December  2020, 9(4): 1073-1087. doi: 10.3934/eect.2020044

History-dependent differential variational-hemivariational inequalities with applications to contact mechanics

1. 

College of Sciences, Guangxi University for Nationalities, Nanning 530006, Guangxi, China

2. 

Guangxi Colleges and Universities Key Laboratory of Complex System Optimization, and Big Data Processing, Yulin Normal University, Yulin 537000, China

3. 

Departement of Mathematics, FPT University, Education zone, Hoa Lac high tech park, Km29 Thang Long highway, Thach That ward, Hanoi, Vietnam

4. 

Center for General Education, China Medical University, Taichung, Taiwan

5. 

Jagiellonian University in Krakow, Faculty of Mathematics and Computer Science, ul. Lojasiewicza 6, 30348 Krakow, Poland

* Corresponding author: Shengda Zeng

Dedicated to Professor Meir Shillor on the occasion of his 70th birthday.

Received  September 2019 Published  March 2020

Fund Project: This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie grant agreement No. 823731 – CONMECH. It is also supported by the National Science Center of Poland under Maestro Project No. UMO-2012/06/A/ST1/00262, National Science Center of Poland under Preludium Project No. 2017/25/N/ST1/00611, NNSF of China Grant No. 11671101, NSF of Guangxi Grant No. 2018GXNSFDA138002, and International Project co-financed by the Ministry of Science and Higher Education of Republic of Poland under Grant No. 3792/GGPJ/H2020/2017/0

The primary objective of this paper is to explore a complicated differential variational-hemivariational inequality involving a history-dependent operator in Banach spaces. A well-posedness result for the inequality, including the existence, uniqueness, and continuous dependence on the initial data of the solution is established by using a fixed point principle for history-dependent operators. Moreover, to illustrate the applicability of the theoretical results, an elastic contact problem with wear and long time dependent effort is explored.

Citation: Zhenhai Liu, Van Thien Nguyen, Jen-Chih Yao, Shengda Zeng. History-dependent differential variational-hemivariational inequalities with applications to contact mechanics. Evolution Equations & Control Theory, 2020, 9 (4) : 1073-1087. doi: 10.3934/eect.2020044
References:
[1]

X. J. Chen and Z. Y. Wang, Differential variational inequality approach to dynamic games with shared constraints, Math. Program., 146 (2014), Ser. A, 379–408. doi: 10.1007/s10107-013-0689-1.  Google Scholar

[2]

X. J. Chen and Z. Y. Wang, Convergence of regularized time-stepping methods for differential variational inequalities, SIAM J. Optim., 23 (2013), 1647-1671.  doi: 10.1137/120875223.  Google Scholar

[3]

Z. Denkowski, S. Migórski and N. S. Papageorgiou, An Introduction to Nonlinear Analysis: Theory, Kluwer Academic/Plenum Publishers, Boston, Dordrecht, London, New York, 2003. doi: 10.1007/978-1-4419-9158-4.  Google Scholar

[4]

Z. Denkowski, S. Migórski and N. S. Papageorgiou, An Introduction to Nonlinear Analysis: Applications, Kluwer Academic/Plenum Publishers, Boston, Dordrecht, London, New York, 2003.  Google Scholar

[5]

J. Gwinner, On a new class of differential variational inequalities and a stability result, Math. Program., 139 (2013), 205-221.  doi: 10.1007/s10107-013-0669-5.  Google Scholar

[6]

K. L. Kuttler and M. Shillor, Dynamic contact with normal compliance wear and discontinuous friction coefficient, SIAM J. Math. Anal., 34 (2002), 1-27.  doi: 10.1137/S0036141001391184.  Google Scholar

[7]

Z. H. Liu and M. Sofonea, Differential quasivariational inequalities in contact mechanics, Math. Mech. Solids, 24 (2019), 845-861.  doi: 10.1177/1081286518755563.  Google Scholar

[8]

Z. H. LiuD. Motreanu and S. D. Zeng, Nonlinear evolutionary systems driven by mixed variational inequalities and its applications, Nonlinear Anal. Real World Appl., 42 (2018), 409-421.  doi: 10.1016/j.nonrwa.2018.01.008.  Google Scholar

[9]

Z. H. LiuS. Migórski and S. D. Zeng, Partial differential variational inequalities involving nonlocal boundary conditions in Banach spaces, J. Differential Equations, 263 (2017), 3989-4006.  doi: 10.1016/j.jde.2017.05.010.  Google Scholar

