-
Previous Article
Boundary null-controllability of coupled parabolic systems with Robin conditions
- EECT Home
- This Issue
-
Next Article
Global existence for a class of Keller-Segel models with signal-dependent motility and general logistic term
Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions
Department of Mathematics, Istanbul Technical University, Istanbul, Turkey, Azerbaijan National Academy of Sciences Institute of Control Systems, Baku, Azerbaijan |
The paper deals with the optimal control problem described by second order evolution differential inclusions; to this end first we use an auxiliary problem with second order discrete and discrete-approximate inclusions. Then applying infimal convolution concept of convex functions, step by step we construct the dual problems for discrete, discrete-approximate and differential inclusions and prove duality results. It seems that the Euler-Lagrange type inclusions are "duality relations" for both primary and dual problems and that the dual problem for discrete-approximate problem make a bridge between them. At the end of the paper duality in problems with second order linear discrete and continuous models and model of control problem with polyhedral DFIs are considered.
References:
[1] |
S. Artstein-Avidan and V. Milman,
A characterization of the concept of duality, Electron. Res. Announc. Math. Sci., 14 (2007), 42-59.
|
[2] |
D. Azzam-Laouir and F. Selamnia,
On state-dependent sweeping process in Banach spaces, Evol. Equ. Control Theory, 7 (2018), 183-196.
doi: 10.3934/eect.2018009. |
[3] |
V. Barbu, I. Lasiecka, D. Tiba and C. Varsan, Analysis and optimization of differential systems, IFIP TC7/WG7.2 International Working Conference Held in Constanta, September 10-14, 2002
doi: 10.1007/978-0-387-35690-7. |
[4] |
S. A. Belbas and S. M. Lenhart, Deterministic optimal control problem with final state constraints, The 23rd IEEE Conference On Decision and Control, (1984), 526–527.
doi: 10.1109/CDC.1984.272051. |
[5] |
A. Bressan,
Differential inclusions and the control of forest fires, J. Differential Equations, 243 (2007), 179-207.
doi: 10.1016/j.jde.2007.03.009. |
[6] |
G. Buttazzo and P. I. Kogut,
Weak optimal controls in coefficients for linear elliptic problems, Rev. Mat. Complut., 24 (2011), 83-94.
doi: 10.1007/s13163-010-0030-y. |
[7] |
P. Cannarsa, A. Marigonda and K. T. Nguyen,
Optimality conditions and regularity results for time optimal control problems with differential inclusions, J. Math. Anal. Appl., 427 (2015), 202-228.
doi: 10.1016/j.jmaa.2015.02.027. |
[8] |
A. Dhara and A. Mehra,
Conjugate duality for generalized convex optimization problems, J. Ind. Manag. Optim., 3 (2007), 415-427.
doi: 10.3934/jimo.2007.3.415. |
[9] |
M. D. Fajardol and J. Vidal,
Necessary and sufficient conditions for strong Fenchel-Lagrange duality via a coupling conjugation scheme, J. Optim. Theory Appl., 176 (2018), 57-73.
doi: 10.1007/s10957-017-1209-x. |
[10] |
A. V. Fursikov, M. D. Gunzburger and L. S. Hou,
Optimal boundary control for the evolutionary Navier-Stokes system: The three-dimensional case, SIAM J. Control Optim., 43 (2005), 2191-2232.
doi: 10.1137/S0363012904400805. |
[11] |
A. D. Ioffe and V. M. Tikhomirov, Theory of Extremal Problems, Series in Nonlinear Analysis and its Applications, Izdat "Nauka", Moscow, 1974. |
[12] |
N. C. Kourogenis,
Strongly nonlinear second order differential inclusions with generalized boundary conditions, J. Math. Anal. Appl., 287 (2003), 348-364.
doi: 10.1016/S0022-247X(02)00511-5. |
[13] |
I. Lasiecka and N. Fourrier,
Regularity and stability of a wave equation with a strong damping and dynamic boundary conditions, Evol. Equ. Control Theory, 2 (2013), 631-667.
