doi: 10.3934/eect.2020042

A nonsmooth approach for the modelling of a mechanical rotary drilling system with friction

1. 

Laboratoire XLIM, Université de Limoges, 87060 Limoges, France

2. 

Laboratoire PIMENT, Université de La Réunion, 97400 Saint-Denis, France

* Corresponding author: Samir Adly

Dedicated to 70th birthday of Professor Meir Shillor.

Received  August 2019 Revised  November 2019 Published  March 2020

In this paper, we show how the approach of nonsmooth dynamical systems can be used to develop a suitable method for the modelling of a rotary oil drilling system with friction. We study different kinds of frictions and analyse the mathematical properties of the involved dynamical systems. We show that using a general Stribeck model for the frictional contact, we can formulate the rotary drilling system as a well-posed evolution variational inequality. Several numerical simulations are also given to illustrate both the model and the theoretical results.

Citation: Samir Adly, Daniel Goeleven. A nonsmooth approach for the modelling of a mechanical rotary drilling system with friction. Evolution Equations & Control Theory, doi: 10.3934/eect.2020042
References:
[1]

S. Adly and D. Goeleven, A stability theory for second-order nonsmooth dynamical systems with applications to friction problems, J. Math. Pures Appl., 83 (2004), 17-51.  doi: 10.1016/S0021-7824(03)00071-0.  Google Scholar

[2]

S. Adly, A Variational Approach to Nonsmooth Dynamics. Applications in Unilateral Mechanics and Electronics, SpringerBriefs in Mathematics, Springer, Cham, 2017. doi: 10.1007/978-3-319-68658-5.  Google Scholar

[3]

L. X. Ahn, Dynamics of Mechanical Systems with Coulomb Friction, Foundations of Engineering Mechanics, Springer-Verlag, Berlin, 2003. doi: 10.1007/978-3-540-36516-7.  Google Scholar

[4]

G. Amontons, On the Resistance Originating in Machines, Proceedings of the French Royal Academy of Sciences, 1699, 206–222. Google Scholar

[5]

S. AndersonA. Söderberg and S. Björklund, Friction models for sliding dry, boundary and mixed lubricated contacts, Tribology International, 40 (2007), 580-587.  doi: 10.1016/j.triboint.2005.11.014.  Google Scholar

[6]

B. Armstrong-Hélouvry, Control of Machines with Friction, Kluwer Academic Publishers, Springer, Boston, MA, 1991. doi: 10.1007/978-1-4615-3972-8.  Google Scholar

[7]

K. J. Ǻström, Control of systems with friction, Proceedings of the Fourth International Conferences on Motion and Vibration Control, (1998), 25–32. Google Scholar

[8]

P. A. Bliman and M. Sorine, Easy-to-use Realistic Dry Friction Models for Automatic Control, Proc. of 3rd European Control Conference, Rome, Italy, 1995, 3788–3794. Google Scholar

[9]

L. C. Bo and D. Pavelescu, The friction-speed relation and its influence on the critical velocity of stick-slip motion, Wear, 82 (1982), 277-289.  doi: 10.1016/0043-1648(82)90223-X.  Google Scholar

[10]

H. Brézis, Problémes unilatéraux, J. Math. Pures Appl., 51 (1972), 1-168.   Google Scholar

[11]

C. A. Coulomb, Théorie des machines simples, en ayant egard au frottement de leurs parties, et a la roideur dews cordages, Mem. Math Phys., Paris, (1785), 161–332. Google Scholar

[12]

L. da Vinci, The Notebooks of Leonardo Da Vinci (Ed. J. P. Richter), Dover Pub. Inc., New York, 1970. Google Scholar

[13]

A. Dontchev and F. Lempio, Difference methods for differential inclusions: A survey, SIAM Rev., 34 (1992), 263-294.  doi: 10.1137/1034050.  Google Scholar

[14] D. Goeleven, Complementarity and Variational Inequalities in Electronics, Academic Press, London, 2017.   Google Scholar
[15]

M. Jean and J. J. Moreau, Unilateraly and dry friction in the dynamics of rigid body collections, Proc. Contact Mechanics Int. Symp., (1992), 31–48. Google Scholar

[16]

