three-dimensional viscous and inviscid simplified Bardina turbulence models, Commun. Math. Sci., 4 (2006), 823-848.  doi: 10.4310/CMS.2006.v4.n4.a8.

[8]

V. V. ChepyzhovM. Conti and V. Pata, Averaging of equations of viscoelasticity with singularly oscillating external forces, J. Math. Pures Appl., 108 (2017), 841-868.  doi: 10.1016/j.matpur.2017.05.007.

[9]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society Colloquium Publications, Vol. 49, American Mathematical Society, Providence, RI, 2002.

[10]

M. ContiE. M. Marchini and V. Pata, Nonclassical diffusion with memory, Math. Methods Appl. Sci., 38 (2015), 948-958.  doi: 10.1002/mma.3120.

[11]

C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 37 (1970), 297-308.  doi: 10.1007/BF00251609.

[12]

F. Di PlinioA. GiorginiV. Pata and R. Temam, Navier-Stokes-Voigt equations with memory in 3D lacking instantaneous kinematic viscosity, J. Nonlinear Sci., 28 (2018), 653-686.  doi: 10.1007/s00332-017-9422-1.

[13]

S. GattiA. MiranvilleV. Pata and S. Zelik, Attractors for semilinear equations of viscoelasticity with very low dissipation, Rocky Mountain Journal of Mathematics, 38 (2008), 1117-1138.  doi: 10.1216/RMJ-2008-38-4-1117.

[14]

J. García-LuengoP. Marín-Rubio and J. Real, Pullback attractors for three-dimensional non-autonomous Navier-Stokes-Voigt equations, Nonlinearity, 25 (2012), 905-930.  doi: 10.1088/0951-7715/25/4/905.

[15]

C. G. Gal and T. Tachim-Medjo, A Navier-Stokes-Voigt model with memory, Math. Methods Appl. Sci., 36 (2013), 2507-2523.  doi: 10.1002/mma.2771.

[16]

V. K. Kalantarov, Attractors for some nonlinear problems of mathematical physics, Zap. Nauchn. Sem. Lenigrad. Otdel. Math. Inst. Steklov. (LOMI), 152 (1986), 50-54.  doi: 10.1007/BF01094186.

[17]

V. K. Kalantarov and E. S. Titi, Global attractor and determining modes for the 3D Navier-Stokes-Voight equations, Chin. Ann. Math. Ser. B, 30 (2009), 697-714.  doi: 10.1007/s11401-009-0205-3.

[18]

J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, Vol. Ⅲ, Springer-Verlag, Berlin-Heidelberg, 1973.

[19]

C. J. Niche, Decay characterization of solutions to Navier-Stokes-Voigt equations in terms of the initial datum, J. Differential Equations, 260 (2016), 4440-4453.  doi: 10.1016/j.jde.2015.11.014.

[20]

A. P. Oskolkov, The uniqueness and solvability in the large of boundary value problems for the equations of motion of aqueous solutions of polymers, Zap. Nauchn. Sem. Leningrad. Otdel. Math. Inst. Steklov. (LOMI), 38 (1973), 98-136. 

[21]

V. Pata, Exponential stability in linear viscoelasticity with almost flat memory kernels, Commun. Pure Appl. Anal., 9 (2010), 721-730.  doi: 10.3934/cpaa.2010.9.721.

[22]

V. Pata, Uniform estimates of Gronwall type, J. Math. Anal. Appl., 373 (2011), 264-270.  doi: 10.1016/j.jmaa.2010.07.006.

[23]

V. Pata and A. Zucchi, Attractors for a damped hyperbolic equation with linear memory, Adv. Math. Sci. Appl., 11 (2001), 505-529. 

[24]

Y. QinX. Yang and X. Liu, Averaging of a 3D Navier-Stokes-Voight equation with singularly oscillating forces, Nonlinear Anal. Real World Appl., 13 (2012), 893-904.  doi: 10.1016/j.nonrwa.2011.08.025.

[25]

R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, American Mathematical Society, Chelsea Publishing, Providence, RI, 2001.

