December  2020, 9(4): 1187-1201. doi: 10.3934/eect.2020045

Convergence of simultaneous distributed-boundary parabolic optimal control problems

1. 

Depto. Matemática-CONICET, FCE, Univ. Austral, Paraguay 1950, S2000FZF Rosario, Argentina

2. 

Depto. Matemática, FCEFQyN, Univ. Nac. de Río Cuarto, Ruta 36 Km 601, 5800 Río Cuarto, Argentina

* Corresponding author: DTarzia@austral.edu.ar

Received  October 2019 Published  March 2020

Fund Project: The first and third authors is supported by the European Union's Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie grant agreement 823731 CONMECH

We consider a heat conduction problem $ S $ with mixed boundary conditions in a n-dimensional domain $ \Omega $ with regular boundary $ \Gamma $ and a family of problems $ S_{\alpha} $, where the parameter $ \alpha>0 $ is the heat transfer coefficient on the portion of the boundary $ \Gamma_{1} $. In relation to these state systems, we formulate simultaneous distributed-boundary optimal control problems on the internal energy $ g $ and the heat flux $ q $ on the complementary portion of the boundary $ \Gamma_{2} $. We obtain existence and uniqueness of the optimal controls, the first order optimality conditions in terms of the adjoint state and the convergence of the optimal controls, the system and the adjoint states when the heat transfer coefficient $ \alpha $ goes to infinity. Finally, we prove estimations between the simultaneous distributed-boundary optimal control and the distributed optimal control problem studied in a previous paper of the first author.

Citation: Domingo Tarzia, Carolina Bollo, Claudia Gariboldi. Convergence of simultaneous distributed-boundary parabolic optimal control problems. Evolution Equations & Control Theory, 2020, 9 (4) : 1187-1201. doi: 10.3934/eect.2020045
References:
[1]

A. Azzam and E. Kreyszig, On solutions of elliptic equations satisfying mixed boundary conditions, SIAM J. Math. Anal., 13 (1982), 254-262.  doi: 10.1137/0513018.  Google Scholar

[2]

I. Babŭska and S. Ohnimus, A posteriori error estimation for the semidiscrete finite element method of parabolic differential equations, Comput. Methods Appl. Mech. Engrg., 190 (2001), 4691-4712.  doi: 10.1016/S0045-7825(00)00340-6.  Google Scholar

[3]

C. BacutaJ. H. Bramble and J. E. Pasciak, Using finite element tools in proving shift theorems for elliptic boundary value problems, Numer. Linear Algebra Appl., 10 (2003), 33-64.  doi: 10.1002/nla.311.  Google Scholar

[4]

F. B. BelgacemH. E. Fekih and J. P. Raymond, A penalized Robin approach for solving a parabolic equation with nonsmooth Dirichlet boundary conditions, Asymptot. Anal., 34 (2003), 121-136.   Google Scholar

[5]

A. Bensoussan and J.-L. Lions, Applications of Variational Inequalities in Stochastic Control, Vol. 12, Studies in Mathematics and its Applications, North-Holland Publishing Co., Amsterdam-New York, 1982.  Google Scholar

[6]

M. Bergounioux and F. Tröltzsch, Optimal control of semilinear parabolic equations with state-constraints of bottleneck type, ESAIM: Control Optim. Calc. Var., 4 (1999), 595-608.  doi: 10.1051/cocv:1999124.  Google Scholar

[7]

M. Boukrouche and D. A. Tarzia, Existence, uniqueness, and convergence of optimal control problems associated with parabolic variational inequalities of the second kind, Nonlinear Anal. Real World Appl., 12 (2011), 2211-2224.  doi: 10.1016/j.nonrwa.2011.01.003.  Google Scholar

[8]

M. Boukrouche and D. A. Tarzia, Convergence of optimal control problems governed by second kind parabolic variational inequalities, J. Control Theory Appl., 11 (2013), 422-427.  doi: 10.1007/s11768-013-2155-2.  Google Scholar

[9]

K. ChrysafinosM. D. Gunzburger and L. S. Hou, Semidiscrete approximations of optimal Robin boundary control problems constrained by semilinear parabolic PDE, J. Math. Anal. Appl., 323 (2006), 891-912.  doi: 10.1016/j.jmaa.2005.10.053.  Google Scholar

