• Previous Article
    Internal feedback stabilization for parabolic systems coupled in zero or first order terms
  • EECT Home
  • This Issue
  • Next Article
    On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay
doi: 10.3934/eect.2020039

Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces

1. 

Department of Mathematics, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam

2. 

Department of Mathematics, Hung Vuong University, Nong Trang, Viet Tri, Phu Tho, Vietnam

3. 

Department of Mathematics, Haiphong University, 171 Phan Dang Luu, Kien An, Haiphong, Vietnam

* Corresponding author: anhctmath@hnue.edu.vn

Dedicated to the memory of Professor Geneviève Raugel

Received  June 2019 Revised  December 2019 Published  March 2020

Fund Project: This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.02-2018.303

We consider a three-dimensional Navier-Stokes-Voigt equations with memory in lacking instantaneous kinematic viscosity, in presence of Ekman type damping and singularly oscillating external forces depending on a positive parameter $ \varepsilon $. Under suitable assumptions on the memory term and on the external forces, we prove the existence and the uniform (w.r.t. $ \varepsilon $) boundedness as well as the convergence as $ \varepsilon $ tends to $ 0 $ of uniform attractors $ \mathcal A ^\varepsilon $ of a family of processes associated to the model.

Citation: Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, doi: 10.3934/eect.2020039
References:
[1]

C. T. AnhD. T. P. Thanh and N. D. Toan, Averaging of nonclassical diffusion equations with memory and singularly oscillating forces, Z. Anal. Anwend., 37 (2018), 299-314.  doi: 10.4171/ZAA/1615.  Google Scholar

[2]

C. T. Anh and P. T. Trang, Pull-back attractors for three dimensional Navier-Stokes-Voigt equations in some unbounded domain, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 223-251.  doi: 10.1017/S0308210511001491.  Google Scholar

[3]

C. T. Anh and P. T. Trang, Decay rate of solutions to the 3D Navier-Stokes-Voigt equations in $H^m$ spaces, Appl. Math. Lett., 61 (2016), 1-7.  doi: 10.1016/j.aml.2016.04.015.  Google Scholar

[4]

C. T. Anh and P. T. Trang, On the regularity and convergence of solutions to the 3D Navier-Stokes-Voigt equations, Comput. Math. Appl., 73 (2017), 601-615.  doi: 10.1016/j.camwa.2016.12.023.  Google Scholar

[5]

S. Borini and V. Pata, Uniform attractors for a strongly damped wave equation with linear memory, Asymptot. Anal., 20 (1999), 263-277.   Google Scholar

[6]

F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, Springer, New York, 2013. doi: 10.1007/978-1-4614-5975-0.  Google Scholar

[7]

Y. CaoE. LunasinE. S. Titi and S. Edriss, Global well-posedness of the three-dimensional viscous and inviscid simplified Bardina turbulence models, Commun. Math. Sci., 4 (2006), 823-848.  doi: 10.4310/CMS.2006.v4.n4.a8.  Google Scholar

[8]

V. V. ChepyzhovM. Conti and V. Pata, Averaging of equations of viscoelasticity with singularly oscillating external forces, J. Math. Pures Appl., 108 (2017), 841-868.  doi: 10.1016/j.matpur.2017.05.007.  Google Scholar

[9]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society Colloquium Publications, Vol. 49, American Mathematical Society, Providence, RI, 2002.  Google Scholar

[10]

M. ContiE. M. Marchini and V. Pata, Nonclassical diffusion with memory, Math. Methods Appl. Sci., 38 (2015), 948-958.  doi: 10.1002/mma.3120.  Google Scholar

[11]

C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 37 (1970), 297-308.  doi: 10.1007/BF00251609.  Google Scholar

[12]

F. Di PlinioA. GiorginiV. Pata and R. Temam, Navier-Stokes-Voigt equations with memory in 3D lacking instantaneous kinematic viscosity, J. Nonlinear Sci., 28 (2018), 653-686.  doi: 10.1007/s00332-017-9422-1.  Google Scholar