[26]

X. G. YangL. Li and Y. Lu, Regularity of uniform attractor for 3D non-autonomous Navier-Stokes-Voigt equation, Appl. Math. Comput., 334 (2018), 11-29.  doi: 10.1016/j.amc.2018.03.096.

[27]

G. Yue and C. K. Zhong, Attractors for autonomous and nonautonomous 3D Navier-Stokes-Voight equations, Discrete Contin. Dyn. Syst. Ser. B, 16 (2011), 985-1002.  doi: 10.3934/dcdsb.2011.16.985.

[28]

C. Zhao and H. Zhu, Upper bound of decay rate for solutions to the Navier-Stokes-Voigt equations in $ \mathbb{R}^3$, Appl. Math. Comp., 256 (2015), 183-191.  doi: 10.1016/j.amc.2014.12.131.

show all references

References:
[1]

C. T. AnhD. T. P. Thanh and N. D. Toan, Averaging of nonclassical diffusion equations with memory and singularly oscillating forces, Z. Anal. Anwend., 37 (2018), 299-314.  doi: 10.4171/ZAA/1615.

[2]

C. T. Anh and P. T. Trang, Pull-back attractors for three dimensional Navier-Stokes-Voigt equations in some unbounded domain, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 223-251.  doi: 10.1017/S0308210511001491.

[3]

C. T. Anh and P. T. Trang, Decay rate of solutions to the 3D Navier-Stokes-Voigt equations in $H^m$ spaces, Appl. Math. Lett., 61 (2016), 1-7.  doi: 10.1016/j.aml.2016.04.015.

[4]

C. T. Anh and P. T. Trang, On the regularity and convergence of solutions to the 3D Navier-Stokes-Voigt equations, Comput. Math. Appl., 73 (2017), 601-615.  doi: 10.1016/j.camwa.2016.12.023.

[5]

S. Borini and V. Pata, Uniform attractors for a strongly damped wave equation with linear memory, Asymptot. Anal., 20 (1999), 263-277. 

[6]

F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, Springer, New York, 2013. doi: 10.1007/978-1-4614-5975-0.

[7]

Y. CaoE. LunasinE. S. Titi and S. Edriss, Global well-posedness of the three-dimensional viscous and inviscid simplified Bardina turbulence models, Commun. Math. Sci., 4 (2006), 823-848.  doi: 10.4310/CMS.2006.v4.n4.a8.

[8]

V. V. ChepyzhovM. Conti and V. Pata, Averaging of equations of viscoelasticity with singularly oscillating external forces, J. Math. Pures Appl., 108 (2017), 841-868.  doi: 10.1016/j.matpur.2017.05.007.

[9]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society Colloquium Publications, Vol. 49, American Mathematical Society, Providence, RI, 2002.

[10]

M. ContiE. M. Marchini and V. Pata, Nonclassical diffusion with memory, Math. Methods Appl. Sci., 38 (2015), 948-958.  doi: 10.1002/mma.3120.

[11]

C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 37 (1970), 297-308.  doi: 10.1007/BF00251609.

[12]

F. Di PlinioA. GiorginiV. Pata and R. Temam, Navier-Stokes-Voigt equations with memory in 3D lacking instantaneous kinematic viscosity, J. Nonlinear Sci., 28 (2018), 653-686.  doi: 10.1007/s00332-017-9422-1.

[13]

S. GattiA. MiranvilleV. Pata and S. Zelik, Attractors for semilinear equations of viscoelasticity with very low dissipation, Rocky Mountain Journal of Mathematics, 38 (2008), 1117-1138.  doi: 10.1216/RMJ-2008-38-4-1117.

[14]

J. García-LuengoP. Marín-Rubio and J. Real, Pullback attractors for three-dimensional non-autonomous Navier-Stokes-Voigt equations, Nonlinearity, 25 (2012), 905-930.  doi: 10.1088/0951-7715/25/4/905.

[15]

C. G. Gal and T. Tachim-Medjo, A Navier-Stokes-Voigt model with memory, Math. Methods Appl. Sci., 36 (2013), 2507-2523.  doi: 10.1002/mma.2771.

