December  2020, 9(4): 1187-1201. doi: 10.3934/eect.2020045

Convergence of simultaneous distributed-boundary parabolic optimal control problems

1. 

Depto. Matemática-CONICET, FCE, Univ. Austral, Paraguay 1950, S2000FZF Rosario, Argentina

2. 

Depto. Matemática, FCEFQyN, Univ. Nac. de Río Cuarto, Ruta 36 Km 601, 5800 Río Cuarto, Argentina

* Corresponding author: DTarzia@austral.edu.ar

Received  October 2019 Published  March 2020

Fund Project: The first and third authors is supported by the European Union's Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie grant agreement 823731 CONMECH

We consider a heat conduction problem $ S $ with mixed boundary conditions in a n-dimensional domain $ \Omega $ with regular boundary $ \Gamma $ and a family of problems $ S_{\alpha} $, where the parameter $ \alpha>0 $ is the heat transfer coefficient on the portion of the boundary $ \Gamma_{1} $. In relation to these state systems, we formulate simultaneous distributed-boundary optimal control problems on the internal energy $ g $ and the heat flux $ q $ on the complementary portion of the boundary $ \Gamma_{2} $. We obtain existence and uniqueness of the optimal controls, the first order optimality conditions in terms of the adjoint state and the convergence of the optimal controls, the system and the adjoint states when the heat transfer coefficient $ \alpha $ goes to infinity. Finally, we prove estimations between the simultaneous distributed-boundary optimal control and the distributed optimal control problem studied in a previous paper of the first author.

Citation: Domingo Tarzia, Carolina Bollo, Claudia Gariboldi. Convergence of simultaneous distributed-boundary parabolic optimal control problems. Evolution Equations & Control Theory, 2020, 9 (4) : 1187-1201. doi: 10.3934/eect.2020045
References:
[1]

A. Azzam and E. Kreyszig, On solutions of elliptic equations satisfying mixed boundary conditions, SIAM J. Math. Anal., 13 (1982), 254-262.  doi: 10.1137/0513018.  Google Scholar

[2]

I. Babŭska and S. Ohnimus, A posteriori error estimation for the semidiscrete finite element method of parabolic differential equations, Comput. Methods Appl. Mech. Engrg., 190 (2001), 4691-4712.  doi: 10.1016/S0045-7825(00)00340-6.  Google Scholar

[3]

C. BacutaJ. H. Bramble and J. E. Pasciak, Using finite element tools in proving shift theorems for elliptic boundary value problems, Numer. Linear Algebra Appl., 10 (2003), 33-64.  doi: 10.1002/nla.311.  Google Scholar

[4]

F. B. BelgacemH. E. Fekih and J. P. Raymond, A penalized Robin approach for solving a parabolic equation with nonsmooth Dirichlet boundary conditions, Asymptot. Anal., 34 (2003), 121-136.   Google Scholar

[5]

A. Bensoussan and J.-L. Lions, Applications of Variational Inequalities in Stochastic Control, Vol. 12, Studies in Mathematics and its Applications, North-Holland Publishing Co., Amsterdam-New York, 1982.  Google Scholar

[6]

M. Bergounioux and F. Tröltzsch, Optimal control of semilinear parabolic equations with state-constraints of bottleneck type, ESAIM: Control Optim. Calc. Var., 4 (1999), 595-608.  doi: 10.1051/cocv:1999124.  Google Scholar

[7]

M. Boukrouche and D. A. Tarzia, Existence, uniqueness, and convergence of optimal control problems associated with parabolic variational inequalities of the second kind, Nonlinear Anal. Real World Appl., 12 (2011), 2211-2224.  doi: 10.1016/j.nonrwa.2011.01.003.  Google Scholar

[8]

M. Boukrouche and D. A. Tarzia, Convergence of optimal control problems governed by second kind parabolic variational inequalities, J. Control Theory Appl., 11 (2013), 422-427.  doi: 10.1007/s11768-013-2155-2.  Google Scholar

[9]

K. ChrysafinosM. D. Gunzburger and L. S. Hou, Semidiscrete approximations of optimal Robin boundary control problems constrained by semilinear parabolic PDE, J. Math. Anal. Appl., 323 (2006), 891-912.  doi: 10.1016/j.jmaa.2005.10.053.  Google Scholar

[10]

C. M. Gariboldi and D. A. Tarzia, Convergence of boundary optimal control problems with restrictions in mixed elliptic Stefan-like problems, Adv. Differ. Equ. Control Process., 1 (2008), 113-132.   Google Scholar

[11]

C. M. Gariboldi and D. A. Tarzia, Existence, uniqueness and convergence of simultaneous distributed-boundary optimal control problems, Control Cybernet., 44 (2015), 5-17.   Google Scholar

[12]

C. M. Gariboldi and E. L. Schwindt, Simultaneous optimal controls for non-stationary Stokes systems, Anal. Theory Appl., 33 (2017), 229-239.  doi: 10.4208/ata.2017.v33.n3.4.  Google Scholar

[13]

