
-
Previous Article
Local wellposedness of quasilinear Maxwell equations with absorbing boundary conditions
- EECT Home
- This Issue
-
Next Article
On a final value problem for a class of nonlinear hyperbolic equations with damping term
Uniform boundary observability with Legendre-Galerkin formulations of the 1-D wave equation
1. | INRIA, Villiers-lès-Nancy, F-54600, France |
2. | GIREF, Département de mathématiques et statistique, Université Laval, Québec, G1V 0A6, Canada |
We study the boundary observability of the 1-D homogeneous wave equation when using a Legendre-Galerkin semi-discretization method. It is already known that spurious high frequencies are responsible for its lack of uniformity with respect to the discretization parameter [
References:
[1] |
D. N. Arnold,
An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal., 19 (1982), 742-760.
doi: 10.1137/0719052. |
[2] |
L. Bales and I. Lasiecka,
Negative norm estimates for fully discrete finite element approximations to the wave equation with nonhomogeneous ${L}_2$ Dirichlet boundary data, Math. Comp., 64 (1995), 89-115.
doi: 10.2307/2153324. |
[3] |
C. Bardos, G. Lebeau and J. Rauch,
Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), 1024-1065.
doi: 10.1137/0330055. |
[4] |
T. Z. Boulmezaoud and J. M. Urquiza,
On the eigenvalues of the spectral second order differentiation operator and application to the boundary observability of the wave equation, J. Sci. Comput., 31 (2007), 307-345.
doi: 10.1007/s10915-006-9106-8. |
[5] |
N. Burq and P. Gérard,
Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes, C. R. Math. Acad. Sci. Paris Sér. I Math., 325 (1997), 749-752.
doi: 10.1016/S0764-4442(97)80053-5. |
[6] |
C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, Spectral Methods, Scientific Computation, Springer-Verlag, Berlin, 2006. |
[7] |
C. Castro and S. Micu,
Boundary controllability of a linear semi-discrete 1-D wave equation derived from a mixed finite element method, Numer. Math., 102 (2006), 413-462.
doi: 10.1007/s00211-005-0651-0. |
[8] |
C. Castro, S. Micu and A. Münch,
Numerical approximation of the boundary control for the wave equation with mixed finite elements in a square, IMA J. Numer. Anal., 28 (2008), 186-214.
doi: 10.1093/imanum/drm012. |
[9] |
T. Chen and B. Francis, Optimal Sampled-data Control Systems, Communications and Control Engineering Series, Springer-Verlag London, Ltd., London, 1996. |
[10] |
S. Dolecki and D. L. Russell,
A general theory of observation and control, SIAM J. Control Optim., 15 (1977), 185-220.
doi: 10.1137/0315015. |
[11] |
S. Ervedoza and E. Zuazua, The wave equation: Control and numerics, in Control of Partial Differential Equations, Lecture Notes in Mathematics, 2048, Springer, Berlin, Heidelberg, 2012,245–340.
doi: 10.1007/978-3-642-27893-8_5. |
[12] |
S. Ervedoza and E. Zuazua, Numerical Approximation of Exact Controls for Waves, SpringerBriefs in Mathematics, Springer, New York, 2013.
doi: 10.1007/978-1-4614-5808-1. |
[13] |
R. Glowinski,
Ensuring well-posedness by analogy: Stokes problem and boundary control for the wave equation, J. Comput. Phys., 103 (1992), 189-221.
doi: 10.1016/0021-9991(92)90396-G. |
[14] |
R. Glowinski, W. Kinton and M. F. Wheeler,
A mixed finite element formulation for the boundary controllability of the wave equation, Internat. J. Numer. Methods Engrg., 27 (1989), 623-635.
doi: 10.1002/nme.1620270313. |
[15] |
R. Glowinski, C. H. Li and J.-L. Lions,
A numerical approach to the exact boundary controllability of the wave equation. I. Dirichlet controls: Description of the numerical methods, Japan J. Appl. Math., 7 (1990), 1-76.
doi: 10.1007/BF03167891. |
[16] |
M. J. Grote, A. Schneebeli and D. Schötzau,
Discontinuous Galerkin finite element method for the wave equation, SIAM J. Numer. Anal., 44 (2006), 2408-2431.
doi: 10.1137/05063194X. |
[17] |
P. Hansbo,
Nitsche's method for interface problems in computational mechanics, GAMM-Mitt., 28 (2005), 183-206.
doi: 10.1002/gamm.201490018. |
[18] |
J. S. Hesthaven and R. M. Kirby,
Filtering in Legendre spectral methods, Math. Comp., 77 (2008), 1425-1452.
doi: 10.1090/S0025-5718-08-02110-8. |
[19] |
J. A. Infante and E. Zuazua,
Boundary observability for the space semi-discretizations of the $1$-D wave equation, M2AN Math. Model. Numer. Anal., 33 (1999), 407-438.
doi: 10.1051/m2an:1999123. |
[20] |
V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, RAM: Research in Applied Mathematics, Masson, Paris; John Wiley & Sons, Ltd., Chichester, 1994. |
[21] |
I. Lasiecka, J.-L. Lions and R. Triggiani,
Nonhomogeneous boundary value problems for second order hyperbolic operators, J. Math. Pures Appl., 65 (1986), 149-192.
|
[22] |
I. Lasiecka and R. Triggiani,
Regularity of hyperbolic equations under $L_{2}(0, \, T;L_{2}(\Gamma))$-Dirichlet boundary terms, Appl. Math. Optim., 10 (1983), 275-286.
