December  2020, 9(4): 915-934. doi: 10.3934/eect.2020042

A nonsmooth approach for the modelling of a mechanical rotary drilling system with friction

1. 

Laboratoire XLIM, Université de Limoges, 87060 Limoges, France

2. 

Laboratoire PIMENT, Université de La Réunion, 97400 Saint-Denis, France

* Corresponding author: Samir Adly

Dedicated to 70th birthday of Professor Meir Shillor.

Received  August 2019 Revised  November 2019 Published  March 2020

In this paper, we show how the approach of nonsmooth dynamical systems can be used to develop a suitable method for the modelling of a rotary oil drilling system with friction. We study different kinds of frictions and analyse the mathematical properties of the involved dynamical systems. We show that using a general Stribeck model for the frictional contact, we can formulate the rotary drilling system as a well-posed evolution variational inequality. Several numerical simulations are also given to illustrate both the model and the theoretical results.

Citation: Samir Adly, Daniel Goeleven. A nonsmooth approach for the modelling of a mechanical rotary drilling system with friction. Evolution Equations & Control Theory, 2020, 9 (4) : 915-934. doi: 10.3934/eect.2020042
References:
[1]

S. Adly and D. Goeleven, A stability theory for second-order nonsmooth dynamical systems with applications to friction problems, J. Math. Pures Appl., 83 (2004), 17-51.  doi: 10.1016/S0021-7824(03)00071-0.  Google Scholar

[2]

S. Adly, A Variational Approach to Nonsmooth Dynamics. Applications in Unilateral Mechanics and Electronics, SpringerBriefs in Mathematics, Springer, Cham, 2017. doi: 10.1007/978-3-319-68658-5.  Google Scholar

[3]

L. X. Ahn, Dynamics of Mechanical Systems with Coulomb Friction, Foundations of Engineering Mechanics, Springer-Verlag, Berlin, 2003. doi: 10.1007/978-3-540-36516-7.  Google Scholar

[4]

G. Amontons, On the Resistance Originating in Machines, Proceedings of the French Royal Academy of Sciences, 1699, 206–222. Google Scholar

[5]

S. AndersonA. Söderberg and S. Björklund, Friction models for sliding dry, boundary and mixed lubricated contacts, Tribology International, 40 (2007), 580-587.  doi: 10.1016/j.triboint.2005.11.014.  Google Scholar

[6]

B. Armstrong-Hélouvry, Control of Machines with Friction, Kluwer Academic Publishers, Springer, Boston, MA, 1991. doi: 10.1007/978-1-4615-3972-8.  Google Scholar

[7]

K. J. Ǻström, Control of systems with friction, Proceedings of the Fourth International Conferences on Motion and Vibration Control, (1998), 25–32. Google Scholar

[8]

P. A. Bliman and M. Sorine, Easy-to-use Realistic Dry Friction Models for Automatic Control, Proc. of 3rd European Control Conference, Rome, Italy, 1995, 3788–3794. Google Scholar

[9]

L. C. Bo and D. Pavelescu, The friction-speed relation and its influence on the critical velocity of stick-slip motion, Wear, 82 (1982), 277-289.  doi: 10.1016/0043-1648(82)90223-X.  Google Scholar

[10]

H. Brézis, Problémes unilatéraux, J. Math. Pures Appl., 51 (1972), 1-168.   Google Scholar

[11]

C. A. Coulomb, Théorie des machines simples, en ayant egard au frottement de leurs parties, et a la roideur dews cordages, Mem. Math Phys., Paris, (1785), 161–332. Google Scholar

[12]

L. da Vinci, The Notebooks of Leonardo Da Vinci (Ed. J. P. Richter), Dover Pub. Inc., New York, 1970. Google Scholar

[13]

A. Dontchev and F. Lempio, Difference methods for differential inclusions: A survey, SIAM Rev., 34 (1992), 263-294.  doi: 10.1137/1034050.  Google Scholar

[14] D. Goeleven, Complementarity and Variational Inequalities in Electronics, Academic Press, London, 2017.   Google Scholar
[15]

M. Jean and J. J. Moreau, Unilateraly and dry friction in the dynamics of rigid body collections, Proc. Contact Mechanics Int. Symp., (1992), 31–48. Google Scholar

