-
Previous Article
Differential inclusion problems with convolution and discontinuous nonlinearities
- EECT Home
- This Issue
-
Next Article
Relaxation of optimal control problems driven by nonlinear evolution equations
Measurable solutions for elliptic and evolution inclusions
249 Havenside Court, Grantsville, Utah 84029, USA |
This paper obtains existence of random variable solutions to elliptic and evolution inclusions. As a special case, surprising theorems are obtained for the quasistatic problems. A new existence theorem is also presented for evolution inclusions with set valued operators dependent on elements of a measurable space.
References:
[1] |
K. T. Andrews, K. L. Kuttler, J. Li and M. Shillor,
Measurable solutions for elliptic inclusions and quasistatic problems, Comput. Math. Appl., 77 (2019), 2869-2882.
doi: 10.1016/j.camwa.2018.09.025. |
[2] |
A. Bensoussan and R. Temam,
Équations stochastiques du type Navier-Stokes, J. Functional Analysis, 13 (1973), 195-222.
doi: 10.1016/0022-1236(73)90045-1. |
[3] |
H. Brezis,
Équations et inéquations non lin éaires dans les espaces vectoriels en dualité, Ann. Inst. Fourier (Grenoble), 18 (1968), 115-175.
doi: 10.5802/aif.280. |
[4] |
Z. Denkowski, S. Migórski and N. S. Papageorgiu, An Introduction to Nonlinear Analysis: Theory, Kluwer Academic Publishers, Boston, MA, 2003; Somerville, MA, (2002).
doi: 10.1007/978-1-4419-9158-4. |
[5] |
W. Han and M. Sofonea, Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity,
Vol. 30, Studies in Advanced Mathematics, American Mathematical Society, Providence, RI;
International Press, Somerville, MA, 2002. |
[6] |
S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis. Vol. I. Theory. Mathematics and its Applications, Vol. 419, Kluwer Academic Publishers, Dordrecht, 1997. |
[7] |
K. L. Kuttler, J. Li and M. Shillor, A general product measurability theorem with applications to variational inequalities, Electron. J. Differential Equations, 90 (2016), 12 pp. |
[8] |
K. L. Kuttler and M. Shillor, Product measurability with applications to a stochastic contact problem with friction, Electron. J. Differential Equations, 258 (2014), 29 pp. |
[9] |
K. Kuttler, Non-degenerate implicit evolution inclusions, Electron. J. Differential Equations, 34 (2000), 20 pp. |
[10] |
K. L. Kuttler and M. Shillor,
Set-valued pseudomonotone maps and degenerate evolution inclusions, Commun. Contemp. Math., 1 (1999), 87-123.
doi: 10.1142/S0219199799000067. |
[11] |
J.-L. Lions, Quelques Méthods de Résolution des Problèmes aux Limites Non Linéaires, Dunod; Gauthier-Villars, Paris, 1969. |
[12] |
S. Migórski, A. Ochal and M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems, Vol. 26, Advances in Mechanics and Mathematics, Springer, New York, 2013.
doi: 10.1007/978-1-4614-4232-5. |
[13] |
M. Shillor, M. Sofonea and J. J. Telega, Models and Analysis of Quasistatic Contact, Vol. 655, Lecture Notes in Physics, Springer, Berlin, Heidelberg, 2004.
doi: 10.1007/b99799. |
[14] |
M.Sofonea, W. Han and M. Shillor, Analysis and Approximation of Contact Problems with Adhesion or Damage, Vol. 276, Pure and Applied Mathematics, Chapman & Hall/CRC, Boca Raton, FL, 2006. |
show all references
References:
[1] |
K. T. Andrews, K. L. Kuttler, J. Li and M. Shillor,
Measurable solutions for elliptic inclusions and quasistatic problems, Comput. Math. Appl., 77 (2019), 2869-2882.
doi: 10.1016/j.camwa.2018.09.025. |
[2] |
A. Bensoussan and R. Temam,
Équations stochastiques du type Navier-Stokes, J. Functional Analysis, 13 (1973), 195-222.
doi: 10.1016/0022-1236(73)90045-1. |
[3] |
H. Brezis,
Équations et inéquations non lin éaires dans les espaces vectoriels en dualité, Ann. Inst. Fourier (Grenoble), 18 (1968), 115-175.
doi: 10.5802/aif.280. |
[4] |
Z. Denkowski, S. Migórski and N. S. Papageorgiu, An Introduction to Nonlinear Analysis: Theory, Kluwer Academic Publishers, Boston, MA, 2003; Somerville, MA, (2002).
doi: 10.1007/978-1-4419-9158-4. |
[5] |
W. Han and M. Sofonea, Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity,
Vol. 30, Studies in Advanced Mathematics, American Mathematical Society, Providence, RI;
International Press, Somerville, MA, 2002. |
[6] |
S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis. Vol. I. Theory. Mathematics and its Applications, Vol. 419, Kluwer Academic Publishers, Dordrecht, 1997. |
[7] |
K. L. Kuttler, J. Li and M. Shillor, A general product measurability theorem with applications to variational inequalities, Electron. J. Differential Equations, 90 (2016), 12 pp. |
[8] |
K. L. Kuttler and M. Shillor, Product measurability with applications to a stochastic contact problem with friction, Electron. J. Differential Equations, 258 (2014), 29 pp. |
[9] |
K. Kuttler, Non-degenerate implicit evolution inclusions, Electron. J. Differential Equations, 34 (2000), 20 pp. |
[10] |
K. L. Kuttler and M. Shillor,
Set-valued pseudomonotone maps and degenerate evolution inclusions, Commun. Contemp. Math., 1 (1999), 87-123.
