doi: 10.3934/eect.2020051

Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions

Department of Mathematics, Istanbul Technical University, Istanbul, Turkey, Azerbaijan National Academy of Sciences Institute of Control Systems, Baku, Azerbaijan

* Corresponding author: elimhan22@yahoo.com

Received  May 2019 Revised  January 2020 Published  May 2020

The paper deals with the optimal control problem described by second order evolution differential inclusions; to this end first we use an auxiliary problem with second order discrete and discrete-approximate inclusions. Then applying infimal convolution concept of convex functions, step by step we construct the dual problems for discrete, discrete-approximate and differential inclusions and prove duality results. It seems that the Euler-Lagrange type inclusions are "duality relations" for both primary and dual problems and that the dual problem for discrete-approximate problem make a bridge between them. At the end of the paper duality in problems with second order linear discrete and continuous models and model of control problem with polyhedral DFIs are considered.

Citation: Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations & Control Theory, doi: 10.3934/eect.2020051
References:
[1]

S. Artstein-Avidan and V. Milman, A characterization of the concept of duality, Electron. Res. Announc. Math. Sci., 14 (2007), 42-59.   Google Scholar

[2]

D. Azzam-Laouir and F. Selamnia, On state-dependent sweeping process in Banach spaces, Evol. Equ. Control Theory, 7 (2018), 183-196.  doi: 10.3934/eect.2018009.  Google Scholar

[3]

V. Barbu, I. Lasiecka, D. Tiba and C. Varsan, Analysis and optimization of differential systems, IFIP TC7/WG7.2 International Working Conference Held in Constanta, September 10-14, 2002 doi: 10.1007/978-0-387-35690-7.  Google Scholar

[4]

S. A. Belbas and S. M. Lenhart, Deterministic optimal control problem with final state constraints, The 23rd IEEE Conference On Decision and Control, (1984), 526–527. doi: 10.1109/CDC.1984.272051.  Google Scholar

[5]

A. Bressan, Differential inclusions and the control of forest fires, J. Differential Equations, 243 (2007), 179-207.  doi: 10.1016/j.jde.2007.03.009.  Google Scholar

[6]

G. Buttazzo and P. I. Kogut, Weak optimal controls in coefficients for linear elliptic problems, Rev. Mat. Complut., 24 (2011), 83-94.  doi: 10.1007/s13163-010-0030-y.  Google Scholar

[7]

P. CannarsaA. Marigonda and K. T. Nguyen, Optimality conditions and regularity results for time optimal control problems with differential inclusions, J. Math. Anal. Appl., 427 (2015), 202-228.  doi: 10.1016/j.jmaa.2015.02.027.  Google Scholar

[8]

A. Dhara and A. Mehra, Conjugate duality for generalized convex optimization problems, J. Ind. Manag. Optim., 3 (2007), 415-427.  doi: 10.3934/jimo.2007.3.415.  Google Scholar

[9]

M. D. Fajardol and J. Vidal, Necessary and sufficient conditions for strong Fenchel-Lagrange duality via a coupling conjugation scheme, J. Optim. Theory Appl., 176 (2018), 57-73.  doi: 10.1007/s10957-017-1209-x.  Google Scholar

[10]

A. V. FursikovM. D. Gunzburger and L. S. Hou, Optimal boundary control for the evolutionary Navier-Stokes system: The three-dimensional case, SIAM J. Control Optim., 43 (2005), 2191-2232.  doi: 10.1137/S0363012904400805.  Google Scholar

[11]

A. D. Ioffe and V. M. Tikhomirov, Theory of Extremal Problems, Series in Nonlinear Analysis and its Applications, Izdat "Nauka", Moscow, 1974.  Google Scholar

[12]

N. C. Kourogenis, Strongly nonlinear second order differential inclusions with generalized boundary conditions, J. Math. Anal. Appl., 287 (2003), 348-364.  doi: 10.1016/S0022-247X(02)00511-5.  Google Scholar