doi: 10.3934/eect.2013.2.631. |
[14] |
P.-J. Laurent, Approximation et optimisation, in Collection Enseignment des Sciences, 13, Herman, Paris, 1972. |
[15] |
E. N. Mahmudov, Approximation and Optimization of Discrete and Differential Inclusions, Elsevier, Inc., Amsterdam, 2011.
doi: 10.1016/B978-0-12-388428-2.00001-1. |
[16] |
E. N. Mahmudov,
On duality in problems of optimal control described by convex differential inclusions of Goursat-Darboux type, J. Math. Anal. Appl., 307 (2005), 628-640.
doi: 10.1016/j.jmaa.2005.01.037. |
[17] |
E. N. Mahmudov and M. E. Unal,
Optimal control of discrete and differential inclusions with distributed parameters in the gradient form, J. Dyn. Control Syst., 18 (2012), 83-101.
doi: 10.1007/s10883-012-9135-6. |
[18] |
E. N. Mahmudov,
Optimization of fourth-order differential inclusions, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 44 (2018), 90-106.
|
[19] |
E. N. Mahmudov,
Optimization of Mayer problem with Sturm-Liouville-type differential inclusions, J. Optim. Theory Appl., 177 (2018), 345-375.
doi: 10.1007/s10957-018-1260-2. |
[20] |
E. N. Mahmudov,
Optimization of fourth order Sturm-Liouville type differential inclusions with initial point constraints, J. Ind. Manag. Optim., 16 (2020), 169-187.
doi: 10.3934/jimo.2018145. |
[21] |
E. N. Mahmudov,
Optimal control of second Order delay-discrete and delay-differential inclusions with state constraints, Evol. Equ. Control Theory, 7 (2018), 501-529.
doi: 10.3934/eect.2018024. |
[22] |
E. N. Mahmudov, Optimal control of higher order differential inclusions with functional constraints, ESAIM: Control, Optimisation and Calculus of Variations, (2019).
doi: 10.1051/cocv/2019018. |
[23] |
B. S. Mordukhovich and T. H. Cao,
Optimal control of a nonconvex perturbed sweeping process, J. Differential Equations, 266 (2019), 1003-1050.
doi: 10.1016/j.jde.2018.07.066. |
[24] |
N. S. Papageorgiou and V. D. Rădulescu,
Periodic solutions for time-dependent subdifferential evolution inclusions, Evol. Equ. Control Theory, 6 (2017), 277-297.
doi: 10.3934/eect.2017015. |
[25] |
R. T. Rockafellar and P. R. Wolenski,
Convexity in Hamilton-Jacobi theory. 1. Dynamics and duality, SIAM J. Control Optim., 39 (2000), 1323-1350.
doi: 10.1137/S0363012998345366. |
[26] |
T. I. Seidman,
Compactness of a fixpoint set and optimal control, Appl. Anal., 88 (2009), 419-423.
doi: 10.1080/00036810902766708. |
[27] |
S. Sharma, A. Jayswal and S. Choudhury,
Sufficiency and mixed type duality for multiobjective variational control problems involving $\alpha$-V-univexity, Evol. Equ. Control Theory, 6 (2017), 93-109.
doi: 10.3934/eect.2017006. |
[28] |
Y. Zhou, V. Vijayakumar and R. Murugesu,
Controllability for fractional evolution inclusions without compactness, Evol. Equ. Control Theory, 4 (2015), 507-524.
doi: 10.3934/eect.2015.4.507. |
[29] |
Q. Zhang and G. Li,
Nonlinear boundary value problems for second order differential inclusions, Nonlinear Anal., 70 (2009), 3390-3406.
doi: 10.1016/j.na.2008.05.007. |
show all references
References:
[1] |
S. Artstein-Avidan and V. Milman,
A characterization of the concept of duality, Electron. Res. Announc. Math. Sci., 14 (2007), 42-59.
|
[2] |
D. Azzam-Laouir and F. Selamnia,
On state-dependent sweeping process in Banach spaces, Evol. Equ. Control Theory, 7 (2018), 183-196.