[10]

C. M. Gariboldi and D. A. Tarzia, Convergence of boundary optimal control problems with restrictions in mixed elliptic Stefan-like problems, Adv. Differ. Equ. Control Process., 1 (2008), 113-132.   Google Scholar

[11]

C. M. Gariboldi and D. A. Tarzia, Existence, uniqueness and convergence of simultaneous distributed-boundary optimal control problems, Control Cybernet., 44 (2015), 5-17.   Google Scholar

[12]

C. M. Gariboldi and E. L. Schwindt, Simultaneous optimal controls for non-stationary Stokes systems, Anal. Theory Appl., 33 (2017), 229-239.  doi: 10.4208/ata.2017.v33.n3.4.  Google Scholar

[13]

L. GasińskiZ. LiuS. MigórskiA. Ochal and Z. Peng, Hemivariational inequality approach to evolutionary constrained problems on star-shaped sets, J. Optim. Theory Appl., 164 (2015), 514-533.  doi: 10.1007/s10957-014-0587-6.  Google Scholar

[14]

L. GasińskiS. Migórski and A. Ochal, Existence results for evolutionary inclusions and variational-hemivariational inequalities, Appl. Anal., 94 (2015), 1670-1694.  doi: 10.1080/00036811.2014.940920.  Google Scholar

[15]

P. Grisvard, Elliptic Problems in Nonsmooth Domains, Vol. 24, Monographs and Studies in Mathematics, Pitman, Boston, MA, 1985.  Google Scholar

[16]

J.-L. Lions, Contrȏle Optimal de Systèmes Gouvernés par des Équations aux Dérivées Partielles, Dunod, Paris, 1968.  Google Scholar

[17]

J.-L. Menaldi and D. A. Tarzia, A distributed parabolic control with mixed boundary conditions, Asymptot. Anal., 52 (2007), 227-241.   Google Scholar

[18]

Ş. S. Şener and M. Subaşi, On a Neumann boundary control in a parabolic system, Bound. Value Probl., 2015 (2015), 16 pp. doi: 10.1186/s13661-015-0430-5.  Google Scholar

[19]

M. Sofonea and A. Benraouda, Convergence results for elliptic quasivariational inequalities, Z. Angew. Math. Phys., 68 (2017), Art. 10, 19 pp. doi: 10.1007/s00033-016-0750-z.  Google Scholar

[20] M. Sofonea and S. Migórski, Variational-hemivariational Inequalities with Applications, CRC Press, Boca Raton, FL, 2018.   Google Scholar
[21]

N. H. Sweilam and L. F. Abd-Elal, A computational approach for optimal control systems governed by parabolic variational inequalities, J. Comput. Math., 21 (2003), 815-824.   Google Scholar

[22]

E. D. Tabacman and D. A. Tarzia, Sufficient and/ or necessary condition for the heat transfer coefficient on $\Gamma_1$ and the heat flux on $\Gamma_2$ to obtain a steady-state two-phase Stefan problem, J. Differential Equations, 77 (1989), 16-37.  doi: 10.1016/0022-0396(89)90155-1.  Google Scholar

[23]

D. A. Tarzia, Sur le problème de Stefan à deux phases, C. R. Acad. Sci. Paris Ser. A-B 288 (1979), A941–A944.  Google Scholar

[24]

F. Trölstzsch, Optimal Control of Partial Differetnial Equations. Theory, Methods and Applications, American Math. Soc., Providence, 2010. Google Scholar

[25]

S. Volkwein, Optimality system POD and a-posteriori error analysis for linear-quadratic problems, Control Cybernet., 40 (2011), 1109-1124.   Google Scholar

[26]

L. Wang and Q. Yan, Optimal control problem for exact synchronization of parabolic system, Math. Control Relat. Fields, 9 (2019), 411-424.  doi: 10.3934/mcrf.2019019.  Google Scholar

[27]

Y. Zhu, R. Du and L. Bao, Approximate controllability of a class of coupled degenerate systems, Bound. Value Probl., 2016 (2016), 7 pp. doi: 10.1186/s13661-016-0637-0.  Google Scholar

show all references

References:
[1]

