• Previous Article
    Boundary null-controllability of coupled parabolic systems with Robin conditions
  • EECT Home
  • This Issue
  • Next Article
    Global existence for a class of Keller-Segel models with signal-dependent motility and general logistic term
March  2021, 10(1): 37-59. doi: 10.3934/eect.2020051

Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions

Department of Mathematics, Istanbul Technical University, Istanbul, Turkey, Azerbaijan National Academy of Sciences Institute of Control Systems, Baku, Azerbaijan

* Corresponding author: elimhan22@yahoo.com

Received  May 2019 Revised  January 2020 Published  May 2020

The paper deals with the optimal control problem described by second order evolution differential inclusions; to this end first we use an auxiliary problem with second order discrete and discrete-approximate inclusions. Then applying infimal convolution concept of convex functions, step by step we construct the dual problems for discrete, discrete-approximate and differential inclusions and prove duality results. It seems that the Euler-Lagrange type inclusions are "duality relations" for both primary and dual problems and that the dual problem for discrete-approximate problem make a bridge between them. At the end of the paper duality in problems with second order linear discrete and continuous models and model of control problem with polyhedral DFIs are considered.

Citation: Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations & Control Theory, 2021, 10 (1) : 37-59. doi: 10.3934/eect.2020051
References:
[1]

S. Artstein-Avidan and V. Milman, A characterization of the concept of duality, Electron. Res. Announc. Math. Sci., 14 (2007), 42-59.   Google Scholar

[2]

D. Azzam-Laouir and F. Selamnia, On state-dependent sweeping process in Banach spaces, Evol. Equ. Control Theory, 7 (2018), 183-196.  doi: 10.3934/eect.2018009.  Google Scholar

[3]

V. Barbu, I. Lasiecka, D. Tiba and C. Varsan, Analysis and optimization of differential systems, IFIP TC7/WG7.2 International Working Conference Held in Constanta, September 10-14, 2002 doi: 10.1007/978-0-387-35690-7.  Google Scholar

[4]

S. A. Belbas and S. M. Lenhart, Deterministic optimal control problem with final state constraints, The 23rd IEEE Conference On Decision and Control, (1984), 526–527. doi: 10.1109/CDC.1984.272051.  Google Scholar

[5]

A. Bressan, Differential inclusions and the control of forest fires, J. Differential Equations, 243 (2007), 179-207.  doi: 10.1016/j.jde.2007.03.009.  Google Scholar

[6]

G. Buttazzo and P. I. Kogut, Weak optimal controls in coefficients for linear elliptic problems, Rev. Mat. Complut., 24 (2011), 83-94.  doi: 10.1007/s13163-010-0030-y.  Google Scholar

[7]

P. CannarsaA. Marigonda and K. T. Nguyen, Optimality conditions and regularity results for time optimal control problems with differential inclusions, J. Math. Anal. Appl., 427 (2015), 202-228.  doi: 10.1016/j.jmaa.2015.02.027.  Google Scholar

[8]

A. Dhara and A. Mehra, Conjugate duality for generalized convex optimization problems, J. Ind. Manag. Optim., 3 (2007), 415-427.  doi: 10.3934/jimo.2007.3.415.  Google Scholar

[9]

M. D. Fajardol and J. Vidal, Necessary and sufficient conditions for strong Fenchel-Lagrange duality via a coupling conjugation scheme, J. Optim. Theory Appl., 176 (2018), 57-73.  doi: 10.1007/s10957-017-1209-x.  Google Scholar

[10]

A. V. FursikovM. D. Gunzburger and L. S. Hou, Optimal boundary control for the evolutionary Navier-Stokes system: The three-dimensional case, SIAM J. Control Optim., 43 (2005), 2191-2232.  doi: 10.1137/S0363012904400805.  Google Scholar

[11]

A. D. Ioffe and V. M. Tikhomirov, Theory of Extremal Problems, Series in Nonlinear Analysis and its Applications, Izdat "Nauka", Moscow, 1974.  Google Scholar

[12]

N. C. Kourogenis, Strongly nonlinear second order differential inclusions with generalized boundary conditions, J. Math. Anal. Appl., 287 (2003), 348-364.  doi: 10.1016/S0022-247X(02)00511-5.  Google Scholar

[13]