D. P. Hess and A. Soom, Friction at a Lubricated Line Contact Operating at Oscillating Sliding Velocities, Journal of Tribology, 112 (1990), 147-152.  doi: 10.1115/1.2920220.  Google Scholar

[17]

D. Karnopp, Computer simulation of stick-slip friction in mechanical dynamic systems, J. Dyn. Sys. Meas. Control., 107 (1985), 100-103.  doi: 10.1115/1.3140698.  Google Scholar

[18]

T. Kato, Accretive operators and nonlinear evolutions equations in banach spaces, Nonlinear Functional Analysis, 18 (1970), 138-161.   Google Scholar

[19]

M. Kidouche and R. Riane, On the design of proportional integral observer for a rotary drilling system, 8th CHAOS Conference Proceedings, Henri Poincaré Institute, (2015), 1–12. Google Scholar

[20]

R. I. Lein and H. Nijmeijer, Dynamics and Bifurcations of Non-smooth Mechanical Systems, Vol. 18, Lecture Notes in Applied and Computational Mechanics, Springer-Verlag, Berlin, 2004. doi: 10.1007/978-3-540-44398-8.  Google Scholar

[21]

Y. F. LiuJ. LiZ. M. ZhangX. H. Hu and W. J. Zhang, Experimental comparison of five friction models on the same test-bed of the micro stick-slip motion system, Mech. Sci., 6 (2015), 15-28.  doi: 10.5194/ms-6-15-2015.  Google Scholar

[22] S. E. Lyshevski, Electromechanical Systems and Devices, CRC Press, Boca Raton, 2008.  doi: 10.1201/9781420069754.  Google Scholar
[23]

J. J. Moreau, La notion du surpotentiel et les liaisons unilatérales on elastostatique, C. R. Acad. Sci. Paris Ser. A-B, 267 (1968), A954–A957.  Google Scholar

[24]

J. J. Moreau, Dynamique des Systémes à Liaisons unilatérales avec Frottement sec Éventuel; Essais Numériques, Tech. Rep., Montpellier, France, 1986. Google Scholar

[25]

J. J. Moreau and P. D. Panagiotopoulos, Non-Smooth Mechanics and Applications, Vol. 302, CISM International Centre for Mechanical Sciences. Courses and Lectures, Springer-Verlag, Vienna, 1988. doi: 10.1007/978-3-7091-2624-0.  Google Scholar

[26]

A. J. Morin, New friction experiments carried out at Metz in 1831-1833, Proceedings of the French Royal Academy of Sciences, 4 (1833), 1-128.   Google Scholar

[27]

H. Olsson, Control Systems with Friction, Department of Automatic Control, Lund Institute of Technology (LTH), Lund, 1996. Google Scholar

[28]

H. OlssonK. J. AströmC. Canudas de WitM. Göfvert and P. Lischinsky, Friction models and friction compensation, European Journal of Control, 4 (1998), 176-195.   Google Scholar

[29]

P. D. Panagiotopoulos, Nonconvex superpotentials in the sense of F. H. Clarke and applications, Mech. Res. Comm., 8 (1981), 335-340.  doi: 10.1016/0093-6413(81)90064-1.  Google Scholar

[30]

P. D. Panagiotopoulos, Hemivariational Inequalities. Applications in Mechanics and Engineering, Springer-Verlag, Berlin, 1993. doi: 10.1007/978-3-642-51677-1.  Google Scholar

[31]

D. Pascali and S. Sburlan, Nonlinear Mappings of Monotone Type, Sijthoff and Noordhoff International Publishers, Alphen aan den Rijn, 1978.  Google Scholar

[32]

V. L. Popov, Contact Mechanics and Friction. Physical Principles and Applications, Springer, Berlin, Heidelberg, 2010. Google Scholar

[33]

M. Shillor, M. Sofonea and J. J. Telega, Models and Analysis of Quasistatic Contact. Variational Methods, Springer-Verlag, 2004. Google Scholar

[34]

O. Reynolds, On the theory of lubrication and its application to Mr. Beauchamp Tower's experiments, including an experimental determination of the viscosity of olive oil, Phil. Trans. R. Soc., 177 (1886), 157-234.   Google Scholar

[35]