[13]

S. GattiA. MiranvilleV. Pata and S. Zelik, Attractors for semilinear equations of viscoelasticity with very low dissipation, Rocky Mountain Journal of Mathematics, 38 (2008), 1117-1138.  doi: 10.1216/RMJ-2008-38-4-1117.  Google Scholar

[14]

J. García-LuengoP. Marín-Rubio and J. Real, Pullback attractors for three-dimensional non-autonomous Navier-Stokes-Voigt equations, Nonlinearity, 25 (2012), 905-930.  doi: 10.1088/0951-7715/25/4/905.  Google Scholar

[15]

C. G. Gal and T. Tachim-Medjo, A Navier-Stokes-Voigt model with memory, Math. Methods Appl. Sci., 36 (2013), 2507-2523.  doi: 10.1002/mma.2771.  Google Scholar

[16]

V. K. Kalantarov, Attractors for some nonlinear problems of mathematical physics, Zap. Nauchn. Sem. Lenigrad. Otdel. Math. Inst. Steklov. (LOMI), 152 (1986), 50-54.  doi: 10.1007/BF01094186.  Google Scholar

[17]

V. K. Kalantarov and E. S. Titi, Global attractor and determining modes for the 3D Navier-Stokes-Voight equations, Chin. Ann. Math. Ser. B, 30 (2009), 697-714.  doi: 10.1007/s11401-009-0205-3.  Google Scholar

[18]

J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, Vol. Ⅲ, Springer-Verlag, Berlin-Heidelberg, 1973.  Google Scholar

[19]

C. J. Niche, Decay characterization of solutions to Navier-Stokes-Voigt equations in terms of the initial datum, J. Differential Equations, 260 (2016), 4440-4453.  doi: 10.1016/j.jde.2015.11.014.  Google Scholar

[20]

A. P. Oskolkov, The uniqueness and solvability in the large of boundary value problems for the equations of motion of aqueous solutions of polymers, Zap. Nauchn. Sem. Leningrad. Otdel. Math. Inst. Steklov. (LOMI), 38 (1973), 98-136.   Google Scholar

[21]

V. Pata, Exponential stability in linear viscoelasticity with almost flat memory kernels, Commun. Pure Appl. Anal., 9 (2010), 721-730.  doi: 10.3934/cpaa.2010.9.721.  Google Scholar

[22]

V. Pata, Uniform estimates of Gronwall type, J. Math. Anal. Appl., 373 (2011), 264-270.  doi: 10.1016/j.jmaa.2010.07.006.  Google Scholar

[23]

V. Pata and A. Zucchi, Attractors for a damped hyperbolic equation with linear memory, Adv. Math. Sci. Appl., 11 (2001), 505-529.   Google Scholar

[24]

Y. QinX. Yang and X. Liu, Averaging of a 3D Navier-Stokes-Voight equation with singularly oscillating forces, Nonlinear Anal. Real World Appl., 13 (2012), 893-904.  doi: 10.1016/j.nonrwa.2011.08.025.  Google Scholar

[25]

R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, American Mathematical Society, Chelsea Publishing, Providence, RI, 2001. Google Scholar

[26]

X. G. YangL. Li and Y. Lu, Regularity of uniform attractor for 3D non-autonomous Navier-Stokes-Voigt equation, Appl. Math. Comput., 334 (2018), 11-29.  doi: 10.1016/j.amc.2018.03.096.  Google Scholar

[27]

G. Yue and C. K. Zhong, Attractors for autonomous and nonautonomous 3D Navier-Stokes-Voight equations, Discrete Contin. Dyn. Syst. Ser. B, 16 (2011), 985-1002.  doi: 10.3934/dcdsb.2011.16.985.  Google Scholar

[28]