[10]

Z. H. LiuD. Motreanu and S. D. Zeng, On the well-posedness of differential mixed quasi-variational inequalities, Topol. Method Nonl. Anal., 51 (2018), 135-150.   Google Scholar

[11]

Z. H. LiuS. D. Zeng and D. Motreanu, Evolutionary problems driven by variational inequalities, J. Differential Equations, 260 (2016), 6787-6799.  doi: 10.1016/j.jde.2016.01.012.  Google Scholar

[12]

Z. H. Liu and S. D. Zeng, Differential variational inequalities in infinite Banach spaces, Acta Math. Sci. Ser. B, 37 (2017), 26-32.  doi: 10.1016/S0252-9602(16)30112-6.  Google Scholar

[13]

Z. H. LiuS. D. Zeng and D. Motreanu, Partial differential hemivariational inequalities, Adv. Nonlinear Anal., 7 (2018), 571-586.  doi: 10.1515/anona-2016-0102.  Google Scholar

[14]

N. V. Loi, On two-parameter global bifurcation of periodic solutions to a class of differential variational inequalities, Nonlinear Anal., 122 (2015), 83-99.  doi: 10.1016/j.na.2015.03.019.  Google Scholar

[15]

S. Migórski, A. Ochal and M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems, Advances in Mechanics and Mathematics, 26, Springer, New York, 2013. doi: 10.1007/978-1-4614-4232-5.  Google Scholar

[16]

S. Migórski and S. D. Zeng, A class of differential hemivariational inequalities in Banach spaces, J. Glob. Optim., 72 (2018), 761-779.  doi: 10.1007/s10898-018-0667-5.  Google Scholar

[17]

S. Migórski and S. D. Zeng, Hyperbolic hemivariational inequalities controlled by evolution equations with application to adhesive contact model, Nonlinear Anal. Real World Appl., 43 (2018), 121-143.  doi: 10.1016/j.nonrwa.2018.02.008.  Google Scholar

[18]

S. Migórski and S. D. Zeng, A class of generalized evolutionary problems driven by variational inequalities and fractional operators, Set-Valued Var. Anal., 27 (2019), 949–970. https://doi.org/10.1007/s11228-018-0502-7. doi: 10.1007/s11228-018-0502-7.  Google Scholar

[19]

S. Migórski and S. D. Zeng, Mixed variational inequalities driven by fractional evolution equations, ACTA Math. Sci., 39 (2019), 461-468.   Google Scholar

[20]

J.-S. Pang and D. E. Stewart, Differential variational inequalities, Math. Program., 113 (2008), Ser. A, 345–424. doi: 10.1007/s10107-006-0052-x.  Google Scholar

[21]

M. ShillorM. Sofonea and J. J. Telega, Analysis of viscoelastic contact with normal compliance, friction and wear diffusion, Comptes Rendus Mecanique, 331 (2003), 395-400.   Google Scholar

[22]

M. Sofonea and S. Migórski, Variational-Hemivariational Inequalities with Applications, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2018.  Google Scholar

[23]

M. SofoneaC. Avramescu and A. Matei, A fixed point result with applications in the study of viscoplastic frictionless contact problems, Comm. Pure Appl. Anal., 7 (2008), 645-658.  doi: 10.3934/cpaa.2008.7.645.  Google Scholar

[24]

M. SofoneaF. P\v{a}trulescu and Y. Souleiman, Analysis of a contact problem with wear and unilateral constraint, Appl. Anal., 95 (2016), 2590-2607.  doi: 10.1080/00036811.2015.1102892.  Google Scholar

[25]

N. T. Van Anh and T. D. Ke, Asymptotic behavior of solutions to a class of differential variational inequalities, Ann. Polon. Math., 114 (2015), 147-164.  doi: 10.4064/ap114-2-5.  Google Scholar

[26]

S. D. Zeng, Z. H. Liu and S. Migorski, A class of fractional differential hemivariational inequalities with application to contact problem, Z. Angew. Math. Phys., 69 (2018), Art. 36, 23 pp. doi: 10.1007/s00033-018-0929-6.  Google Scholar

show all references

References:
[1]

X. J. Chen and Z. Y. Wang, Differential variational inequality approach to dynamic games with shared constraints, Math. Program., 146 (2014), Ser. A, 379–408. doi: 10.1007/s10107-013-0689-1.  Google Scholar

[2]