[16]

V. K. Kalantarov, Attractors for some nonlinear problems of mathematical physics, Zap. Nauchn. Sem. Lenigrad. Otdel. Math. Inst. Steklov. (LOMI), 152 (1986), 50-54.  doi: 10.1007/BF01094186.

[17]

V. K. Kalantarov and E. S. Titi, Global attractor and determining modes for the 3D Navier-Stokes-Voight equations, Chin. Ann. Math. Ser. B, 30 (2009), 697-714.  doi: 10.1007/s11401-009-0205-3.

[18]

J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, Vol. Ⅲ, Springer-Verlag, Berlin-Heidelberg, 1973.

[19]

C. J. Niche, Decay characterization of solutions to Navier-Stokes-Voigt equations in terms of the initial datum, J. Differential Equations, 260 (2016), 4440-4453.  doi: 10.1016/j.jde.2015.11.014.

[20]

A. P. Oskolkov, The uniqueness and solvability in the large of boundary value problems for the equations of motion of aqueous solutions of polymers, Zap. Nauchn. Sem. Leningrad. Otdel. Math. Inst. Steklov. (LOMI), 38 (1973), 98-136. 

[21]

V. Pata, Exponential stability in linear viscoelasticity with almost flat memory kernels, Commun. Pure Appl. Anal., 9 (2010), 721-730.  doi: 10.3934/cpaa.2010.9.721.

[22]

V. Pata, Uniform estimates of Gronwall type, J. Math. Anal. Appl., 373 (2011), 264-270.  doi: 10.1016/j.jmaa.2010.07.006.

[23]

V. Pata and A. Zucchi, Attractors for a damped hyperbolic equation with linear memory, Adv. Math. Sci. Appl., 11 (2001), 505-529. 

[24]

Y. QinX. Yang and X. Liu, Averaging of a 3D Navier-Stokes-Voight equation with singularly oscillating forces, Nonlinear Anal. Real World Appl., 13 (2012), 893-904.  doi: 10.1016/j.nonrwa.2011.08.025.

[25]

R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, American Mathematical Society, Chelsea Publishing, Providence, RI, 2001.

[26]

X. G. YangL. Li and Y. Lu, Regularity of uniform attractor for 3D non-autonomous Navier-Stokes-Voigt equation, Appl. Math. Comput., 334 (2018), 11-29.  doi: 10.1016/j.amc.2018.03.096.

[27]

G. Yue and C. K. Zhong, Attractors for autonomous and nonautonomous 3D Navier-Stokes-Voight equations, Discrete Contin. Dyn. Syst. Ser. B, 16 (2011), 985-1002.  doi: 10.3934/dcdsb.2011.16.985.

[28]

C. Zhao and H. Zhu, Upper bound of decay rate for solutions to the Navier-Stokes-Voigt equations in $ \mathbb{R}^3$, Appl. Math. Comp., 256 (2015), 183-191.  doi: 10.1016/j.amc.2014.12.131.

[1]

Fabio Ramos, Edriss S. Titi. Invariant measures for the $3$D Navier-Stokes-Voigt equations and their Navier-Stokes limit. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 375-403. doi: 10.3934/dcds.2010.28.375

[2]

Vu Manh Toi. Stability and stabilization for the three-dimensional Navier-Stokes-Voigt equations with unbounded variable delay. Evolution Equations and Control Theory, 2021, 10 (4) : 1007-1023. doi: 10.3934/eect.2020099

[3]

Luigi C. Berselli, Tae-Yeon Kim, Leo G. Rebholz. Analysis of a reduced-order approximate deconvolution model and its interpretation as a Navier-Stokes-Voigt regularization. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1027-1050. doi: 10.3934/dcdsb.2016.21.1027

[4]

Xinguang Yang, Baowei Feng, Thales Maier de Souza, Taige Wang. Long-time dynamics for a non-autonomous Navier-Stokes-Voigt equation in Lipschitz domains. Discrete and Continuous Dynamical Systems - B, 2019, 24 (1) : 363-386. doi: 10.3934/dcdsb.2018084

[5]