L. GasińskiZ. LiuS. MigórskiA. Ochal and Z. Peng, Hemivariational inequality approach to evolutionary constrained problems on star-shaped sets, J. Optim. Theory Appl., 164 (2015), 514-533.  doi: 10.1007/s10957-014-0587-6.  Google Scholar

[14]

L. GasińskiS. Migórski and A. Ochal, Existence results for evolutionary inclusions and variational-hemivariational inequalities, Appl. Anal., 94 (2015), 1670-1694.  doi: 10.1080/00036811.2014.940920.  Google Scholar

[15]

P. Grisvard, Elliptic Problems in Nonsmooth Domains, Vol. 24, Monographs and Studies in Mathematics, Pitman, Boston, MA, 1985.  Google Scholar

[16]

J.-L. Lions, Contrȏle Optimal de Systèmes Gouvernés par des Équations aux Dérivées Partielles, Dunod, Paris, 1968.  Google Scholar

[17]

J.-L. Menaldi and D. A. Tarzia, A distributed parabolic control with mixed boundary conditions, Asymptot. Anal., 52 (2007), 227-241.   Google Scholar

[18]

Ş. S. Şener and M. Subaşi, On a Neumann boundary control in a parabolic system, Bound. Value Probl., 2015 (2015), 16 pp. doi: 10.1186/s13661-015-0430-5.  Google Scholar

[19]

M. Sofonea and A. Benraouda, Convergence results for elliptic quasivariational inequalities, Z. Angew. Math. Phys., 68 (2017), Art. 10, 19 pp. doi: 10.1007/s00033-016-0750-z.  Google Scholar

[20] M. Sofonea and S. Migórski, Variational-hemivariational Inequalities with Applications, CRC Press, Boca Raton, FL, 2018.   Google Scholar
[21]

N. H. Sweilam and L. F. Abd-Elal, A computational approach for optimal control systems governed by parabolic variational inequalities, J. Comput. Math., 21 (2003), 815-824.   Google Scholar

[22]

E. D. Tabacman and D. A. Tarzia, Sufficient and/ or necessary condition for the heat transfer coefficient on $\Gamma_1$ and the heat flux on $\Gamma_2$ to obtain a steady-state two-phase Stefan problem, J. Differential Equations, 77 (1989), 16-37.  doi: 10.1016/0022-0396(89)90155-1.  Google Scholar

[23]

D. A. Tarzia, Sur le problème de Stefan à deux phases, C. R. Acad. Sci. Paris Ser. A-B 288 (1979), A941–A944.  Google Scholar

[24]

F. Trölstzsch, Optimal Control of Partial Differetnial Equations. Theory, Methods and Applications, American Math. Soc., Providence, 2010. Google Scholar

[25]

S. Volkwein, Optimality system POD and a-posteriori error analysis for linear-quadratic problems, Control Cybernet., 40 (2011), 1109-1124.   Google Scholar

[26]

L. Wang and Q. Yan, Optimal control problem for exact synchronization of parabolic system, Math. Control Relat. Fields, 9 (2019), 411-424.  doi: 10.3934/mcrf.2019019.  Google Scholar

[27]

Y. Zhu, R. Du and L. Bao, Approximate controllability of a class of coupled degenerate systems, Bound. Value Probl., 2016 (2016), 7 pp. doi: 10.1186/s13661-016-0637-0.  Google Scholar

show all references

References:
[1]

A. Azzam and E. Kreyszig, On solutions of elliptic equations satisfying mixed boundary conditions, SIAM J. Math. Anal., 13 (1982), 254-262.  doi: 10.1137/0513018.  Google Scholar

[2]

I. Babŭska and S. Ohnimus, A posteriori error estimation for the semidiscrete finite element method of parabolic differential equations, Comput. Methods Appl. Mech. Engrg., 190 (2001), 4691-4712.  doi: 10.1016/S0045-7825(00)00340-6.  Google Scholar

[3]

C. BacutaJ. H. Bramble and J. E. Pasciak, Using finite element tools in proving shift theorems for elliptic boundary value problems, Numer. Linear Algebra Appl., 10 (2003), 33-64.  doi: 10.1002/nla.311.  Google Scholar

[4]

F. B. BelgacemH. E. Fekih and J. P. Raymond, A penalized Robin approach for solving a parabolic equation with nonsmooth Dirichlet boundary conditions, Asymptot. Anal., 34 (2003), 121-136.   Google Scholar

[5]

A. Bensoussan and J.-L. Lions, Applications of Variational Inequalities in Stochastic Control, Vol. 12, Studies in Mathematics and its Applications, North-Holland Publishing Co., Amsterdam-New York, 1982.  Google Scholar

[6]

M. Bergounioux and F. Tröltzsch, Optimal control of semilinear parabolic equations with state-constraints of bottleneck type, ESAIM: Control Optim. Calc. Var., 4 (1999), 595-608.  doi: 10.1051/cocv:1999124.  Google Scholar

[7]

M. Boukrouche and D. A. Tarzia, Existence, uniqueness, and convergence of optimal control problems associated with parabolic variational inequalities of the second kind, Nonlinear Anal. Real World Appl., 12 (2011), 2211-2224.  doi: 10.1016/j.nonrwa.2011.01.003.  Google Scholar

