# American Institute of Mathematical Sciences

December  2020, 9(4): 1167-1185. doi: 10.3934/eect.2020048

## Tykhonov well-posedness of a viscoplastic contact problem†

 1 School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China 2 Laboratoire de Mathématiques et Physique, University of Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan, France

* Corresponding author: Mircea Sofonea

†This paper is dedicated to Professor Meir Shillor on the occasion of his 70th birthday.

Received  October 2019 Published  March 2020

We consider an initial and boundary value problem ${{\mathcal{P}}}$ which describes the frictionless contact of a viscoplastic body with an obstacle made of a rigid body covered by a layer of elastic material. The process is quasistatic and the time of interest is $\mathbb{R}_+ = [0,+\infty)$. We list the assumptions on the data and derive a variational formulation ${{\mathcal{P}}}_V$ of the problem, in a form of a system coupling an implicit differential equation with a time-dependent variational-hemivariational inequality, which has a unique solution. We introduce the concept of Tykhonov triple ${{\mathcal{T}}} = (I,\Omega, {{\mathcal{C}}})$ where $I$ is set of parameters, $\Omega$ represents a family of approximating sets and ${{\mathcal{C} }}$ is a set of sequences, then we define the well-posedness of Problem ${{\mathcal{P}}}_V$ with respect to ${{\mathcal{T}}}$. Our main result is Theorem 3.4, which provides sufficient conditions guaranteeing the well-posedness of ${{\mathcal{P} }}_V$ with respect to a specific Tykhonov triple. We use this theorem in order to provide the continuous dependence of the solution with respect to the data. Finally, we state and prove additional convergence results which show that the weak solution to problem ${{\mathcal{P}}}$ can be approached by the weak solutions of different contact problems. Moreover, we provide the mechanical interpretation of these convergence results.

Citation: Mircea Sofonea, Yi-bin Xiao. Tykhonov well-posedness of a viscoplastic contact problem. Evolution Equations & Control Theory, 2020, 9 (4) : 1167-1185. doi: 10.3934/eect.2020048
##### References:

show all references

##### References:
 [1] Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302 [2] Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382 [3] Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248 [4] Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317 [5] Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296 [6] Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033 [7] Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465 [8] Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071 [9] Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170 [10] Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264 [11] Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050 [12] Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070 [13] Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $\beta$-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267 [14] Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047 [15] Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107 [16] Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321 [17] Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303 [18] Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $q$-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440 [19] Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468 [20] Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136