C. Zhao and H. Zhu, Upper bound of decay rate for solutions to the Navier-Stokes-Voigt equations in $ \mathbb{R}^3$, Appl. Math. Comp., 256 (2015), 183-191.  doi: 10.1016/j.amc.2014.12.131.  Google Scholar

show all references

References:
[1]

C. T. AnhD. T. P. Thanh and N. D. Toan, Averaging of nonclassical diffusion equations with memory and singularly oscillating forces, Z. Anal. Anwend., 37 (2018), 299-314.  doi: 10.4171/ZAA/1615.  Google Scholar

[2]

C. T. Anh and P. T. Trang, Pull-back attractors for three dimensional Navier-Stokes-Voigt equations in some unbounded domain, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 223-251.  doi: 10.1017/S0308210511001491.  Google Scholar

[3]

C. T. Anh and P. T. Trang, Decay rate of solutions to the 3D Navier-Stokes-Voigt equations in $H^m$ spaces, Appl. Math. Lett., 61 (2016), 1-7.  doi: 10.1016/j.aml.2016.04.015.  Google Scholar

[4]

C. T. Anh and P. T. Trang, On the regularity and convergence of solutions to the 3D Navier-Stokes-Voigt equations, Comput. Math. Appl., 73 (2017), 601-615.  doi: 10.1016/j.camwa.2016.12.023.  Google Scholar

[5]

S. Borini and V. Pata, Uniform attractors for a strongly damped wave equation with linear memory, Asymptot. Anal., 20 (1999), 263-277.   Google Scholar

[6]

F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, Springer, New York, 2013. doi: 10.1007/978-1-4614-5975-0.  Google Scholar

[7]

Y. CaoE. LunasinE. S. Titi and S. Edriss, Global well-posedness of the three-dimensional viscous and inviscid simplified Bardina turbulence models, Commun. Math. Sci., 4 (2006), 823-848.  doi: 10.4310/CMS.2006.v4.n4.a8.  Google Scholar

[8]

V. V. ChepyzhovM. Conti and V. Pata, Averaging of equations of viscoelasticity with singularly oscillating external forces, J. Math. Pures Appl., 108 (2017), 841-868.  doi: 10.1016/j.matpur.2017.05.007.  Google Scholar

[9]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society Colloquium Publications, Vol. 49, American Mathematical Society, Providence, RI, 2002.  Google Scholar

[10]

M. ContiE. M. Marchini and V. Pata, Nonclassical diffusion with memory, Math. Methods Appl. Sci., 38 (2015), 948-958.  doi: 10.1002/mma.3120.  Google Scholar

[11]

C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 37 (1970), 297-308.  doi: 10.1007/BF00251609.  Google Scholar

[12]

F. Di PlinioA. GiorginiV. Pata and R. Temam, Navier-Stokes-Voigt equations with memory in 3D lacking instantaneous kinematic viscosity, J. Nonlinear Sci., 28 (2018), 653-686.  doi: 10.1007/s00332-017-9422-1.  Google Scholar

[13]

S. GattiA. MiranvilleV. Pata and S. Zelik, Attractors for semilinear equations of viscoelasticity with very low dissipation, Rocky Mountain Journal of Mathematics, 38 (2008), 1117-1138.  doi: 10.1216/RMJ-2008-38-4-1117.  Google Scholar

[14]

J. García-LuengoP. Marín-Rubio and J. Real, Pullback attractors for three-dimensional non-autonomous Navier-Stokes-Voigt equations, Nonlinearity, 25 (2012), 905-930.  doi: 10.1088/0951-7715/25/4/905.  Google Scholar

[15]

C. G. Gal and T. Tachim-Medjo, A Navier-Stokes-Voigt model with memory, Math. Methods Appl. Sci., 36 (2013), 2507-2523.  doi: 10.1002/mma.2771.  Google Scholar

[16]