doi: 10.3934/eect.2018009. |
[3] |
V. Barbu, I. Lasiecka, D. Tiba and C. Varsan, Analysis and optimization of differential systems, IFIP TC7/WG7.2 International Working Conference Held in Constanta, September 10-14, 2002
doi: 10.1007/978-0-387-35690-7. |
[4] |
S. A. Belbas and S. M. Lenhart, Deterministic optimal control problem with final state constraints, The 23rd IEEE Conference On Decision and Control, (1984), 526–527.
doi: 10.1109/CDC.1984.272051. |
[5] |
A. Bressan,
Differential inclusions and the control of forest fires, J. Differential Equations, 243 (2007), 179-207.
doi: 10.1016/j.jde.2007.03.009. |
[6] |
G. Buttazzo and P. I. Kogut,
Weak optimal controls in coefficients for linear elliptic problems, Rev. Mat. Complut., 24 (2011), 83-94.
doi: 10.1007/s13163-010-0030-y. |
[7] |
P. Cannarsa, A. Marigonda and K. T. Nguyen,
Optimality conditions and regularity results for time optimal control problems with differential inclusions, J. Math. Anal. Appl., 427 (2015), 202-228.
doi: 10.1016/j.jmaa.2015.02.027. |
[8] |
A. Dhara and A. Mehra,
Conjugate duality for generalized convex optimization problems, J. Ind. Manag. Optim., 3 (2007), 415-427.
doi: 10.3934/jimo.2007.3.415. |
[9] |
M. D. Fajardol and J. Vidal,
Necessary and sufficient conditions for strong Fenchel-Lagrange duality via a coupling conjugation scheme, J. Optim. Theory Appl., 176 (2018), 57-73.
doi: 10.1007/s10957-017-1209-x. |
[10] |
A. V. Fursikov, M. D. Gunzburger and L. S. Hou,
Optimal boundary control for the evolutionary Navier-Stokes system: The three-dimensional case, SIAM J. Control Optim., 43 (2005), 2191-2232.
doi: 10.1137/S0363012904400805. |
[11] |
A. D. Ioffe and V. M. Tikhomirov, Theory of Extremal Problems, Series in Nonlinear Analysis and its Applications, Izdat "Nauka", Moscow, 1974. |
[12] |
N. C. Kourogenis,
Strongly nonlinear second order differential inclusions with generalized boundary conditions, J. Math. Anal. Appl., 287 (2003), 348-364.
doi: 10.1016/S0022-247X(02)00511-5. |
[13] |
I. Lasiecka and N. Fourrier,
Regularity and stability of a wave equation with a strong damping and dynamic boundary conditions, Evol. Equ. Control Theory, 2 (2013), 631-667.
doi: 10.3934/eect.2013.2.631. |
[14] |
P.-J. Laurent, Approximation et optimisation, in Collection Enseignment des Sciences, 13, Herman, Paris, 1972. |
[15] |
E. N. Mahmudov, Approximation and Optimization of Discrete and Differential Inclusions, Elsevier, Inc., Amsterdam, 2011.
doi: 10.1016/B978-0-12-388428-2.00001-1. |
[16] |
E. N. Mahmudov,
On duality in problems of optimal control described by convex differential inclusions of Goursat-Darboux type, J. Math. Anal. Appl., 307 (2005), 628-640.
doi: 10.1016/j.jmaa.2005.01.037. |
[17] |
E. N. Mahmudov and M. E. Unal,
Optimal control of discrete and differential inclusions with distributed parameters in the gradient form, J. Dyn. Control Syst., 18 (2012), 83-101.
doi: 10.1007/s10883-012-9135-6. |
[18] |
E. N. Mahmudov,
Optimization of fourth-order differential inclusions, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 44 (2018), 90-106.
|
[19] |
E. N. Mahmudov,
Optimization of Mayer problem with Sturm-Liouville-type differential inclusions, J. Optim. Theory Appl., 177 (2018), 345-375.
doi: 10.1007/s10957-018-1260-2. |
[20] |
E. N. Mahmudov,
Optimization of fourth order Sturm-Liouville type differential inclusions with initial point constraints, J. Ind. Manag. Optim., 16 (2020), 169-187.
doi: 10.3934/jimo.2018145. |
[21] |
E. N. Mahmudov,
Optimal control of second Order delay-discrete and delay-differential inclusions with state constraints, Evol. Equ. Control Theory, 7 (2018), 501-529.