[13]

I. Lasiecka and N. Fourrier, Regularity and stability of a wave equation with a strong damping and dynamic boundary conditions, Evol. Equ. Control Theory, 2 (2013), 631-667.  doi: 10.3934/eect.2013.2.631.  Google Scholar

[14]

P.-J. Laurent, Approximation et optimisation, in Collection Enseignment des Sciences, 13, Herman, Paris, 1972.  Google Scholar

[15]

E. N. Mahmudov, Approximation and Optimization of Discrete and Differential Inclusions, Elsevier, Inc., Amsterdam, 2011. doi: 10.1016/B978-0-12-388428-2.00001-1.  Google Scholar

[16]

E. N. Mahmudov, On duality in problems of optimal control described by convex differential inclusions of Goursat-Darboux type, J. Math. Anal. Appl., 307 (2005), 628-640.  doi: 10.1016/j.jmaa.2005.01.037.  Google Scholar

[17]

E. N. Mahmudov and M. E. Unal, Optimal control of discrete and differential inclusions with distributed parameters in the gradient form, J. Dyn. Control Syst., 18 (2012), 83-101.  doi: 10.1007/s10883-012-9135-6.  Google Scholar

[18]

E. N. Mahmudov, Optimization of fourth-order differential inclusions, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 44 (2018), 90-106.   Google Scholar

[19]

E. N. Mahmudov, Optimization of Mayer problem with Sturm-Liouville-type differential inclusions, J. Optim. Theory Appl., 177 (2018), 345-375.  doi: 10.1007/s10957-018-1260-2.  Google Scholar

[20]

E. N. Mahmudov, Optimization of fourth order Sturm-Liouville type differential inclusions with initial point constraints, J. Ind. Manag. Optim., 16 (2020), 169-187.  doi: 10.3934/jimo.2018145.  Google Scholar

[21]

E. N. Mahmudov, Optimal control of second Order delay-discrete and delay-differential inclusions with state constraints, Evol. Equ. Control Theory, 7 (2018), 501-529.  doi: 10.3934/eect.2018024.  Google Scholar

[22]

E. N. Mahmudov, Optimal control of higher order differential inclusions with functional constraints, ESAIM: Control, Optimisation and Calculus of Variations, (2019). doi: 10.1051/cocv/2019018.  Google Scholar

[23]

B. S. Mordukhovich and T. H. Cao, Optimal control of a nonconvex perturbed sweeping process, J. Differential Equations, 266 (2019), 1003-1050.  doi: 10.1016/j.jde.2018.07.066.  Google Scholar

[24]

N. S. Papageorgiou and V. D. Rădulescu, Periodic solutions for time-dependent subdifferential evolution inclusions, Evol. Equ. Control Theory, 6 (2017), 277-297.  doi: 10.3934/eect.2017015.  Google Scholar

[25]

R. T. Rockafellar and P. R. Wolenski, Convexity in Hamilton-Jacobi theory. 1. Dynamics and duality, SIAM J. Control Optim., 39 (2000), 1323-1350.  doi: 10.1137/S0363012998345366.  Google Scholar

[26]

T. I. Seidman, Compactness of a fixpoint set and optimal control, Appl. Anal., 88 (2009), 419-423.  doi: 10.1080/00036810902766708.  Google Scholar

[27]

S. SharmaA. Jayswal and S. Choudhury, Sufficiency and mixed type duality for multiobjective variational control problems involving $\alpha$-V-univexity, Evol. Equ. Control Theory, 6 (2017), 93-109.  doi: 10.3934/eect.2017006.  Google Scholar

[28]

Y. ZhouV. Vijayakumar and R. Murugesu, Controllability for fractional evolution inclusions without compactness, Evol. Equ. Control Theory, 4 (2015), 507-524.  doi: 10.3934/eect.2015.4.507.  Google Scholar

[29]