I. Lasiecka and N. Fourrier, Regularity and stability of a wave equation with a strong damping and dynamic boundary conditions, Evol. Equ. Control Theory, 2 (2013), 631-667.  doi: 10.3934/eect.2013.2.631.  Google Scholar

[14]

P.-J. Laurent, Approximation et optimisation, in Collection Enseignment des Sciences, 13, Herman, Paris, 1972.  Google Scholar

[15]

E. N. Mahmudov, Approximation and Optimization of Discrete and Differential Inclusions, Elsevier, Inc., Amsterdam, 2011. doi: 10.1016/B978-0-12-388428-2.00001-1.  Google Scholar

[16]

E. N. Mahmudov, On duality in problems of optimal control described by convex differential inclusions of Goursat-Darboux type, J. Math. Anal. Appl., 307 (2005), 628-640.  doi: 10.1016/j.jmaa.2005.01.037.  Google Scholar

[17]

E. N. Mahmudov and M. E. Unal, Optimal control of discrete and differential inclusions with distributed parameters in the gradient form, J. Dyn. Control Syst., 18 (2012), 83-101.  doi: 10.1007/s10883-012-9135-6.  Google Scholar

[18]

E. N. Mahmudov, Optimization of fourth-order differential inclusions, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 44 (2018), 90-106.   Google Scholar

[19]

E. N. Mahmudov, Optimization of Mayer problem with Sturm-Liouville-type differential inclusions, J. Optim. Theory Appl., 177 (2018), 345-375.  doi: 10.1007/s10957-018-1260-2.  Google Scholar

[20]

E. N. Mahmudov, Optimization of fourth order Sturm-Liouville type differential inclusions with initial point constraints, J. Ind. Manag. Optim., 16 (2020), 169-187.  doi: 10.3934/jimo.2018145.  Google Scholar

[21]

E. N. Mahmudov, Optimal control of second Order delay-discrete and delay-differential inclusions with state constraints, Evol. Equ. Control Theory, 7 (2018), 501-529.  doi: 10.3934/eect.2018024.  Google Scholar

[22]

E. N. Mahmudov, Optimal control of higher order differential inclusions with functional constraints, ESAIM: Control, Optimisation and Calculus of Variations, (2019). doi: 10.1051/cocv/2019018.  Google Scholar

[23]

B. S. Mordukhovich and T. H. Cao, Optimal control of a nonconvex perturbed sweeping process, J. Differential Equations, 266 (2019), 1003-1050.  doi: 10.1016/j.jde.2018.07.066.  Google Scholar

[24]

N. S. Papageorgiou and V. D. Rădulescu, Periodic solutions for time-dependent subdifferential evolution inclusions, Evol. Equ. Control Theory, 6 (2017), 277-297.  doi: 10.3934/eect.2017015.  Google Scholar

[25]

R. T. Rockafellar and P. R. Wolenski, Convexity in Hamilton-Jacobi theory. 1. Dynamics and duality, SIAM J. Control Optim., 39 (2000), 1323-1350.  doi: 10.1137/S0363012998345366.  Google Scholar

[26]

T. I. Seidman, Compactness of a fixpoint set and optimal control, Appl. Anal., 88 (2009), 419-423.  doi: 10.1080/00036810902766708.  Google Scholar

[27]

S. SharmaA. Jayswal and S. Choudhury, Sufficiency and mixed type duality for multiobjective variational control problems involving $\alpha$-V-univexity, Evol. Equ. Control Theory, 6 (2017), 93-109.  doi: 10.3934/eect.2017006.  Google Scholar

[28]

Y. ZhouV. Vijayakumar and R. Murugesu, Controllability for fractional evolution inclusions without compactness, Evol. Equ. Control Theory, 4 (2015), 507-524.  doi: 10.3934/eect.2015.4.507.  Google Scholar

[29]

Q. Zhang and G. Li, Nonlinear boundary value problems for second order differential inclusions, Nonlinear Anal., 70 (2009), 3390-3406.  doi: 10.1016/j.na.2008.05.007.  Google Scholar

show all references

References:
[1]

S. Artstein-Avidan and V. Milman, A characterization of the concept of duality, Electron. Res. Announc. Math. Sci., 14 (2007), 42-59.   Google Scholar

[2]