[16]

D. P. Hess and A. Soom, Friction at a Lubricated Line Contact Operating at Oscillating Sliding Velocities, Journal of Tribology, 112 (1990), 147-152.  doi: 10.1115/1.2920220.  Google Scholar

[17]

D. Karnopp, Computer simulation of stick-slip friction in mechanical dynamic systems, J. Dyn. Sys. Meas. Control., 107 (1985), 100-103.  doi: 10.1115/1.3140698.  Google Scholar

[18]

T. Kato, Accretive operators and nonlinear evolutions equations in banach spaces, Nonlinear Functional Analysis, 18 (1970), 138-161.   Google Scholar

[19]

M. Kidouche and R. Riane, On the design of proportional integral observer for a rotary drilling system, 8th CHAOS Conference Proceedings, Henri Poincaré Institute, (2015), 1–12. Google Scholar

[20]

R. I. Lein and H. Nijmeijer, Dynamics and Bifurcations of Non-smooth Mechanical Systems, Vol. 18, Lecture Notes in Applied and Computational Mechanics, Springer-Verlag, Berlin, 2004. doi: 10.1007/978-3-540-44398-8.  Google Scholar

[21]

Y. F. LiuJ. LiZ. M. ZhangX. H. Hu and W. J. Zhang, Experimental comparison of five friction models on the same test-bed of the micro stick-slip motion system, Mech. Sci., 6 (2015), 15-28.  doi: 10.5194/ms-6-15-2015.  Google Scholar

[22] S. E. Lyshevski, Electromechanical Systems and Devices, CRC Press, Boca Raton, 2008.  doi: 10.1201/9781420069754.  Google Scholar
[23]

J. J. Moreau, La notion du surpotentiel et les liaisons unilatérales on elastostatique, C. R. Acad. Sci. Paris Ser. A-B, 267 (1968), A954–A957.  Google Scholar

[24]

J. J. Moreau, Dynamique des Systémes à Liaisons unilatérales avec Frottement sec Éventuel; Essais Numériques, Tech. Rep., Montpellier, France, 1986. Google Scholar

[25]

J. J. Moreau and P. D. Panagiotopoulos, Non-Smooth Mechanics and Applications, Vol. 302, CISM International Centre for Mechanical Sciences. Courses and Lectures, Springer-Verlag, Vienna, 1988. doi: 10.1007/978-3-7091-2624-0.  Google Scholar

[26]

A. J. Morin, New friction experiments carried out at Metz in 1831-1833, Proceedings of the French Royal Academy of Sciences, 4 (1833), 1-128.   Google Scholar

[27]

H. Olsson, Control Systems with Friction, Department of Automatic Control, Lund Institute of Technology (LTH), Lund, 1996. Google Scholar

[28]

H. OlssonK. J. AströmC. Canudas de WitM. Göfvert and P. Lischinsky, Friction models and friction compensation, European Journal of Control, 4 (1998), 176-195.   Google Scholar

[29]

P. D. Panagiotopoulos, Nonconvex superpotentials in the sense of F. H. Clarke and applications, Mech. Res. Comm., 8 (1981), 335-340.  doi: 10.1016/0093-6413(81)90064-1.  Google Scholar

[30]

P. D. Panagiotopoulos, Hemivariational Inequalities. Applications in Mechanics and Engineering, Springer-Verlag, Berlin, 1993. doi: 10.1007/978-3-642-51677-1.  Google Scholar

[31]

D. Pascali and S. Sburlan, Nonlinear Mappings of Monotone Type, Sijthoff and Noordhoff International Publishers, Alphen aan den Rijn, 1978.  Google Scholar

[32]

V. L. Popov, Contact Mechanics and Friction. Physical Principles and Applications, Springer, Berlin, Heidelberg, 2010. Google Scholar

[33]

M. Shillor, M. Sofonea and J. J. Telega, Models and Analysis of Quasistatic Contact. Variational Methods, Springer-Verlag, 2004. Google Scholar

[34]

O. Reynolds, On the theory of lubrication and its application to Mr. Beauchamp Tower's experiments, including an experimental determination of the viscosity of olive oil, Phil. Trans. R. Soc., 177 (1886), 157-234.   Google Scholar

[35]