V. K. Kalantarov, Attractors for some nonlinear problems of mathematical physics, Zap. Nauchn. Sem. Lenigrad. Otdel. Math. Inst. Steklov. (LOMI), 152 (1986), 50-54.  doi: 10.1007/BF01094186.  Google Scholar

[17]

V. K. Kalantarov and E. S. Titi, Global attractor and determining modes for the 3D Navier-Stokes-Voight equations, Chin. Ann. Math. Ser. B, 30 (2009), 697-714.  doi: 10.1007/s11401-009-0205-3.  Google Scholar

[18]

J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, Vol. Ⅲ, Springer-Verlag, Berlin-Heidelberg, 1973.  Google Scholar

[19]

C. J. Niche, Decay characterization of solutions to Navier-Stokes-Voigt equations in terms of the initial datum, J. Differential Equations, 260 (2016), 4440-4453.  doi: 10.1016/j.jde.2015.11.014.  Google Scholar

[20]

A. P. Oskolkov, The uniqueness and solvability in the large of boundary value problems for the equations of motion of aqueous solutions of polymers, Zap. Nauchn. Sem. Leningrad. Otdel. Math. Inst. Steklov. (LOMI), 38 (1973), 98-136.   Google Scholar

[21]

V. Pata, Exponential stability in linear viscoelasticity with almost flat memory kernels, Commun. Pure Appl. Anal., 9 (2010), 721-730.  doi: 10.3934/cpaa.2010.9.721.  Google Scholar

[22]

V. Pata, Uniform estimates of Gronwall type, J. Math. Anal. Appl., 373 (2011), 264-270.  doi: 10.1016/j.jmaa.2010.07.006.  Google Scholar

[23]

V. Pata and A. Zucchi, Attractors for a damped hyperbolic equation with linear memory, Adv. Math. Sci. Appl., 11 (2001), 505-529.   Google Scholar

[24]

Y. QinX. Yang and X. Liu, Averaging of a 3D Navier-Stokes-Voight equation with singularly oscillating forces, Nonlinear Anal. Real World Appl., 13 (2012), 893-904.  doi: 10.1016/j.nonrwa.2011.08.025.  Google Scholar

[25]

R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, American Mathematical Society, Chelsea Publishing, Providence, RI, 2001. Google Scholar

[26]

X. G. YangL. Li and Y. Lu, Regularity of uniform attractor for 3D non-autonomous Navier-Stokes-Voigt equation, Appl. Math. Comput., 334 (2018), 11-29.  doi: 10.1016/j.amc.2018.03.096.  Google Scholar

[27]

G. Yue and C. K. Zhong, Attractors for autonomous and nonautonomous 3D Navier-Stokes-Voight equations, Discrete Contin. Dyn. Syst. Ser. B, 16 (2011), 985-1002.  doi: 10.3934/dcdsb.2011.16.985.  Google Scholar

[28]

C. Zhao and H. Zhu, Upper bound of decay rate for solutions to the Navier-Stokes-Voigt equations in $ \mathbb{R}^3$, Appl. Math. Comp., 256 (2015), 183-191.  doi: 10.1016/j.amc.2014.12.131.  Google Scholar

[1]

Fabio Ramos, Edriss S. Titi. Invariant measures for the $3$D Navier-Stokes-Voigt equations and their Navier-Stokes limit. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 375-403. doi: 10.3934/dcds.2010.28.375

[2]

Luigi C. Berselli, Tae-Yeon Kim, Leo G. Rebholz. Analysis of a reduced-order approximate deconvolution model and its interpretation as a Navier-Stokes-Voigt regularization. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1027-1050. doi: 10.3934/dcdsb.2016.21.1027

[3]

Xinguang Yang, Baowei Feng, Thales Maier de Souza, Taige Wang. Long-time dynamics for a non-autonomous Navier-Stokes-Voigt equation in Lipschitz domains. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 363-386. doi: 10.3934/dcdsb.2018084

[4]