Q. Zhang and G. Li, Nonlinear boundary value problems for second order differential inclusions, Nonlinear Anal., 70 (2009), 3390-3406.  doi: 10.1016/j.na.2008.05.007.  Google Scholar

show all references

References:
[1]

S. Artstein-Avidan and V. Milman, A characterization of the concept of duality, Electron. Res. Announc. Math. Sci., 14 (2007), 42-59.   Google Scholar

[2]

D. Azzam-Laouir and F. Selamnia, On state-dependent sweeping process in Banach spaces, Evol. Equ. Control Theory, 7 (2018), 183-196.  doi: 10.3934/eect.2018009.  Google Scholar

[3]

V. Barbu, I. Lasiecka, D. Tiba and C. Varsan, Analysis and optimization of differential systems, IFIP TC7/WG7.2 International Working Conference Held in Constanta, September 10-14, 2002 doi: 10.1007/978-0-387-35690-7.  Google Scholar

[4]

S. A. Belbas and S. M. Lenhart, Deterministic optimal control problem with final state constraints, The 23rd IEEE Conference On Decision and Control, (1984), 526–527. doi: 10.1109/CDC.1984.272051.  Google Scholar

[5]

A. Bressan, Differential inclusions and the control of forest fires, J. Differential Equations, 243 (2007), 179-207.  doi: 10.1016/j.jde.2007.03.009.  Google Scholar

[6]

G. Buttazzo and P. I. Kogut, Weak optimal controls in coefficients for linear elliptic problems, Rev. Mat. Complut., 24 (2011), 83-94.  doi: 10.1007/s13163-010-0030-y.  Google Scholar

[7]

P. CannarsaA. Marigonda and K. T. Nguyen, Optimality conditions and regularity results for time optimal control problems with differential inclusions, J. Math. Anal. Appl., 427 (2015), 202-228.  doi: 10.1016/j.jmaa.2015.02.027.  Google Scholar

[8]

A. Dhara and A. Mehra, Conjugate duality for generalized convex optimization problems, J. Ind. Manag. Optim., 3 (2007), 415-427.  doi: 10.3934/jimo.2007.3.415.  Google Scholar

[9]

M. D. Fajardol and J. Vidal, Necessary and sufficient conditions for strong Fenchel-Lagrange duality via a coupling conjugation scheme, J. Optim. Theory Appl., 176 (2018), 57-73.  doi: 10.1007/s10957-017-1209-x.  Google Scholar

[10]

A. V. FursikovM. D. Gunzburger and L. S. Hou, Optimal boundary control for the evolutionary Navier-Stokes system: The three-dimensional case, SIAM J. Control Optim., 43 (2005), 2191-2232.  doi: 10.1137/S0363012904400805.  Google Scholar

[11]

A. D. Ioffe and V. M. Tikhomirov, Theory of Extremal Problems, Series in Nonlinear Analysis and its Applications, Izdat "Nauka", Moscow, 1974.  Google Scholar

[12]

N. C. Kourogenis, Strongly nonlinear second order differential inclusions with generalized boundary conditions, J. Math. Anal. Appl., 287 (2003), 348-364.  doi: 10.1016/S0022-247X(02)00511-5.  Google Scholar

[13]

I. Lasiecka and N. Fourrier, Regularity and stability of a wave equation with a strong damping and dynamic boundary conditions, Evol. Equ. Control Theory, 2 (2013), 631-667.  doi: 10.3934/eect.2013.2.631.  Google Scholar

[14]

P.-J. Laurent, Approximation et optimisation, in Collection Enseignment des Sciences, 13, Herman, Paris, 1972.  Google Scholar

[15]

E. N. Mahmudov, Approximation and Optimization of Discrete and Differential Inclusions, Elsevier, Inc., Amsterdam, 2011. doi: 10.1016/B978-0-12-388428-2.00001-1.  Google Scholar

[16]