X. J. Chen and Z. Y. Wang, Convergence of regularized time-stepping methods for differential variational inequalities, SIAM J. Optim., 23 (2013), 1647-1671.  doi: 10.1137/120875223.  Google Scholar

[3]

Z. Denkowski, S. Migórski and N. S. Papageorgiou, An Introduction to Nonlinear Analysis: Theory, Kluwer Academic/Plenum Publishers, Boston, Dordrecht, London, New York, 2003. doi: 10.1007/978-1-4419-9158-4.  Google Scholar

[4]

Z. Denkowski, S. Migórski and N. S. Papageorgiou, An Introduction to Nonlinear Analysis: Applications, Kluwer Academic/Plenum Publishers, Boston, Dordrecht, London, New York, 2003.  Google Scholar

[5]

J. Gwinner, On a new class of differential variational inequalities and a stability result, Math. Program., 139 (2013), 205-221.  doi: 10.1007/s10107-013-0669-5.  Google Scholar

[6]

K. L. Kuttler and M. Shillor, Dynamic contact with normal compliance wear and discontinuous friction coefficient, SIAM J. Math. Anal., 34 (2002), 1-27.  doi: 10.1137/S0036141001391184.  Google Scholar

[7]

Z. H. Liu and M. Sofonea, Differential quasivariational inequalities in contact mechanics, Math. Mech. Solids, 24 (2019), 845-861.  doi: 10.1177/1081286518755563.  Google Scholar

[8]

Z. H. LiuD. Motreanu and S. D. Zeng, Nonlinear evolutionary systems driven by mixed variational inequalities and its applications, Nonlinear Anal. Real World Appl., 42 (2018), 409-421.  doi: 10.1016/j.nonrwa.2018.01.008.  Google Scholar

[9]

Z. H. LiuS. Migórski and S. D. Zeng, Partial differential variational inequalities involving nonlocal boundary conditions in Banach spaces, J. Differential Equations, 263 (2017), 3989-4006.  doi: 10.1016/j.jde.2017.05.010.  Google Scholar

[10]

Z. H. LiuD. Motreanu and S. D. Zeng, On the well-posedness of differential mixed quasi-variational inequalities, Topol. Method Nonl. Anal., 51 (2018), 135-150.   Google Scholar

[11]

Z. H. LiuS. D. Zeng and D. Motreanu, Evolutionary problems driven by variational inequalities, J. Differential Equations, 260 (2016), 6787-6799.  doi: 10.1016/j.jde.2016.01.012.  Google Scholar

[12]

Z. H. Liu and S. D. Zeng, Differential variational inequalities in infinite Banach spaces, Acta Math. Sci. Ser. B, 37 (2017), 26-32.  doi: 10.1016/S0252-9602(16)30112-6.  Google Scholar

[13]

Z. H. LiuS. D. Zeng and D. Motreanu, Partial differential hemivariational inequalities, Adv. Nonlinear Anal., 7 (2018), 571-586.  doi: 10.1515/anona-2016-0102.  Google Scholar

[14]

N. V. Loi, On two-parameter global bifurcation of periodic solutions to a class of differential variational inequalities, Nonlinear Anal., 122 (2015), 83-99.  doi: 10.1016/j.na.2015.03.019.  Google Scholar

[15]

S. Migórski, A. Ochal and M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems, Advances in Mechanics and Mathematics, 26, Springer, New York, 2013. doi: 10.1007/978-1-4614-4232-5.  Google Scholar

[16]

S. Migórski and S. D. Zeng, A class of differential hemivariational inequalities in Banach spaces, J. Glob. Optim., 72 (2018), 761-779.  doi: 10.1007/s10898-018-0667-5.  Google Scholar

[17]

S. Migórski and S. D. Zeng, Hyperbolic hemivariational inequalities controlled by evolution equations with application to adhesive contact model, Nonlinear Anal. Real World Appl., 43 (2018), 121-143.  doi: 10.1016/j.nonrwa.2018.02.008.  Google Scholar

[18]

S. Migórski and S. D. Zeng, A class of generalized evolutionary problems driven by variational inequalities and fractional operators, Set-Valued Var. Anal., 27 (2019), 949–970. https://doi.org/10.1007/s11228-018-0502-7. doi: 10.1007/s11228-018-0502-7.  Google Scholar

[19]

S. Migórski and S. D. Zeng, Mixed variational inequalities driven by fractional evolution equations, ACTA Math. Sci., 39 (2019), 461-468.   Google Scholar

[20]