R. Stribeck, Die Wesentlichen Eigenschaften der Gleit-und Rollenlager, Springer, 1903. Google Scholar

[36]

E. Zeidler, Nonlinear Functional Analysis and its Applications, Springer-Verlag, New York, 1990. doi: 10.1007/978-1-4612-0985-0.  Google Scholar

show all references

References:
[1]

S. Adly and D. Goeleven, A stability theory for second-order nonsmooth dynamical systems with applications to friction problems, J. Math. Pures Appl., 83 (2004), 17-51.  doi: 10.1016/S0021-7824(03)00071-0.  Google Scholar

[2]

S. Adly, A Variational Approach to Nonsmooth Dynamics. Applications in Unilateral Mechanics and Electronics, SpringerBriefs in Mathematics, Springer, Cham, 2017. doi: 10.1007/978-3-319-68658-5.  Google Scholar

[3]

L. X. Ahn, Dynamics of Mechanical Systems with Coulomb Friction, Foundations of Engineering Mechanics, Springer-Verlag, Berlin, 2003. doi: 10.1007/978-3-540-36516-7.  Google Scholar

[4]

G. Amontons, On the Resistance Originating in Machines, Proceedings of the French Royal Academy of Sciences, 1699, 206–222. Google Scholar

[5]

S. AndersonA. Söderberg and S. Björklund, Friction models for sliding dry, boundary and mixed lubricated contacts, Tribology International, 40 (2007), 580-587.  doi: 10.1016/j.triboint.2005.11.014.  Google Scholar

[6]

B. Armstrong-Hélouvry, Control of Machines with Friction, Kluwer Academic Publishers, Springer, Boston, MA, 1991. doi: 10.1007/978-1-4615-3972-8.  Google Scholar

[7]

K. J. Ǻström, Control of systems with friction, Proceedings of the Fourth International Conferences on Motion and Vibration Control, (1998), 25–32. Google Scholar

[8]

P. A. Bliman and M. Sorine, Easy-to-use Realistic Dry Friction Models for Automatic Control, Proc. of 3rd European Control Conference, Rome, Italy, 1995, 3788–3794. Google Scholar

[9]

L. C. Bo and D. Pavelescu, The friction-speed relation and its influence on the critical velocity of stick-slip motion, Wear, 82 (1982), 277-289.  doi: 10.1016/0043-1648(82)90223-X.  Google Scholar

[10]

H. Brézis, Problémes unilatéraux, J. Math. Pures Appl., 51 (1972), 1-168.   Google Scholar

[11]

C. A. Coulomb, Théorie des machines simples, en ayant egard au frottement de leurs parties, et a la roideur dews cordages, Mem. Math Phys., Paris, (1785), 161–332. Google Scholar

[12]

L. da Vinci, The Notebooks of Leonardo Da Vinci (Ed. J. P. Richter), Dover Pub. Inc., New York, 1970. Google Scholar

[13]

A. Dontchev and F. Lempio, Difference methods for differential inclusions: A survey, SIAM Rev., 34 (1992), 263-294.  doi: 10.1137/1034050.  Google Scholar

[14] D. Goeleven, Complementarity and Variational Inequalities in Electronics, Academic Press, London, 2017.   Google Scholar
[15]

M. Jean and J. J. Moreau, Unilateraly and dry friction in the dynamics of rigid body collections, Proc. Contact Mechanics Int. Symp., (1992), 31–48. Google Scholar

[16]

D. P. Hess and A. Soom, Friction at a Lubricated Line Contact Operating at Oscillating Sliding Velocities, Journal of Tribology, 112 (1990), 147-152.  doi: 10.1115/1.2920220.  Google Scholar

[17]

D. Karnopp, Computer simulation of stick-slip friction in mechanical dynamic systems, J. Dyn. Sys. Meas. Control., 107 (1985), 100-103.  doi: 10.1115/1.3140698.  Google Scholar

[18]

T. Kato, Accretive operators and nonlinear evolutions equations in banach spaces, Nonlinear Functional Analysis, 18 (1970), 138-161.   Google Scholar

[19]

M. Kidouche and R. Riane, On the design of proportional integral observer for a rotary drilling system, 8th CHAOS Conference Proceedings, Henri Poincaré Institute, (2015), 1–12. Google Scholar