R. Stribeck, Die Wesentlichen Eigenschaften der Gleit-und Rollenlager, Springer, 1903. Google Scholar

[36]

E. Zeidler, Nonlinear Functional Analysis and its Applications, Springer-Verlag, New York, 1990. doi: 10.1007/978-1-4612-0985-0.  Google Scholar

show all references

References:
[1]

S. Adly and D. Goeleven, A stability theory for second-order nonsmooth dynamical systems with applications to friction problems, J. Math. Pures Appl., 83 (2004), 17-51.  doi: 10.1016/S0021-7824(03)00071-0.  Google Scholar

[2]

S. Adly, A Variational Approach to Nonsmooth Dynamics. Applications in Unilateral Mechanics and Electronics, SpringerBriefs in Mathematics, Springer, Cham, 2017. doi: 10.1007/978-3-319-68658-5.  Google Scholar

[3]

L. X. Ahn, Dynamics of Mechanical Systems with Coulomb Friction, Foundations of Engineering Mechanics, Springer-Verlag, Berlin, 2003. doi: 10.1007/978-3-540-36516-7.  Google Scholar

[4]

G. Amontons, On the Resistance Originating in Machines, Proceedings of the French Royal Academy of Sciences, 1699, 206–222. Google Scholar

[5]

S. AndersonA. Söderberg and S. Björklund, Friction models for sliding dry, boundary and mixed lubricated contacts, Tribology International, 40 (2007), 580-587.  doi: 10.1016/j.triboint.2005.11.014.  Google Scholar

[6]

B. Armstrong-Hélouvry, Control of Machines with Friction, Kluwer Academic Publishers, Springer, Boston, MA, 1991. doi: 10.1007/978-1-4615-3972-8.  Google Scholar

[7]

K. J. Ǻström, Control of systems with friction, Proceedings of the Fourth International Conferences on Motion and Vibration Control, (1998), 25–32. Google Scholar

[8]

P. A. Bliman and M. Sorine, Easy-to-use Realistic Dry Friction Models for Automatic Control, Proc. of 3rd European Control Conference, Rome, Italy, 1995, 3788–3794. Google Scholar

[9]

L. C. Bo and D. Pavelescu, The friction-speed relation and its influence on the critical velocity of stick-slip motion, Wear, 82 (1982), 277-289.  doi: 10.1016/0043-1648(82)90223-X.  Google Scholar

[10]

H. Brézis, Problémes unilatéraux, J. Math. Pures Appl., 51 (1972), 1-168.   Google Scholar

[11]

C. A. Coulomb, Théorie des machines simples, en ayant egard au frottement de leurs parties, et a la roideur dews cordages, Mem. Math Phys., Paris, (1785), 161–332. Google Scholar

[12]

L. da Vinci, The Notebooks of Leonardo Da Vinci (Ed. J. P. Richter), Dover Pub. Inc., New York, 1970. Google Scholar

[13]

A. Dontchev and F. Lempio, Difference methods for differential inclusions: A survey, SIAM Rev., 34 (1992), 263-294.  doi: 10.1137/1034050.  Google Scholar

[14] D. Goeleven, Complementarity and Variational Inequalities in Electronics, Academic Press, London, 2017.   Google Scholar
[15]

M. Jean and J. J. Moreau, Unilateraly and dry friction in the dynamics of rigid body collections, Proc. Contact Mechanics Int. Symp., (1992), 31–48. Google Scholar

[16]

D. P. Hess and A. Soom, Friction at a Lubricated Line Contact Operating at Oscillating Sliding Velocities, Journal of Tribology, 112 (1990), 147-152.  doi: 10.1115/1.2920220.  Google Scholar

[17]

D. Karnopp, Computer simulation of stick-slip friction in mechanical dynamic systems, J. Dyn. Sys. Meas. Control., 107 (1985), 100-103.  doi: 10.1115/1.3140698.  Google Scholar

[18]

T. Kato, Accretive operators and nonlinear evolutions equations in banach spaces, Nonlinear Functional Analysis, 18 (1970), 138-161.   Google Scholar

[19]

M. Kidouche and R. Riane, On the design of proportional integral observer for a rotary drilling system, 8th CHAOS Conference Proceedings, Henri Poincaré Institute, (2015), 1–12. Google Scholar