E. N. Mahmudov, On duality in problems of optimal control described by convex differential inclusions of Goursat-Darboux type, J. Math. Anal. Appl., 307 (2005), 628-640.  doi: 10.1016/j.jmaa.2005.01.037.  Google Scholar

[17]

E. N. Mahmudov and M. E. Unal, Optimal control of discrete and differential inclusions with distributed parameters in the gradient form, J. Dyn. Control Syst., 18 (2012), 83-101.  doi: 10.1007/s10883-012-9135-6.  Google Scholar

[18]

E. N. Mahmudov, Optimization of fourth-order differential inclusions, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 44 (2018), 90-106.   Google Scholar

[19]

E. N. Mahmudov, Optimization of Mayer problem with Sturm-Liouville-type differential inclusions, J. Optim. Theory Appl., 177 (2018), 345-375.  doi: 10.1007/s10957-018-1260-2.  Google Scholar

[20]

E. N. Mahmudov, Optimization of fourth order Sturm-Liouville type differential inclusions with initial point constraints, J. Ind. Manag. Optim., 16 (2020), 169-187.  doi: 10.3934/jimo.2018145.  Google Scholar

[21]

E. N. Mahmudov, Optimal control of second Order delay-discrete and delay-differential inclusions with state constraints, Evol. Equ. Control Theory, 7 (2018), 501-529.  doi: 10.3934/eect.2018024.  Google Scholar

[22]

E. N. Mahmudov, Optimal control of higher order differential inclusions with functional constraints, ESAIM: Control, Optimisation and Calculus of Variations, (2019). doi: 10.1051/cocv/2019018.  Google Scholar

[23]

B. S. Mordukhovich and T. H. Cao, Optimal control of a nonconvex perturbed sweeping process, J. Differential Equations, 266 (2019), 1003-1050.  doi: 10.1016/j.jde.2018.07.066.  Google Scholar

[24]

N. S. Papageorgiou and V. D. Rădulescu, Periodic solutions for time-dependent subdifferential evolution inclusions, Evol. Equ. Control Theory, 6 (2017), 277-297.  doi: 10.3934/eect.2017015.  Google Scholar

[25]

R. T. Rockafellar and P. R. Wolenski, Convexity in Hamilton-Jacobi theory. 1. Dynamics and duality, SIAM J. Control Optim., 39 (2000), 1323-1350.  doi: 10.1137/S0363012998345366.  Google Scholar

[26]

T. I. Seidman, Compactness of a fixpoint set and optimal control, Appl. Anal., 88 (2009), 419-423.  doi: 10.1080/00036810902766708.  Google Scholar

[27]

S. SharmaA. Jayswal and S. Choudhury, Sufficiency and mixed type duality for multiobjective variational control problems involving $\alpha$-V-univexity, Evol. Equ. Control Theory, 6 (2017), 93-109.  doi: 10.3934/eect.2017006.  Google Scholar

[28]

Y. ZhouV. Vijayakumar and R. Murugesu, Controllability for fractional evolution inclusions without compactness, Evol. Equ. Control Theory, 4 (2015), 507-524.  doi: 10.3934/eect.2015.4.507.  Google Scholar

[29]

Q. Zhang and G. Li, Nonlinear boundary value problems for second order differential inclusions, Nonlinear Anal., 70 (2009), 3390-3406.  doi: 10.1016/j.na.2008.05.007.  Google Scholar

[1]

Giovanni Bonfanti, Arrigo Cellina. The validity of the Euler-Lagrange equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 511-517. doi: 10.3934/dcds.2010.28.511

[2]

Menita Carozza, Jan Kristensen, Antonia Passarelli di Napoli. On the validity of the Euler-Lagrange system. Communications on Pure & Applied Analysis, 2015, 14 (1) : 51-62. doi: 10.3934/cpaa.2015.14.51

[3]

Stefano Bianchini. On the Euler-Lagrange equation for a variational problem. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 449-480. doi: 10.3934/dcds.2007.17.449

[4]