[20]

R. I. Lein and H. Nijmeijer, Dynamics and Bifurcations of Non-smooth Mechanical Systems, Vol. 18, Lecture Notes in Applied and Computational Mechanics, Springer-Verlag, Berlin, 2004. doi: 10.1007/978-3-540-44398-8.  Google Scholar

[21]

Y. F. LiuJ. LiZ. M. ZhangX. H. Hu and W. J. Zhang, Experimental comparison of five friction models on the same test-bed of the micro stick-slip motion system, Mech. Sci., 6 (2015), 15-28.  doi: 10.5194/ms-6-15-2015.  Google Scholar

[22] S. E. Lyshevski, Electromechanical Systems and Devices, CRC Press, Boca Raton, 2008.  doi: 10.1201/9781420069754.  Google Scholar
[23]

J. J. Moreau, La notion du surpotentiel et les liaisons unilatérales on elastostatique, C. R. Acad. Sci. Paris Ser. A-B, 267 (1968), A954–A957.  Google Scholar

[24]

J. J. Moreau, Dynamique des Systémes à Liaisons unilatérales avec Frottement sec Éventuel; Essais Numériques, Tech. Rep., Montpellier, France, 1986. Google Scholar

[25]

J. J. Moreau and P. D. Panagiotopoulos, Non-Smooth Mechanics and Applications, Vol. 302, CISM International Centre for Mechanical Sciences. Courses and Lectures, Springer-Verlag, Vienna, 1988. doi: 10.1007/978-3-7091-2624-0.  Google Scholar

[26]

A. J. Morin, New friction experiments carried out at Metz in 1831-1833, Proceedings of the French Royal Academy of Sciences, 4 (1833), 1-128.   Google Scholar

[27]

H. Olsson, Control Systems with Friction, Department of Automatic Control, Lund Institute of Technology (LTH), Lund, 1996. Google Scholar

[28]

H. OlssonK. J. AströmC. Canudas de WitM. Göfvert and P. Lischinsky, Friction models and friction compensation, European Journal of Control, 4 (1998), 176-195.   Google Scholar

[29]

P. D. Panagiotopoulos, Nonconvex superpotentials in the sense of F. H. Clarke and applications, Mech. Res. Comm., 8 (1981), 335-340.  doi: 10.1016/0093-6413(81)90064-1.  Google Scholar

[30]

P. D. Panagiotopoulos, Hemivariational Inequalities. Applications in Mechanics and Engineering, Springer-Verlag, Berlin, 1993. doi: 10.1007/978-3-642-51677-1.  Google Scholar

[31]

D. Pascali and S. Sburlan, Nonlinear Mappings of Monotone Type, Sijthoff and Noordhoff International Publishers, Alphen aan den Rijn, 1978.  Google Scholar

[32]

V. L. Popov, Contact Mechanics and Friction. Physical Principles and Applications, Springer, Berlin, Heidelberg, 2010. Google Scholar

[33]

M. Shillor, M. Sofonea and J. J. Telega, Models and Analysis of Quasistatic Contact. Variational Methods, Springer-Verlag, 2004. Google Scholar

[34]

O. Reynolds, On the theory of lubrication and its application to Mr. Beauchamp Tower's experiments, including an experimental determination of the viscosity of olive oil, Phil. Trans. R. Soc., 177 (1886), 157-234.   Google Scholar

[35]

R. Stribeck, Die Wesentlichen Eigenschaften der Gleit-und Rollenlager, Springer, 1903. Google Scholar

[36]

E. Zeidler, Nonlinear Functional Analysis and its Applications, Springer-Verlag, New York, 1990. doi: 10.1007/978-1-4612-0985-0.  Google Scholar