[20]

R. I. Lein and H. Nijmeijer, Dynamics and Bifurcations of Non-smooth Mechanical Systems, Vol. 18, Lecture Notes in Applied and Computational Mechanics, Springer-Verlag, Berlin, 2004. doi: 10.1007/978-3-540-44398-8.  Google Scholar

[21]

Y. F. LiuJ. LiZ. M. ZhangX. H. Hu and W. J. Zhang, Experimental comparison of five friction models on the same test-bed of the micro stick-slip motion system, Mech. Sci., 6 (2015), 15-28.  doi: 10.5194/ms-6-15-2015.  Google Scholar

[22] S. E. Lyshevski, Electromechanical Systems and Devices, CRC Press, Boca Raton, 2008.  doi: 10.1201/9781420069754.  Google Scholar
[23]

J. J. Moreau, La notion du surpotentiel et les liaisons unilatérales on elastostatique, C. R. Acad. Sci. Paris Ser. A-B, 267 (1968), A954–A957.  Google Scholar

[24]

J. J. Moreau, Dynamique des Systémes à Liaisons unilatérales avec Frottement sec Éventuel; Essais Numériques, Tech. Rep., Montpellier, France, 1986. Google Scholar

[25]

J. J. Moreau and P. D. Panagiotopoulos, Non-Smooth Mechanics and Applications, Vol. 302, CISM International Centre for Mechanical Sciences. Courses and Lectures, Springer-Verlag, Vienna, 1988. doi: 10.1007/978-3-7091-2624-0.  Google Scholar

[26]

A. J. Morin, New friction experiments carried out at Metz in 1831-1833, Proceedings of the French Royal Academy of Sciences, 4 (1833), 1-128.   Google Scholar

[27]

H. Olsson, Control Systems with Friction, Department of Automatic Control, Lund Institute of Technology (LTH), Lund, 1996. Google Scholar

[28]

H. OlssonK. J. AströmC. Canudas de WitM. Göfvert and P. Lischinsky, Friction models and friction compensation, European Journal of Control, 4 (1998), 176-195.   Google Scholar

[29]

P. D. Panagiotopoulos, Nonconvex superpotentials in the sense of F. H. Clarke and applications, Mech. Res. Comm., 8 (1981), 335-340.  doi: 10.1016/0093-6413(81)90064-1.  Google Scholar

[30]

P. D. Panagiotopoulos, Hemivariational Inequalities. Applications in Mechanics and Engineering, Springer-Verlag, Berlin, 1993. doi: 10.1007/978-3-642-51677-1.  Google Scholar

[31]

D. Pascali and S. Sburlan, Nonlinear Mappings of Monotone Type, Sijthoff and Noordhoff International Publishers, Alphen aan den Rijn, 1978.  Google Scholar

[32]

V. L. Popov, Contact Mechanics and Friction. Physical Principles and Applications, Springer, Berlin, Heidelberg, 2010. Google Scholar

[33]

M. Shillor, M. Sofonea and J. J. Telega, Models and Analysis of Quasistatic Contact. Variational Methods, Springer-Verlag, 2004. Google Scholar

[34]

O. Reynolds, On the theory of lubrication and its application to Mr. Beauchamp Tower's experiments, including an experimental determination of the viscosity of olive oil, Phil. Trans. R. Soc., 177 (1886), 157-234.   Google Scholar

[35]

R. Stribeck, Die Wesentlichen Eigenschaften der Gleit-und Rollenlager, Springer, 1903. Google Scholar

[36]

E. Zeidler, Nonlinear Functional Analysis and its Applications, Springer-Verlag, New York, 1990. doi: 10.1007/978-1-4612-0985-0.  Google Scholar