doi: 10.1142/S0219199799000067. |
[11] |
J.-L. Lions, Quelques Méthods de Résolution des Problèmes aux Limites Non Linéaires, Dunod; Gauthier-Villars, Paris, 1969. |
[12] |
S. Migórski, A. Ochal and M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems, Vol. 26, Advances in Mechanics and Mathematics, Springer, New York, 2013.
doi: 10.1007/978-1-4614-4232-5. |
[13] |
M. Shillor, M. Sofonea and J. J. Telega, Models and Analysis of Quasistatic Contact, Vol. 655, Lecture Notes in Physics, Springer, Berlin, Heidelberg, 2004.
doi: 10.1007/b99799. |
[14] |
M.Sofonea, W. Han and M. Shillor, Analysis and Approximation of Contact Problems with Adhesion or Damage, Vol. 276, Pure and Applied Mathematics, Chapman & Hall/CRC, Boca Raton, FL, 2006. |
[1] |
Kevin T. Andrews, Kenneth L. Kuttler, Ji Li, Meir Shillor. Measurable solutions to general evolution inclusions. Evolution Equations and Control Theory, 2020, 9 (4) : 935-960. doi: 10.3934/eect.2020055 |
[2] |
Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu, Dušan D. Repovš. Periodic solutions for implicit evolution inclusions. Evolution Equations and Control Theory, 2019, 8 (3) : 621-631. doi: 10.3934/eect.2019029 |
[3] |
Noboru Okazawa, Kentarou Yoshii. Linear evolution equations with strongly measurable families and application to the Dirac equation. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 723-744. doi: 10.3934/dcdss.2011.4.723 |
[4] |
Yong Zhou, V. Vijayakumar, R. Murugesu. Controllability for fractional evolution inclusions without compactness. Evolution Equations and Control Theory, 2015, 4 (4) : 507-524. doi: 10.3934/eect.2015.4.507 |
[5] |
Leszek Gasiński, Nikolaos S. Papageorgiou. Periodic solutions for nonlinear nonmonotone evolution inclusions. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 219-238. doi: 10.3934/dcdsb.2018015 |
[6] |
Gabriel Ponce, Ali Tahzibi, Régis Varão. Minimal yet measurable foliations. Journal of Modern Dynamics, 2014, 8 (1) : 93-107. doi: 10.3934/jmd.2014.8.93 |
[7] |
Michael Blank. Recurrence for measurable semigroup actions. Discrete and Continuous Dynamical Systems, 2021, 41 (4) : 1649-1665. doi: 10.3934/dcds.2020335 |
[8] |
Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu. Periodic solutions for time-dependent subdifferential evolution inclusions. Evolution Equations and Control Theory, 2017, 6 (2) : 277-297. doi: 10.3934/eect.2017015 |
[9] |
Elimhan N. Mahmudov. Optimal control of evolution differential inclusions with polynomial linear differential operators. Evolution Equations and Control Theory, 2019, 8 (3) : 603-619. doi: 10.3934/eect.2019028 |
[10] |
Tao Yu. Measurable sensitivity via Furstenberg families. Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4543-4563. doi: 10.3934/dcds.2017194 |
[11] |
Thomas Lorenz. Mutational inclusions: Differential inclusions in metric spaces. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 629-654. doi: 10.3934/dcdsb.2010.14.629 |
[12] |
Marc Rauch. Variational principles for the topological pressure of measurable potentials. Discrete and Continuous Dynamical Systems - S, 2017, 10 (2) : 367-394. doi: 10.3934/dcdss.2017018 |
[13] |
Jongkeun Choi, Ki-Ahm Lee. The Green function for the Stokes system with measurable coefficients. Communications on Pure and Applied Analysis, 2017, 16 (6) : 1989-2022. doi: 10.3934/cpaa.2017098 |
[14] |
Doyoon Kim, Kyeong-Hun Kim, Kijung Lee. Parabolic Systems with measurable coefficients in weighted Sobolev spaces. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022062 |
[15] |
Abdelkader Boucherif. Nonlocal problems for parabolic inclusions. Conference Publications, 2009, 2009 (Special) : 82-91. doi: 10.3934/proc.2009.2009.82 |
[16] |
Mariusz Michta. On solutions to stochastic differential inclusions. Conference Publications, 2003, 2003 (Special) : 618-622. doi: 10.3934/proc.2003.2003.618 |
[17] |
Yajing Li, Yejuan Wang. The existence and exponential behavior of solutions to time fractional stochastic delay evolution inclusions with nonlinear multiplicative noise and fractional noise. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2665-2697. doi: 10.3934/dcdsb.2020027 |
[18] |
Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations and Control Theory, 2021, 10 (1) : 37-59. doi: 10.3934/eect.2020051 |
[19] |
Elimhan N. Mahmudov. Optimal control of Sturm-Liouville type evolution differential inclusions with endpoint constraints. Journal of Industrial and Management Optimization, 2020, 16 (5) : 2503-2520. doi: 10.3934/jimo.2019066 |
[20] |
Michel H. Geoffroy, Alain Piétrus. A fast iterative scheme for variational inclusions. Conference Publications, 2009, 2009 (Special) : 250-258. doi: 10.3934/proc.2009.2009.250 |
2020 Impact Factor: 1.081
Tools
Metrics
Other articles
by authors
[Back to Top]