doi: 10.3934/eect.2018024. |
[22] |
E. N. Mahmudov, Optimal control of higher order differential inclusions with functional constraints, ESAIM: Control, Optimisation and Calculus of Variations, (2019).
doi: 10.1051/cocv/2019018. |
[23] |
B. S. Mordukhovich and T. H. Cao,
Optimal control of a nonconvex perturbed sweeping process, J. Differential Equations, 266 (2019), 1003-1050.
doi: 10.1016/j.jde.2018.07.066. |
[24] |
N. S. Papageorgiou and V. D. Rădulescu,
Periodic solutions for time-dependent subdifferential evolution inclusions, Evol. Equ. Control Theory, 6 (2017), 277-297.
doi: 10.3934/eect.2017015. |
[25] |
R. T. Rockafellar and P. R. Wolenski,
Convexity in Hamilton-Jacobi theory. 1. Dynamics and duality, SIAM J. Control Optim., 39 (2000), 1323-1350.
doi: 10.1137/S0363012998345366. |
[26] |
T. I. Seidman,
Compactness of a fixpoint set and optimal control, Appl. Anal., 88 (2009), 419-423.
doi: 10.1080/00036810902766708. |
[27] |
S. Sharma, A. Jayswal and S. Choudhury,
Sufficiency and mixed type duality for multiobjective variational control problems involving $\alpha$-V-univexity, Evol. Equ. Control Theory, 6 (2017), 93-109.
doi: 10.3934/eect.2017006. |
[28] |
Y. Zhou, V. Vijayakumar and R. Murugesu,
Controllability for fractional evolution inclusions without compactness, Evol. Equ. Control Theory, 4 (2015), 507-524.
doi: 10.3934/eect.2015.4.507. |
[29] |
Q. Zhang and G. Li,
Nonlinear boundary value problems for second order differential inclusions, Nonlinear Anal., 70 (2009), 3390-3406.
doi: 10.1016/j.na.2008.05.007. |
[1] |
Manxue You, Shengjie Li. Perturbation of Image and conjugate duality for vector optimization. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020176 |
[2] |
Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1181-1195. doi: 10.3934/dcdss.2020226 |
[3] |
Xinlin Cao, Huaian Diao, Jinhong Li. Some recent progress on inverse scattering problems within general polyhedral geometry. Electronic Research Archive, 2021, 29 (1) : 1753-1782. doi: 10.3934/era.2020090 |
[4] |
Baoli Yin, Yang Liu, Hong Li, Zhimin Zhang. Approximation methods for the distributed order calculus using the convolution quadrature. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1447-1468. doi: 10.3934/dcdsb.2020168 |
[5] |
Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168 |
[6] |
Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020049 |
[7] |
Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072 |
[8] |
Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106 |
[9] |
Yuxi Zheng. Absorption of characteristics by sonic curve of the two-dimensional Euler equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 605-616. doi: 10.3934/dcds.2009.23.605 |
[10] |
Peter Frolkovič, Karol Mikula, Jooyoung Hahn, Dirk Martin, Branislav Basara. Flux balanced approximation with least-squares gradient for diffusion equation on polyhedral mesh. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 865-879. doi: 10.3934/dcdss.2020350 |
[11] |
Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234 |
[12] |
Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020103 |
[13] |
Yue-Jun Peng, Shu Wang. Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 415-433. doi: 10.3934/dcds.2009.23.415 |
[14] |
Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003 |
[15] |
Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029 |
[16] |
Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571 |
[17] |
Angelica Pachon, Federico Polito, Costantino Ricciuti. On discrete-time semi-Markov processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1499-1529. doi: 10.3934/dcdsb.2020170 |
[18] |
Duy Phan. Approximate controllability for Navier–Stokes equations in $ \rm3D $ cylinders under Lions boundary conditions by an explicit saturating set. Evolution Equations & Control Theory, 2021, 10 (1) : 199-227. doi: 10.3934/eect.2020062 |
[19] |
Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020046 |
[20] |
Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020339 |
2019 Impact Factor: 0.953
Tools
Metrics
Other articles
by authors
[Back to Top]