Xueli Song, Jianhua Wu. Non-autonomous 2D Newton-Boussinesq equation with oscillating external forces and its uniform attractor. Evolution Equations and Control Theory, 2022, 11 (1) : 41-65. doi: 10.3934/eect.2020102

[6]

T. Tachim Medjo. Averaging of a 3D Lagrangian averaged Navier-Stokes-$\alpha$ model with oscillating external forces. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1281-1305. doi: 10.3934/cpaa.2011.10.1281

[7]

Wenjun Wang, Weike Wang. Decay rates of the compressible Navier-Stokes-Korteweg equations with potential forces. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 513-536. doi: 10.3934/dcds.2015.35.513

[8]

T. Tachim Medjo. A non-autonomous 3D Lagrangian averaged Navier-Stokes-$\alpha$ model with oscillating external force and its global attractor. Communications on Pure and Applied Analysis, 2011, 10 (2) : 415-433. doi: 10.3934/cpaa.2011.10.415

[9]

Alain Miranville, Xiaoming Wang. Upper bound on the dimension of the attractor for nonhomogeneous Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 1996, 2 (1) : 95-110. doi: 10.3934/dcds.1996.2.95

[10]

Songsong Lu, Hongqing Wu, Chengkui Zhong. Attractors for nonautonomous 2d Navier-Stokes equations with normal external forces. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 701-719. doi: 10.3934/dcds.2005.13.701

[11]

Vladimir V. Chepyzhov, E. S. Titi, Mark I. Vishik. On the convergence of solutions of the Leray-$\alpha $ model to the trajectory attractor of the 3D Navier-Stokes system. Discrete and Continuous Dynamical Systems, 2007, 17 (3) : 481-500. doi: 10.3934/dcds.2007.17.481

[12]

Roberta Bianchini, Roberto Natalini. Convergence of a vector-BGK approximation for the incompressible Navier-Stokes equations. Kinetic and Related Models, 2019, 12 (1) : 133-158. doi: 10.3934/krm.2019006

[13]

Zhilei Liang. Convergence rate of solutions to the contact discontinuity for the compressible Navier-Stokes equations. Communications on Pure and Applied Analysis, 2013, 12 (5) : 1907-1926. doi: 10.3934/cpaa.2013.12.1907

[14]

Adam Larios, Yuan Pei. Approximate continuous data assimilation of the 2D Navier-Stokes equations via the Voigt-regularization with observable data. Evolution Equations and Control Theory, 2020, 9 (3) : 733-751. doi: 10.3934/eect.2020031

[15]

Fei Jiang, Song Jiang, Junpin Yin. Global weak solutions to the two-dimensional Navier-Stokes equations of compressible heat-conducting flows with symmetric data and forces. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 567-587. doi: 10.3934/dcds.2014.34.567

[16]

Chunyou Sun, Daomin Cao, Jinqiao Duan. Non-autonomous wave dynamics with memory --- asymptotic regularity and uniform attractor. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 743-761. doi: 10.3934/dcdsb.2008.9.743

[17]

Cemil Tunç. Stability, boundedness and uniform boundedness of solutions of nonlinear delay differential equations. Conference Publications, 2011, 2011 (Special) : 1395-1403. doi: 10.3934/proc.2011.2011.1395

[18]

Yuri Bakhtin. Lyapunov exponents for stochastic differential equations with infinite memory and application to stochastic Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 697-709. doi: 10.3934/dcdsb.2006.6.697

[19]

Huiping Jin. Boundedness in a class of duffing equations with oscillating potentials via the twist theorem. Communications on Pure and Applied Analysis, 2011, 10 (1) : 179-192. doi: 10.3934/cpaa.2011.10.179

[20]

Alexei Ilyin, Kavita Patni, Sergey Zelik. Upper bounds for the attractor dimension of damped Navier-Stokes equations in $\mathbb R^2$. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 2085-2102. doi: 10.3934/dcds.2016.36.2085

2020 Impact Factor: 1.081

Metrics

  • PDF downloads (407)
  • HTML views (432)
  • Cited by (0)

[Back to Top]