J.-S. Pang and D. E. Stewart, Differential variational inequalities, Math. Program., 113 (2008), Ser. A, 345–424. doi: 10.1007/s10107-006-0052-x.  Google Scholar

[21]

M. ShillorM. Sofonea and J. J. Telega, Analysis of viscoelastic contact with normal compliance, friction and wear diffusion, Comptes Rendus Mecanique, 331 (2003), 395-400.   Google Scholar

[22]

M. Sofonea and S. Migórski, Variational-Hemivariational Inequalities with Applications, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2018.  Google Scholar

[23]

M. SofoneaC. Avramescu and A. Matei, A fixed point result with applications in the study of viscoplastic frictionless contact problems, Comm. Pure Appl. Anal., 7 (2008), 645-658.  doi: 10.3934/cpaa.2008.7.645.  Google Scholar

[24]

M. SofoneaF. P\v{a}trulescu and Y. Souleiman, Analysis of a contact problem with wear and unilateral constraint, Appl. Anal., 95 (2016), 2590-2607.  doi: 10.1080/00036811.2015.1102892.  Google Scholar

[25]

N. T. Van Anh and T. D. Ke, Asymptotic behavior of solutions to a class of differential variational inequalities, Ann. Polon. Math., 114 (2015), 147-164.  doi: 10.4064/ap114-2-5.  Google Scholar

[26]

S. D. Zeng, Z. H. Liu and S. Migorski, A class of fractional differential hemivariational inequalities with application to contact problem, Z. Angew. Math. Phys., 69 (2018), Art. 36, 23 pp. doi: 10.1007/s00033-018-0929-6.  Google Scholar

[1]

Tadahiro Oh, Yuzhao Wang. On global well-posedness of the modified KdV equation in modulation spaces. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2971-2992. doi: 10.3934/dcds.2020393

[2]

Tayeb Hadj Kaddour, Michael Reissig. Global well-posedness for effectively damped wave models with nonlinear memory. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021057

[3]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2699-2723. doi: 10.3934/dcds.2020382

[4]

Yingdan Ji, Wen Tan. Global well-posedness of a 3D Stokes-Magneto equations with fractional magnetic diffusion. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3271-3278. doi: 10.3934/dcdsb.2020227

[5]

Pengyan Ding, Zhijian Yang. Well-posedness and attractor for a strongly damped wave equation with supercritical nonlinearity on $ \mathbb{R}^{N} $. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1059-1076. doi: 10.3934/cpaa.2021006

[6]

Mario Bukal. Well-posedness and convergence of a numerical scheme for the corrected Derrida-Lebowitz-Speer-Spohn equation using the Hellinger distance. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3389-3414. doi: 10.3934/dcds.2021001

[7]

Abraham Sylla. Influence of a slow moving vehicle on traffic: Well-posedness and approximation for a mildly nonlocal model. Networks & Heterogeneous Media, 2021, 16 (2) : 221-256. doi: 10.3934/nhm.2021005

[8]

Andreia Chapouto. A remark on the well-posedness of the modified KdV equation in the Fourier-Lebesgue spaces. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3915-3950. doi: 10.3934/dcds.2021022

[9]

Xuemin Deng, Yuelong Xiao, Aibin Zang. Global well-posedness of the $ n $-dimensional hyper-dissipative Boussinesq system without thermal diffusivity. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1229-1240. doi: 10.3934/cpaa.2021018

[10]

Yuta Tanoue. Improved Hoeffding inequality for dependent bounded or sub-Gaussian random variables. Probability, Uncertainty and Quantitative Risk, 2021, 6 (1) : 53-60. doi: 10.3934/puqr.2021003

[11]

Grace Nnennaya Ogwo, Chinedu Izuchukwu, Oluwatosin Temitope Mewomo. A modified extragradient algorithm for a certain class of split pseudo-monotone variational inequality problem. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021011

[12]

Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209

[13]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[14]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[15]

Zhenbing Gong, Yanping Chen, Wenyu Tao. Jump and variational inequalities for averaging operators with variable kernels. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021045

[16]

Craig Cowan. Supercritical elliptic problems involving a Cordes like operator. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021037

[17]

John Villavert. On problems with weighted elliptic operator and general growth nonlinearities. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021023

[18]

Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065

[19]

Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021009

[20]

Tao Wang. Variational relations for metric mean dimension and rate distortion dimension. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021050

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (175)
  • HTML views (474)
  • Cited by (0)

[Back to Top]