D. Azzam-Laouir and F. Selamnia, On state-dependent sweeping process in Banach spaces, Evol. Equ. Control Theory, 7 (2018), 183-196.  doi: 10.3934/eect.2018009.  Google Scholar

[3]

V. Barbu, I. Lasiecka, D. Tiba and C. Varsan, Analysis and optimization of differential systems, IFIP TC7/WG7.2 International Working Conference Held in Constanta, September 10-14, 2002 doi: 10.1007/978-0-387-35690-7.  Google Scholar

[4]

S. A. Belbas and S. M. Lenhart, Deterministic optimal control problem with final state constraints, The 23rd IEEE Conference On Decision and Control, (1984), 526–527. doi: 10.1109/CDC.1984.272051.  Google Scholar

[5]

A. Bressan, Differential inclusions and the control of forest fires, J. Differential Equations, 243 (2007), 179-207.  doi: 10.1016/j.jde.2007.03.009.  Google Scholar

[6]

G. Buttazzo and P. I. Kogut, Weak optimal controls in coefficients for linear elliptic problems, Rev. Mat. Complut., 24 (2011), 83-94.  doi: 10.1007/s13163-010-0030-y.  Google Scholar

[7]

P. CannarsaA. Marigonda and K. T. Nguyen, Optimality conditions and regularity results for time optimal control problems with differential inclusions, J. Math. Anal. Appl., 427 (2015), 202-228.  doi: 10.1016/j.jmaa.2015.02.027.  Google Scholar

[8]

A. Dhara and A. Mehra, Conjugate duality for generalized convex optimization problems, J. Ind. Manag. Optim., 3 (2007), 415-427.  doi: 10.3934/jimo.2007.3.415.  Google Scholar

[9]

M. D. Fajardol and J. Vidal, Necessary and sufficient conditions for strong Fenchel-Lagrange duality via a coupling conjugation scheme, J. Optim. Theory Appl., 176 (2018), 57-73.  doi: 10.1007/s10957-017-1209-x.  Google Scholar

[10]

A. V. FursikovM. D. Gunzburger and L. S. Hou, Optimal boundary control for the evolutionary Navier-Stokes system: The three-dimensional case, SIAM J. Control Optim., 43 (2005), 2191-2232.  doi: 10.1137/S0363012904400805.  Google Scholar

[11]

A. D. Ioffe and V. M. Tikhomirov, Theory of Extremal Problems, Series in Nonlinear Analysis and its Applications, Izdat "Nauka", Moscow, 1974.  Google Scholar

[12]

N. C. Kourogenis, Strongly nonlinear second order differential inclusions with generalized boundary conditions, J. Math. Anal. Appl., 287 (2003), 348-364.  doi: 10.1016/S0022-247X(02)00511-5.  Google Scholar

[13]

I. Lasiecka and N. Fourrier, Regularity and stability of a wave equation with a strong damping and dynamic boundary conditions, Evol. Equ. Control Theory, 2 (2013), 631-667.  doi: 10.3934/eect.2013.2.631.  Google Scholar

[14]

P.-J. Laurent, Approximation et optimisation, in Collection Enseignment des Sciences, 13, Herman, Paris, 1972.  Google Scholar

[15]

E. N. Mahmudov, Approximation and Optimization of Discrete and Differential Inclusions, Elsevier, Inc., Amsterdam, 2011. doi: 10.1016/B978-0-12-388428-2.00001-1.  Google Scholar

[16]

E. N. Mahmudov, On duality in problems of optimal control described by convex differential inclusions of Goursat-Darboux type, J. Math. Anal. Appl., 307 (2005), 628-640.  doi: 10.1016/j.jmaa.2005.01.037.  Google Scholar

[17]

E. N. Mahmudov and M. E. Unal, Optimal control of discrete and differential inclusions with distributed parameters in the gradient form, J. Dyn. Control Syst., 18 (2012), 83-101.  doi: 10.1007/s10883-012-9135-6.  Google Scholar

[18]

E. N. Mahmudov, Optimization of fourth-order differential inclusions, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 44 (2018), 90-106.   Google Scholar

[19]

E. N. Mahmudov, Optimization of Mayer problem with Sturm-Liouville-type differential inclusions, J. Optim. Theory Appl., 177 (2018), 345-375.  doi: 10.1007/s10957-018-1260-2.  Google Scholar

[20]