A. Azzam and E. Kreyszig, On solutions of elliptic equations satisfying mixed boundary conditions, SIAM J. Math. Anal., 13 (1982), 254-262.  doi: 10.1137/0513018.  Google Scholar

[2]

I. Babŭska and S. Ohnimus, A posteriori error estimation for the semidiscrete finite element method of parabolic differential equations, Comput. Methods Appl. Mech. Engrg., 190 (2001), 4691-4712.  doi: 10.1016/S0045-7825(00)00340-6.  Google Scholar

[3]

C. BacutaJ. H. Bramble and J. E. Pasciak, Using finite element tools in proving shift theorems for elliptic boundary value problems, Numer. Linear Algebra Appl., 10 (2003), 33-64.  doi: 10.1002/nla.311.  Google Scholar

[4]

F. B. BelgacemH. E. Fekih and J. P. Raymond, A penalized Robin approach for solving a parabolic equation with nonsmooth Dirichlet boundary conditions, Asymptot. Anal., 34 (2003), 121-136.   Google Scholar

[5]

A. Bensoussan and J.-L. Lions, Applications of Variational Inequalities in Stochastic Control, Vol. 12, Studies in Mathematics and its Applications, North-Holland Publishing Co., Amsterdam-New York, 1982.  Google Scholar

[6]

M. Bergounioux and F. Tröltzsch, Optimal control of semilinear parabolic equations with state-constraints of bottleneck type, ESAIM: Control Optim. Calc. Var., 4 (1999), 595-608.  doi: 10.1051/cocv:1999124.  Google Scholar

[7]

M. Boukrouche and D. A. Tarzia, Existence, uniqueness, and convergence of optimal control problems associated with parabolic variational inequalities of the second kind, Nonlinear Anal. Real World Appl., 12 (2011), 2211-2224.  doi: 10.1016/j.nonrwa.2011.01.003.  Google Scholar

[8]

M. Boukrouche and D. A. Tarzia, Convergence of optimal control problems governed by second kind parabolic variational inequalities, J. Control Theory Appl., 11 (2013), 422-427.  doi: 10.1007/s11768-013-2155-2.  Google Scholar

[9]

K. ChrysafinosM. D. Gunzburger and L. S. Hou, Semidiscrete approximations of optimal Robin boundary control problems constrained by semilinear parabolic PDE, J. Math. Anal. Appl., 323 (2006), 891-912.  doi: 10.1016/j.jmaa.2005.10.053.  Google Scholar

[10]

C. M. Gariboldi and D. A. Tarzia, Convergence of boundary optimal control problems with restrictions in mixed elliptic Stefan-like problems, Adv. Differ. Equ. Control Process., 1 (2008), 113-132.   Google Scholar

[11]

C. M. Gariboldi and D. A. Tarzia, Existence, uniqueness and convergence of simultaneous distributed-boundary optimal control problems, Control Cybernet., 44 (2015), 5-17.   Google Scholar

[12]

C. M. Gariboldi and E. L. Schwindt, Simultaneous optimal controls for non-stationary Stokes systems, Anal. Theory Appl., 33 (2017), 229-239.  doi: 10.4208/ata.2017.v33.n3.4.  Google Scholar

[13]

L. GasińskiZ. LiuS. MigórskiA. Ochal and Z. Peng, Hemivariational inequality approach to evolutionary constrained problems on star-shaped sets, J. Optim. Theory Appl., 164 (2015), 514-533.  doi: 10.1007/s10957-014-0587-6.  Google Scholar

[14]

L. GasińskiS. Migórski and A. Ochal, Existence results for evolutionary inclusions and variational-hemivariational inequalities, Appl. Anal., 94 (2015), 1670-1694.  doi: 10.1080/00036811.2014.940920.  Google Scholar

[15]

P. Grisvard, Elliptic Problems in Nonsmooth Domains, Vol. 24, Monographs and Studies in Mathematics, Pitman, Boston, MA, 1985.  Google Scholar

[16]

J.-L. Lions, Contrȏle Optimal de Systèmes Gouvernés par des Équations aux Dérivées Partielles, Dunod, Paris, 1968.  Google Scholar

[17]