T. Tachim Medjo. Averaging of a 3D Lagrangian averaged Navier-Stokes-$\alpha$ model with oscillating external forces. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1281-1305. doi: 10.3934/cpaa.2011.10.1281

[5]

Wenjun Wang, Weike Wang. Decay rates of the compressible Navier-Stokes-Korteweg equations with potential forces. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 513-536. doi: 10.3934/dcds.2015.35.513

[6]

T. Tachim Medjo. A non-autonomous 3D Lagrangian averaged Navier-Stokes-$\alpha$ model with oscillating external force and its global attractor. Communications on Pure & Applied Analysis, 2011, 10 (2) : 415-433. doi: 10.3934/cpaa.2011.10.415

[7]

Alain Miranville, Xiaoming Wang. Upper bound on the dimension of the attractor for nonhomogeneous Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 1996, 2 (1) : 95-110. doi: 10.3934/dcds.1996.2.95

[8]

Songsong Lu, Hongqing Wu, Chengkui Zhong. Attractors for nonautonomous 2d Navier-Stokes equations with normal external forces. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 701-719. doi: 10.3934/dcds.2005.13.701

[9]

Vladimir V. Chepyzhov, E. S. Titi, Mark I. Vishik. On the convergence of solutions of the Leray-$\alpha $ model to the trajectory attractor of the 3D Navier-Stokes system. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 481-500. doi: 10.3934/dcds.2007.17.481

[10]

Roberta Bianchini, Roberto Natalini. Convergence of a vector-BGK approximation for the incompressible Navier-Stokes equations. Kinetic & Related Models, 2019, 12 (1) : 133-158. doi: 10.3934/krm.2019006

[11]

Zhilei Liang. Convergence rate of solutions to the contact discontinuity for the compressible Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (5) : 1907-1926. doi: 10.3934/cpaa.2013.12.1907

[12]

Adam Larios, Yuan Pei. Approximate continuous data assimilation of the 2D Navier-Stokes equations via the Voigt-regularization with observable data. Evolution Equations & Control Theory, 2020, 9 (3) : 733-751. doi: 10.3934/eect.2020031

[13]

Chunyou Sun, Daomin Cao, Jinqiao Duan. Non-autonomous wave dynamics with memory --- asymptotic regularity and uniform attractor. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 743-761. doi: 10.3934/dcdsb.2008.9.743

[14]

Fei Jiang, Song Jiang, Junpin Yin. Global weak solutions to the two-dimensional Navier-Stokes equations of compressible heat-conducting flows with symmetric data and forces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 567-587. doi: 10.3934/dcds.2014.34.567

[15]

Cemil Tunç. Stability, boundedness and uniform boundedness of solutions of nonlinear delay differential equations. Conference Publications, 2011, 2011 (Special) : 1395-1403. doi: 10.3934/proc.2011.2011.1395

[16]

Yuri Bakhtin. Lyapunov exponents for stochastic differential equations with infinite memory and application to stochastic Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 697-709. doi: 10.3934/dcdsb.2006.6.697

[17]

Huiping Jin. Boundedness in a class of duffing equations with oscillating potentials via the twist theorem. Communications on Pure & Applied Analysis, 2011, 10 (1) : 179-192. doi: 10.3934/cpaa.2011.10.179

[18]

Alexei Ilyin, Kavita Patni, Sergey Zelik. Upper bounds for the attractor dimension of damped Navier-Stokes equations in $\mathbb R^2$. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2085-2102. doi: 10.3934/dcds.2016.36.2085

[19]

Ciprian Foias, Ricardo Rosa, Roger Temam. Topological properties of the weak global attractor of the three-dimensional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1611-1631. doi: 10.3934/dcds.2010.27.1611

[20]

Yong Yang, Bingsheng Zhang. On the Kolmogorov entropy of the weak global attractor of 3D Navier-Stokes equations:Ⅰ. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2339-2350. doi: 10.3934/dcdsb.2017101

2019 Impact Factor: 0.953

Article outline

[Back to Top]