[8]

M. Boukrouche and D. A. Tarzia, Convergence of optimal control problems governed by second kind parabolic variational inequalities, J. Control Theory Appl., 11 (2013), 422-427.  doi: 10.1007/s11768-013-2155-2.  Google Scholar

[9]

K. ChrysafinosM. D. Gunzburger and L. S. Hou, Semidiscrete approximations of optimal Robin boundary control problems constrained by semilinear parabolic PDE, J. Math. Anal. Appl., 323 (2006), 891-912.  doi: 10.1016/j.jmaa.2005.10.053.  Google Scholar

[10]

C. M. Gariboldi and D. A. Tarzia, Convergence of boundary optimal control problems with restrictions in mixed elliptic Stefan-like problems, Adv. Differ. Equ. Control Process., 1 (2008), 113-132.   Google Scholar

[11]

C. M. Gariboldi and D. A. Tarzia, Existence, uniqueness and convergence of simultaneous distributed-boundary optimal control problems, Control Cybernet., 44 (2015), 5-17.   Google Scholar

[12]

C. M. Gariboldi and E. L. Schwindt, Simultaneous optimal controls for non-stationary Stokes systems, Anal. Theory Appl., 33 (2017), 229-239.  doi: 10.4208/ata.2017.v33.n3.4.  Google Scholar

[13]

L. GasińskiZ. LiuS. MigórskiA. Ochal and Z. Peng, Hemivariational inequality approach to evolutionary constrained problems on star-shaped sets, J. Optim. Theory Appl., 164 (2015), 514-533.  doi: 10.1007/s10957-014-0587-6.  Google Scholar

[14]

L. GasińskiS. Migórski and A. Ochal, Existence results for evolutionary inclusions and variational-hemivariational inequalities, Appl. Anal., 94 (2015), 1670-1694.  doi: 10.1080/00036811.2014.940920.  Google Scholar

[15]

P. Grisvard, Elliptic Problems in Nonsmooth Domains, Vol. 24, Monographs and Studies in Mathematics, Pitman, Boston, MA, 1985.  Google Scholar

[16]

J.-L. Lions, Contrȏle Optimal de Systèmes Gouvernés par des Équations aux Dérivées Partielles, Dunod, Paris, 1968.  Google Scholar

[17]

J.-L. Menaldi and D. A. Tarzia, A distributed parabolic control with mixed boundary conditions, Asymptot. Anal., 52 (2007), 227-241.   Google Scholar

[18]

Ş. S. Şener and M. Subaşi, On a Neumann boundary control in a parabolic system, Bound. Value Probl., 2015 (2015), 16 pp. doi: 10.1186/s13661-015-0430-5.  Google Scholar

[19]

M. Sofonea and A. Benraouda, Convergence results for elliptic quasivariational inequalities, Z. Angew. Math. Phys., 68 (2017), Art. 10, 19 pp. doi: 10.1007/s00033-016-0750-z.  Google Scholar

[20] M. Sofonea and S. Migórski, Variational-hemivariational Inequalities with Applications, CRC Press, Boca Raton, FL, 2018.   Google Scholar
[21]

N. H. Sweilam and L. F. Abd-Elal, A computational approach for optimal control systems governed by parabolic variational inequalities, J. Comput. Math., 21 (2003), 815-824.   Google Scholar

[22]

E. D. Tabacman and D. A. Tarzia, Sufficient and/ or necessary condition for the heat transfer coefficient on $\Gamma_1$ and the heat flux on $\Gamma_2$ to obtain a steady-state two-phase Stefan problem, J. Differential Equations, 77 (1989), 16-37.  doi: 10.1016/0022-0396(89)90155-1.  Google Scholar

[23]

D. A. Tarzia, Sur le problème de Stefan à deux phases, C. R. Acad. Sci. Paris Ser. A-B 288 (1979), A941–A944.  Google Scholar

[24]

F. Trölstzsch, Optimal Control of Partial Differetnial Equations. Theory, Methods and Applications, American Math. Soc., Providence, 2010. Google Scholar

[25]

S. Volkwein, Optimality system POD and a-posteriori error analysis for linear-quadratic problems, Control Cybernet., 40 (2011), 1109-1124.   Google Scholar

[26]

L. Wang and Q. Yan, Optimal control problem for exact synchronization of parabolic system, Math. Control Relat. Fields, 9 (2019), 411-424.  doi: 10.3934/mcrf.2019019.  Google Scholar

[27]

Y. Zhu, R. Du and L. Bao, Approximate controllability of a class of coupled degenerate systems, Bound. Value Probl., 2016 (2016), 7 pp. doi: 10.1186/s13661-016-0637-0.  Google Scholar

[1]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[2]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[3]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[4]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[5]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[6]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[7]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[8]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[9]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[10]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[11]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[12]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[13]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[14]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[15]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[16]

Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033

[17]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[18]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[19]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHum approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[20]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020271

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (95)
  • HTML views (361)
  • Cited by (0)

[Back to Top]