J.-L. Menaldi and D. A. Tarzia, A distributed parabolic control with mixed boundary conditions, Asymptot. Anal., 52 (2007), 227-241.   Google Scholar

[18]

Ş. S. Şener and M. Subaşi, On a Neumann boundary control in a parabolic system, Bound. Value Probl., 2015 (2015), 16 pp. doi: 10.1186/s13661-015-0430-5.  Google Scholar

[19]

M. Sofonea and A. Benraouda, Convergence results for elliptic quasivariational inequalities, Z. Angew. Math. Phys., 68 (2017), Art. 10, 19 pp. doi: 10.1007/s00033-016-0750-z.  Google Scholar

[20] M. Sofonea and S. Migórski, Variational-hemivariational Inequalities with Applications, CRC Press, Boca Raton, FL, 2018.   Google Scholar
[21]

N. H. Sweilam and L. F. Abd-Elal, A computational approach for optimal control systems governed by parabolic variational inequalities, J. Comput. Math., 21 (2003), 815-824.   Google Scholar

[22]

E. D. Tabacman and D. A. Tarzia, Sufficient and/ or necessary condition for the heat transfer coefficient on $\Gamma_1$ and the heat flux on $\Gamma_2$ to obtain a steady-state two-phase Stefan problem, J. Differential Equations, 77 (1989), 16-37.  doi: 10.1016/0022-0396(89)90155-1.  Google Scholar

[23]

D. A. Tarzia, Sur le problème de Stefan à deux phases, C. R. Acad. Sci. Paris Ser. A-B 288 (1979), A941–A944.  Google Scholar

[24]

F. Trölstzsch, Optimal Control of Partial Differetnial Equations. Theory, Methods and Applications, American Math. Soc., Providence, 2010. Google Scholar

[25]

S. Volkwein, Optimality system POD and a-posteriori error analysis for linear-quadratic problems, Control Cybernet., 40 (2011), 1109-1124.   Google Scholar

[26]

L. Wang and Q. Yan, Optimal control problem for exact synchronization of parabolic system, Math. Control Relat. Fields, 9 (2019), 411-424.  doi: 10.3934/mcrf.2019019.  Google Scholar

[27]

Y. Zhu, R. Du and L. Bao, Approximate controllability of a class of coupled degenerate systems, Bound. Value Probl., 2016 (2016), 7 pp. doi: 10.1186/s13661-016-0637-0.  Google Scholar

[1]

Kuntal Bhandari, Franck Boyer. Boundary null-controllability of coupled parabolic systems with Robin conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 61-102. doi: 10.3934/eect.2020052

[2]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[3]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001

[4]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[5]

Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020109

[6]

Roland Schnaubelt, Martin Spitz. Local wellposedness of quasilinear Maxwell equations with absorbing boundary conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 155-198. doi: 10.3934/eect.2020061

[7]

Qianqian Hou, Tai-Chia Lin, Zhi-An Wang. On a singularly perturbed semi-linear problem with Robin boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 401-414. doi: 10.3934/dcdsb.2020083

[8]

Wenrui Hao, King-Yeung Lam, Yuan Lou. Ecological and evolutionary dynamics in advective environments: Critical domain size and boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 367-400. doi: 10.3934/dcdsb.2020283

[9]

Franck Davhys Reval Langa, Morgan Pierre. A doubly splitting scheme for the Caginalp system with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 653-676. doi: 10.3934/dcdss.2020353

[10]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[11]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020398

[12]

Fang Li, Bo You. On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021024

[13]

Jan Březina, Eduard Feireisl, Antonín Novotný. On convergence to equilibria of flows of compressible viscous fluids under in/out–flux boundary conditions. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021009

[14]

Hongbo Guan, Yong Yang, Huiqing Zhu. A nonuniform anisotropic FEM for elliptic boundary layer optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1711-1722. doi: 10.3934/dcdsb.2020179

[15]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[16]

Duy Phan. Approximate controllability for Navier–Stokes equations in $ \rm3D $ cylinders under Lions boundary conditions by an explicit saturating set. Evolution Equations & Control Theory, 2021, 10 (1) : 199-227. doi: 10.3934/eect.2020062

[17]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021004

[18]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[19]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[20]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

2019 Impact Factor: 0.953

Article outline

[Back to Top]