Figure 1.  General friction model as in (6) and the function $ \varphi $ as in (7)
Figure 2.  Coulomb friction model
Figure 3.  Stribeck friction model
Figure 4.  Stiction model
Figure 5.  Consistent stiction model as in (6) with $ \varphi_+(x) = F_C +(F_S-F_C)e^{-\frac{x}{v_s}} $
Figure 6.  Oil drilling rig illustration-1. Mud tank, 2. Shale shakers, 3. Suction line (mud pump), 4. Mud pump, 5. Motor or power source, 6. Vibrating hose, 7. Draw-works (winch), 8. Standpipe 9. Kelly hose, 10. Goose-neck, 11. Traveling block, 12. Drill line, 13. Crown block 14. Derrick-Author: Tosaka-Attribution 3.0 Unported (CC BY 3.0) - https://creativecommons.org/licenses/by/3.0/deed.en (https://commons.wikimedia.org/wiki/File:Oil_Rig_NT.PNG)
Figure 7.  Rotary drilling system
Figure 8.  Graph of the function $ V(t) $ in Table 3
Figure 9.  Numerical solution of the evolution variational inequality (19) with the initial conditions given in Table 5
Figure 10.  Numerical solution of the evolution variational inequality (23) with the initial conditions given in Table 5
Table 1.  Parameters
$ J_1 $ $ 999.35 \; (kg.m^2) $
$ J_2 $ $ 127.27\; (kg.m^2) $
$ d_1 $ $ 51.38\; (N.m.s/rad) $
$ d_2 $ $ 39.79 \;(N.m.s) $
$ k $ $ 481.29 \; (N.m/rad) $
$ R $ $ 0.01 \;(\Omega) $
$ L $ $ 0.005 \;(H) $
$ K_M $ $ 6 \;(N.m/A) $
$ N $ $ 7.20 $
$ K = NK_M $ $ 43.20 \;(N.m/A) $
$ E $ $ 130 \;(MJ/m^3) $
$ \delta $ $ 0.64 \times 10^{-3}\;(m/rad) $
$ R_B $ $ 0.10 \; m $
$ \mu_C $ $ 0.4 $
$ \mu_S $ $ 0.6 $
$ J_1 $ $ 999.35 \; (kg.m^2) $
$ J_2 $ $ 127.27\; (kg.m^2) $
$ d_1 $ $ 51.38\; (N.m.s/rad) $
$ d_2 $ $ 39.79 \;(N.m.s) $
$ k $ $ 481.29 \; (N.m/rad) $
$ R $ $ 0.01 \;(\Omega) $
$ L $ $ 0.005 \;(H) $
$ K_M $ $ 6 \;(N.m/A) $
$ N $ $ 7.20 $
$ K = NK_M $ $ 43.20 \;(N.m/A) $
$ E $ $ 130 \;(MJ/m^3) $
$ \delta $ $ 0.64 \times 10^{-3}\;(m/rad) $
$ R_B $ $ 0.10 \; m $
$ \mu_C $ $ 0.4 $
$ \mu_S $ $ 0.6 $
Table 2.  Empirical coefficients
$ \sigma $ $ 1 $
$ \omega_s $ $ 10^{-3} $ $ (rad/s) $
$ \sigma $ $ 1 $
$ \omega_s $ $ 10^{-3} $ $ (rad/s) $
Table 3.  Motor voltage. Augmentation of DC motor voltage from 125 (V) to 150 (V) at $ t = 30 \; (s) $ (see Figure 8)
Table 4.  Weight-On-Bit and corresponding friction torques
$ W $ $ 15 000 \; (kg) $
$ T_C = \frac{1}{2}\mu_CR_BW $ $ 300 \; (kg.m) $
$ T_S = \frac{1}{2}\mu_SR_BW $ $ 450 \; (kg.m) $
$ T_{{\rm CUT}} = \frac{1}{2} \delta R_B^2E $ $ 4.16\, 10^{-4}\; (MJ/rad) $
$ W $ $ 15 000 \; (kg) $
$ T_C = \frac{1}{2}\mu_CR_BW $ $ 300 \; (kg.m) $
$ T_S = \frac{1}{2}\mu_SR_BW $ $ 450 \; (kg.m) $
$ T_{{\rm CUT}} = \frac{1}{2} \delta R_B^2E $ $ 4.16\, 10^{-4}\; (MJ/rad) $
Table 5.  Initial conditions for problems (19) and (23)
[1]

Leszek Gasiński, Piotr Kalita. On dynamic contact problem with generalized Coulomb friction, normal compliance and damage. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020049

[2]

