The primary objective of this paper is to explore a complicated differential variational-hemivariational inequality involving a history-dependent operator in Banach spaces. A well-posedness result for the inequality, including the existence, uniqueness, and continuous dependence on the initial data of the solution is established by using a fixed point principle for history-dependent operators. Moreover, to illustrate the applicability of the theoretical results, an elastic contact problem with wear and long time dependent effort is explored.
Citation: |
[1] |
X. J. Chen and Z. Y. Wang, Differential variational inequality approach to dynamic games with shared constraints, Math. Program., 146 (2014), Ser. A, 379–408.
doi: 10.1007/s10107-013-0689-1.![]() ![]() ![]() |
[2] |
X. J. Chen and Z. Y. Wang, Convergence of regularized time-stepping methods for differential variational inequalities, SIAM J. Optim., 23 (2013), 1647-1671.
doi: 10.1137/120875223.![]() ![]() ![]() |
[3] |
Z. Denkowski, S. Migórski and N. S. Papageorgiou, An Introduction to Nonlinear Analysis: Theory, Kluwer Academic/Plenum Publishers, Boston, Dordrecht, London, New York, 2003.
doi: 10.1007/978-1-4419-9158-4.![]() ![]() ![]() |
[4] |
Z. Denkowski, S. Migórski and N. S. Papageorgiou, An Introduction to Nonlinear Analysis: Applications, Kluwer Academic/Plenum Publishers, Boston, Dordrecht, London, New York, 2003.
![]() ![]() |
[5] |
J. Gwinner, On a new class of differential variational inequalities and a stability result, Math. Program., 139 (2013), 205-221.
doi: 10.1007/s10107-013-0669-5.![]() ![]() ![]() |
[6] |
K. L. Kuttler and M. Shillor, Dynamic contact with normal compliance wear and discontinuous friction coefficient, SIAM J. Math. Anal., 34 (2002), 1-27.
doi: 10.1137/S0036141001391184.![]() ![]() ![]() |
[7] |
Z. H. Liu and M. Sofonea, Differential quasivariational inequalities in contact mechanics, Math. Mech. Solids, 24 (2019), 845-861.
doi: 10.1177/1081286518755563.![]() ![]() ![]() |
[8] |
Z. H. Liu, D. Motreanu and S. D. Zeng, Nonlinear evolutionary systems driven by mixed variational inequalities and its applications, Nonlinear Anal. Real World Appl., 42 (2018), 409-421.
doi: 10.1016/j.nonrwa.2018.01.008.![]() ![]() ![]() |
[9] |
Z. H. Liu, S. Migórski and S. D. Zeng, Partial differential variational inequalities involving nonlocal boundary conditions in Banach spaces, J. Differential Equations, 263 (2017), 3989-4006.
doi: 10.1016/j.jde.2017.05.010.![]() ![]() ![]() |
[10] |
Z. H. Liu, D. Motreanu and S. D. Zeng, On the well-posedness of differential mixed quasi-variational inequalities, Topol. Method Nonl. Anal., 51 (2018), 135-150.
![]() ![]() |
[11] |
Z. H. Liu, S. D. Zeng and D. Motreanu, Evolutionary problems driven by variational inequalities, J. Differential Equations, 260 (2016), 6787-6799.
doi: 10.1016/j.jde.2016.01.012.![]() ![]() ![]() |
[12] |
Z. H. Liu and S. D. Zeng, Differential variational inequalities in infinite Banach spaces, Acta Math. Sci. Ser. B, 37 (2017), 26-32.
doi: 10.1016/S0252-9602(16)30112-6.![]() ![]() ![]() |
[13] |
Z. H. Liu, S. D. Zeng and D. Motreanu, Partial differential hemivariational inequalities, Adv. Nonlinear Anal., 7 (2018), 571-586.
doi: 10.1515/anona-2016-0102.![]() ![]() ![]() |
[14] |
N. V. Loi, On two-parameter global bifurcation of periodic solutions to a class of differential variational inequalities, Nonlinear Anal., 122 (2015), 83-99.
doi: 10.1016/j.na.2015.03.019.![]() ![]() ![]() |
[15] |
S. Migórski, A. Ochal and M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems, Advances in Mechanics and Mathematics, 26, Springer, New York, 2013.
doi: 10.1007/978-1-4614-4232-5.![]() ![]() ![]() |
[16] |
S. Migórski and S. D. Zeng, A class of differential hemivariational inequalities in Banach spaces, J. Glob. Optim., 72 (2018), 761-779.
doi: 10.1007/s10898-018-0667-5.![]() ![]() ![]() |
[17] |
S. Migórski and S. D. Zeng, Hyperbolic hemivariational inequalities controlled by evolution equations with application to adhesive contact model, Nonlinear Anal. Real World Appl., 43 (2018), 121-143.
doi: 10.1016/j.nonrwa.2018.02.008.![]() ![]() ![]() |
[18] |
S. Migórski and S. D. Zeng, A class of generalized evolutionary problems driven by variational inequalities and fractional operators, Set-Valued Var. Anal., 27 (2019), 949–970. https://doi.org/10.1007/s11228-018-0502-7.
doi: 10.1007/s11228-018-0502-7.![]() ![]() ![]() |
[19] |
S. Migórski and S. D. Zeng, Mixed variational inequalities driven by fractional evolution equations, ACTA Math. Sci., 39 (2019), 461-468.
![]() |
[20] |
J.-S. Pang and D. E. Stewart, Differential variational inequalities, Math. Program., 113 (2008), Ser. A, 345–424.
doi: 10.1007/s10107-006-0052-x.![]() ![]() ![]() |
[21] |
M. Shillor, M. Sofonea and J. J. Telega, Analysis of viscoelastic contact with normal compliance, friction and wear diffusion, Comptes Rendus Mecanique, 331 (2003), 395-400.
![]() |
[22] |
M. Sofonea and S. Migórski, Variational-Hemivariational Inequalities with Applications,
Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2018.
![]() ![]() |
[23] |
M. Sofonea, C. Avramescu and A. Matei, A fixed point result with applications in the study of viscoplastic frictionless contact problems, Comm. Pure Appl. Anal., 7 (2008), 645-658.
doi: 10.3934/cpaa.2008.7.645.![]() ![]() ![]() |
[24] |
M. Sofonea, F. P\v{a}trulescu and Y. Souleiman, Analysis of a contact problem with wear and unilateral constraint, Appl. Anal., 95 (2016), 2590-2607.
doi: 10.1080/00036811.2015.1102892.![]() ![]() ![]() |
[25] |
N. T. Van Anh and T. D. Ke, Asymptotic behavior of solutions to a class of differential variational inequalities, Ann. Polon. Math., 114 (2015), 147-164.
doi: 10.4064/ap114-2-5.![]() ![]() ![]() |
[26] |
S. D. Zeng, Z. H. Liu and S. Migorski, A class of fractional differential hemivariational inequalities with application to contact problem, Z. Angew. Math. Phys., 69 (2018), Art. 36, 23 pp.
doi: 10.1007/s00033-018-0929-6.![]() ![]() ![]() |