Agnieszka B. Malinowska, Delfim F. M. Torres. Euler-Lagrange equations for composition functionals in calculus of variations on time scales. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 577-593. doi: 10.3934/dcds.2011.29.577

[5]

Yutian Lei, Zhongxue Lü. Axisymmetry of locally bounded solutions to an Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1987-2005. doi: 10.3934/dcds.2013.33.1987

[6]

Yuan Xu, Xin Jin, Saiwei Wang, Yang Tang. Optimal synchronization control of multiple euler-lagrange systems via event-triggered reinforcement learning. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020377

[7]

Anulekha Dhara, Aparna Mehra. Conjugate duality for generalized convex optimization problems. Journal of Industrial & Management Optimization, 2007, 3 (3) : 415-427. doi: 10.3934/jimo.2007.3.415

[8]

Annamaria Barbagallo, Rosalba Di Vincenzo, Stéphane Pia. On strong Lagrange duality for weighted traffic equilibrium problem. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1097-1113. doi: 10.3934/dcds.2011.31.1097

[9]

Regina Sandra Burachik, Alex Rubinov. On the absence of duality gap for Lagrange-type functions. Journal of Industrial & Management Optimization, 2005, 1 (1) : 33-38. doi: 10.3934/jimo.2005.1.33

[10]

Caiping Liu, Heungwing Lee. Lagrange multiplier rules for approximate solutions in vector optimization. Journal of Industrial & Management Optimization, 2012, 8 (3) : 749-764. doi: 10.3934/jimo.2012.8.749

[11]

Pedro L. García, Antonio Fernández, César Rodrigo. Variational integrators for discrete Lagrange problems. Journal of Geometric Mechanics, 2010, 2 (4) : 343-374. doi: 10.3934/jgm.2010.2.343

[12]

Yuying Zhou, Gang Li. The Toland-Fenchel-Lagrange duality of DC programs for composite convex functions. Numerical Algebra, Control & Optimization, 2014, 4 (1) : 9-23. doi: 10.3934/naco.2014.4.9

[13]

Hugo Leiva, Jahnett Uzcategui. Approximate controllability of discrete semilinear systems and applications. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1803-1812. doi: 10.3934/dcdsb.2016023

[14]

Ying Gao, Xinmin Yang, Jin Yang, Hong Yan. Scalarizations and Lagrange multipliers for approximate solutions in the vector optimization problems with set-valued maps. Journal of Industrial & Management Optimization, 2015, 11 (2) : 673-683. doi: 10.3934/jimo.2015.11.673

[15]

Jianshe Yu, Honghua Bin, Zhiming Guo. Periodic solutions for discrete convex Hamiltonian systems via Clarke duality. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 939-950. doi: 10.3934/dcds.2006.15.939

[16]

Maxime Breden. Applications of improved duality lemmas to the discrete coagulation-fragmentation equations with diffusion. Kinetic & Related Models, 2018, 11 (2) : 279-301. doi: 10.3934/krm.2018014

[17]

Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete & Continuous Dynamical Systems - S, 2019  doi: 10.3934/dcdss.2020226

[18]

Boris Andreianov, Mostafa Bendahmane, Kenneth H. Karlsen, Charles Pierre. Convergence of discrete duality finite volume schemes for the cardiac bidomain model. Networks & Heterogeneous Media, 2011, 6 (2) : 195-240. doi: 10.3934/nhm.2011.6.195

[19]

Elena K. Kostousova. On polyhedral estimates for trajectory tubes of dynamical discrete-time systems with multiplicative uncertainty. Conference Publications, 2011, 2011 (Special) : 864-873. doi: 10.3934/proc.2011.2011.864

[20]

Elena K. Kostousova. On polyhedral control synthesis for dynamical discrete-time systems under uncertainties and state constraints. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 6149-6162. doi: 10.3934/dcds.2018153

2019 Impact Factor: 0.953

Article outline

[Back to Top]