Figure 1.  General friction model as in (6) and the function $ \varphi $ as in (7)
Figure 2.  Coulomb friction model
Figure 3.  Stribeck friction model
Figure 4.  Stiction model
Figure 5.  Consistent stiction model as in (6) with $ \varphi_+(x) = F_C +(F_S-F_C)e^{-\frac{x}{v_s}} $
Figure 6.  Oil drilling rig illustration-1. Mud tank, 2. Shale shakers, 3. Suction line (mud pump), 4. Mud pump, 5. Motor or power source, 6. Vibrating hose, 7. Draw-works (winch), 8. Standpipe 9. Kelly hose, 10. Goose-neck, 11. Traveling block, 12. Drill line, 13. Crown block 14. Derrick-Author: Tosaka-Attribution 3.0 Unported (CC BY 3.0) - https://creativecommons.org/licenses/by/3.0/deed.en (https://commons.wikimedia.org/wiki/File:Oil_Rig_NT.PNG)
Figure 7.  Rotary drilling system
Figure 8.  Graph of the function $ V(t) $ in Table 3
Figure 9.  Numerical solution of the evolution variational inequality (19) with the initial conditions given in Table 5
Figure 10.  Numerical solution of the evolution variational inequality (23) with the initial conditions given in Table 5
Table 1.  Parameters
$ J_1 $ $ 999.35 \; (kg.m^2) $
$ J_2 $ $ 127.27\; (kg.m^2) $
$ d_1 $ $ 51.38\; (N.m.s/rad) $
$ d_2 $ $ 39.79 \;(N.m.s) $
$ k $ $ 481.29 \; (N.m/rad) $
$ R $ $ 0.01 \;(\Omega) $
$ L $ $ 0.005 \;(H) $
$ K_M $ $ 6 \;(N.m/A) $
$ N $ $ 7.20 $
$ K = NK_M $ $ 43.20 \;(N.m/A) $
$ E $ $ 130 \;(MJ/m^3) $
$ \delta $ $ 0.64 \times 10^{-3}\;(m/rad) $
$ R_B $ $ 0.10 \; m $
$ \mu_C $ $ 0.4 $
$ \mu_S $ $ 0.6 $
$ J_1 $ $ 999.35 \; (kg.m^2) $
$ J_2 $ $ 127.27\; (kg.m^2) $
$ d_1 $ $ 51.38\; (N.m.s/rad) $
$ d_2 $ $ 39.79 \;(N.m.s) $
$ k $ $ 481.29 \; (N.m/rad) $
$ R $ $ 0.01 \;(\Omega) $
$ L $ $ 0.005 \;(H) $
$ K_M $ $ 6 \;(N.m/A) $
$ N $ $ 7.20 $
$ K = NK_M $ $ 43.20 \;(N.m/A) $
$ E $ $ 130 \;(MJ/m^3) $
$ \delta $ $ 0.64 \times 10^{-3}\;(m/rad) $
$ R_B $ $ 0.10 \; m $
$ \mu_C $ $ 0.4 $
$ \mu_S $ $ 0.6 $
Table 2.  Empirical coefficients
$ \sigma $ $ 1 $
$ \omega_s $ $ 10^{-3} $ $ (rad/s) $
$ \sigma $ $ 1 $
$ \omega_s $ $ 10^{-3} $ $ (rad/s) $
Table 3.  Motor voltage. Augmentation of DC motor voltage from 125 (V) to 150 (V) at $ t = 30 \; (s) $ (see Figure 8)
Table 4.  Weight-On-Bit and corresponding friction torques
$ W $ $ 15 000 \; (kg) $
$ T_C = \frac{1}{2}\mu_CR_BW $ $ 300 \; (kg.m) $
$ T_S = \frac{1}{2}\mu_SR_BW $ $ 450 \; (kg.m) $
$ T_{{\rm CUT}} = \frac{1}{2} \delta R_B^2E $ $ 4.16\, 10^{-4}\; (MJ/rad) $
$ W $ $ 15 000 \; (kg) $
$ T_C = \frac{1}{2}\mu_CR_BW $ $ 300 \; (kg.m) $
$ T_S = \frac{1}{2}\mu_SR_BW $ $ 450 \; (kg.m) $
$ T_{{\rm CUT}} = \frac{1}{2} \delta R_B^2E $ $ 4.16\, 10^{-4}\; (MJ/rad) $
Table 5.  Initial conditions for problems (19) and (23)
[1]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020274

[2]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[3]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[4]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020271

[5]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[6]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[7]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[8]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[9]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[10]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[11]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[12]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[13]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[14]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[15]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[16]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[17]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[18]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[19]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[20]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

2019 Impact Factor: 0.953

Article outline

Figures and Tables

[Back to Top]