E. N. Mahmudov, Optimization of fourth order Sturm-Liouville type differential inclusions with initial point constraints, J. Ind. Manag. Optim., 16 (2020), 169-187.  doi: 10.3934/jimo.2018145.  Google Scholar

[21]

E. N. Mahmudov, Optimal control of second Order delay-discrete and delay-differential inclusions with state constraints, Evol. Equ. Control Theory, 7 (2018), 501-529.  doi: 10.3934/eect.2018024.  Google Scholar

[22]

E. N. Mahmudov, Optimal control of higher order differential inclusions with functional constraints, ESAIM: Control, Optimisation and Calculus of Variations, (2019). doi: 10.1051/cocv/2019018.  Google Scholar

[23]

B. S. Mordukhovich and T. H. Cao, Optimal control of a nonconvex perturbed sweeping process, J. Differential Equations, 266 (2019), 1003-1050.  doi: 10.1016/j.jde.2018.07.066.  Google Scholar

[24]

N. S. Papageorgiou and V. D. Rădulescu, Periodic solutions for time-dependent subdifferential evolution inclusions, Evol. Equ. Control Theory, 6 (2017), 277-297.  doi: 10.3934/eect.2017015.  Google Scholar

[25]

R. T. Rockafellar and P. R. Wolenski, Convexity in Hamilton-Jacobi theory. 1. Dynamics and duality, SIAM J. Control Optim., 39 (2000), 1323-1350.  doi: 10.1137/S0363012998345366.  Google Scholar

[26]

T. I. Seidman, Compactness of a fixpoint set and optimal control, Appl. Anal., 88 (2009), 419-423.  doi: 10.1080/00036810902766708.  Google Scholar

[27]

S. SharmaA. Jayswal and S. Choudhury, Sufficiency and mixed type duality for multiobjective variational control problems involving $\alpha$-V-univexity, Evol. Equ. Control Theory, 6 (2017), 93-109.  doi: 10.3934/eect.2017006.  Google Scholar

[28]

Y. ZhouV. Vijayakumar and R. Murugesu, Controllability for fractional evolution inclusions without compactness, Evol. Equ. Control Theory, 4 (2015), 507-524.  doi: 10.3934/eect.2015.4.507.  Google Scholar

[29]

Q. Zhang and G. Li, Nonlinear boundary value problems for second order differential inclusions, Nonlinear Anal., 70 (2009), 3390-3406.  doi: 10.1016/j.na.2008.05.007.  Google Scholar

[1]

Manxue You, Shengjie Li. Perturbation of Image and conjugate duality for vector optimization. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020176

[2]

Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1181-1195. doi: 10.3934/dcdss.2020226

[3]

Xinlin Cao, Huaian Diao, Jinhong Li. Some recent progress on inverse scattering problems within general polyhedral geometry. Electronic Research Archive, 2021, 29 (1) : 1753-1782. doi: 10.3934/era.2020090

[4]

Baoli Yin, Yang Liu, Hong Li, Zhimin Zhang. Approximation methods for the distributed order calculus using the convolution quadrature. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1447-1468. doi: 10.3934/dcdsb.2020168

[5]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[6]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[7]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[8]

Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106

[9]

Yuxi Zheng. Absorption of characteristics by sonic curve of the two-dimensional Euler equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 605-616. doi: 10.3934/dcds.2009.23.605

[10]

Peter Frolkovič, Karol Mikula, Jooyoung Hahn, Dirk Martin, Branislav Basara. Flux balanced approximation with least-squares gradient for diffusion equation on polyhedral mesh. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 865-879. doi: 10.3934/dcdss.2020350

[11]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[12]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[13]

Yue-Jun Peng, Shu Wang. Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 415-433. doi: 10.3934/dcds.2009.23.415

[14]

Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003

[15]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[16]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[17]

Angelica Pachon, Federico Polito, Costantino Ricciuti. On discrete-time semi-Markov processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1499-1529. doi: 10.3934/dcdsb.2020170

[18]

Duy Phan. Approximate controllability for Navier–Stokes equations in $ \rm3D $ cylinders under Lions boundary conditions by an explicit saturating set. Evolution Equations & Control Theory, 2021, 10 (1) : 199-227. doi: 10.3934/eect.2020062

[19]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[20]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (187)
  • HTML views (302)
  • Cited by (1)

Other articles
by authors

[Back to Top]