Stanislaw Migórski. A class of hemivariational inequalities for electroelastic contact problems with slip dependent friction. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 117-126. doi: 10.3934/dcdss.2008.1.117

[3]

Alain Léger, Elaine Pratt. On the equilibria and qualitative dynamics of a forced nonlinear oscillator with contact and friction. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 501-527. doi: 10.3934/dcdss.2016009

[4]

Hong Cai, Zhong Tan, Qiuju Xu. Time periodic solutions to Navier-Stokes-Korteweg system with friction. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 611-629. doi: 10.3934/dcds.2016.36.611

[5]

Qi Wang, Huilian Peng, Fangfang Zhuang. A constraint-stabilized method for multibody dynamics with friction-affected translational joints based on HLCP. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 589-605. doi: 10.3934/dcdsb.2011.16.589

[6]

Robert S. Strichartz. A fractal quantum mechanical model with Coulomb potential. Communications on Pure & Applied Analysis, 2009, 8 (2) : 743-755. doi: 10.3934/cpaa.2009.8.743

[7]

Géry de Saxcé. Modelling contact with isotropic and anisotropic friction by the bipotential approach. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 409-425. doi: 10.3934/dcdss.2016004

[8]

Liejune Shiau, Roland Glowinski. Operator splitting method for friction constrained dynamical systems. Conference Publications, 2005, 2005 (Special) : 806-815. doi: 10.3934/proc.2005.2005.806

[9]

Ivan Polekhin. On motions without falling of an inverted pendulum with dry friction. Journal of Geometric Mechanics, 2018, 10 (4) : 411-417. doi: 10.3934/jgm.2018015

[10]

Khalid Addi, Samir Adly, Hassan Saoud. Finite-time Lyapunov stability analysis of evolution variational inequalities. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1023-1038. doi: 10.3934/dcds.2011.31.1023

[11]

Haisen Zhang. Clarke directional derivatives of regularized gap functions for nonsmooth quasi-variational inequalities. Mathematical Control & Related Fields, 2014, 4 (3) : 365-379. doi: 10.3934/mcrf.2014.4.365

[12]

Martin Gugat, Markus Dick. Time-delayed boundary feedback stabilization of the isothermal Euler equations with friction. Mathematical Control & Related Fields, 2011, 1 (4) : 469-491. doi: 10.3934/mcrf.2011.1.469

[13]

Amina Amassad, Mircea Sofonea. Analysis of a quasistatic viscoplastic problem involving tresca friction law. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 55-72. doi: 10.3934/dcds.1998.4.55

[14]

Stanislaw Migórski, Anna Ochal, Mircea Sofonea. Analysis of a dynamic Elastic-Viscoplastic contact problem with friction. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 887-902. doi: 10.3934/dcdsb.2008.10.887

[15]

Zhong Tan, Xu Zhang, Huaqiao Wang. Asymptotic behavior of Navier-Stokes-Korteweg with friction in $\mathbb{R}^{3}$. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2243-2259. doi: 10.3934/dcds.2014.34.2243

[16]

Marius Cocou. A dynamic viscoelastic problem with friction and rate-depending contact interactions. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020060

[17]

Samir Adly, Tahar Haddad. On evolution quasi-variational inequalities and implicit state-dependent sweeping processes. Discrete & Continuous Dynamical Systems - S, 2020, 13 (6) : 1791-1801. doi: 10.3934/dcdss.2020105

[18]

Sandra Ricardo, Witold Respondek. When is a control system mechanical?. Journal of Geometric Mechanics, 2010, 2 (3) : 265-302. doi: 10.3934/jgm.2010.2.265

[19]

Renjun Duan, Shuangqian Liu. Cauchy problem on the Vlasov-Fokker-Planck equation coupled with the compressible Euler equations through the friction force. Kinetic & Related Models, 2013, 6 (4) : 687-700. doi: 10.3934/krm.2013.6.687

[20]

Markus Dick, Martin Gugat, Günter Leugering. A strict $H^1$-Lyapunov function and feedback stabilization for the isothermal Euler equations with friction. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 225-244. doi: 10.3934/naco.2011.1.225

2019 Impact Factor: 0.953

Article outline

Figures and Tables

[Back to Top]