doi: 10.1007/BF01448390. |
[23] |
I. Lasiecka and R. Triggiani,
Exact controllability of the Euler-Bernoulli equation with controls in the Dirichlet and Neumann boundary conditions: A nonconservative case, SIAM J. Control Optim., 27 (1989), 330-373.
doi: 10.1137/0327018. |
[24] |
I. Lasiecka and R. Triggiani,
Exact controllability of the wave equation with Neumann boundary control, Appl. Math. Optim., 19 (1989), 243-290.
doi: 10.1007/BF01448201. |
[25] |
I. Lasiecka and R. Triggiani, Differential and algebraic riccati equations with applications to boundary/point control problems: Continuous theory and approximation theory, in Lecture Notes in Control and Information Sciences, 164, Springer-Verlag, Berlin, 1991.
doi: 10.1007/BFb0006880. |
[26] |
J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1, in Research in Applied Mathematics, 8, Masson, Paris, 1988. |
[27] |
A. Marica and E. Zuazua, Symmetric Discontinuous Galerkin Methods for 1-D Waves. Fourier Analysis, Propagation, Observability and Applications, SpringerBriefs in Mathematics, Springer, New York, 2014.
doi: 10.1007/978-1-4614-5811-1. |
[28] |
M. Negreanu and E. Zuazua,
Convergence of a multigrid method for the controllability of a 1-d wave equation, C. R. Math. Acad. Sci. Paris, 338 (2004), 413-418.
doi: 10.1016/j.crma.2003.11.032. |
[29] |
J. Nitsche,
Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind, Abh. Math. Sem. Univ. Hamburg, 36 (1971), 9-15.
doi: 10.1007/BF02995904. |
[30] |
J. Shen,
Efficient spectral-Galerkin method. I. Direct solvers of second- and fourth-order equations using Legendre polynomials, SIAM J. Sci. Comput., 15 (1994), 1489-1505.
doi: 10.1137/0915089. |
[31] |
R. Triggiani,
Exact boundary controllability on ${L}_2({\Omega})\times {H}^{-1}({\Omega})$ of the wave equation with Dirichlet boundary control acting on a portion of the boundary $\partial\Omega$, and related problems, Appl. Math. Optim., 18 (1988), 241-277.
doi: 10.1007/BF01443625. |
[32] |
M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 2009.
doi: 10.1007/978-3-7643-8994-9. |
[33] |
H. Vandeven,
On the eigenvalues of second-order spectral differentiation operators, Comput. Methods Appl. Mech. Engrg., 80 (1990), 313-318.
doi: 10.1016/0045-7825(90)90035-K. |
[34] |
T. Warburton and J. S. Hesthaven,
On the constants in $hp$-finite element trace inverse inequalities, Comput. Methods Appl. Mech. Engrg., 192 (2003), 2765-2773.
doi: 10.1016/S0045-7825(03)00294-9. |
[35] |
E. Zuazua,
Boundary observability for the finite-difference space semi-discretizations of the 2-D wave equation in the square, J. Math. Pures Appl., 78 (1999), 523-563.
doi: 10.1016/S0021-7824(98)00008-7. |
[36] |
E. Zuazua,
Propagation, observation, and control of waves approximated by finite difference methods, SIAM Rev., 47 (2005), 197-243.
doi: 10.1137/S0036144503432862. |
show all references
References:
[1] |
D. N. Arnold,
An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal., 19 (1982), 742-760.
doi: 10.1137/0719052. |
[2] |
L. Bales and I. Lasiecka,
Negative norm estimates for fully discrete finite element approximations to the wave equation with nonhomogeneous ${L}_2$ Dirichlet boundary data, Math. Comp., 64 (1995), 89-115.
doi: 10.2307/2153324. |
[3] |
C. Bardos, G. Lebeau and J. Rauch,
Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), 1024-1065.
doi: 10.1137/0330055. |
[4] |
T. Z. Boulmezaoud and J. M. Urquiza,
On the eigenvalues of the spectral second order differentiation operator and application to the boundary observability of the wave equation, J. Sci. Comput., 31 (2007), 307-345.
doi: 10.1007/s10915-006-9106-8. |
[5] |
N. Burq and P. Gérard,
Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes, C. R. Math. Acad. Sci. Paris Sér. I Math., 325 (1997), 749-752.
doi: 10.1016/S0764-4442(97)80053-5. |
[6] |
C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, Spectral Methods, Scientific Computation, Springer-Verlag, Berlin, 2006. |
[7] |
C. Castro and S. Micu,
Boundary controllability of a linear semi-discrete 1-D wave equation derived from a mixed finite element method, Numer. Math., 102 (2006), 413-462.
doi: 10.1007/s00211-005-0651-0. |
[8] |
C. Castro, S. Micu and A. Münch,
Numerical approximation of the boundary control for the wave equation with mixed finite elements in a square, IMA J. Numer. Anal., 28 (2008), 186-214.
doi: 10.1093/imanum/drm012. |
[9] |
T. Chen and B. Francis, Optimal Sampled-data Control Systems, Communications and Control Engineering Series, Springer-Verlag London, Ltd., London, 1996. |
[10] |
S. Dolecki and D. L. Russell,
A general theory of observation and control, SIAM J. Control Optim., 15 (1977), 185-220.
doi: 10.1137/0315015. |
[11] |
S. Ervedoza and E. Zuazua, The wave equation: Control and numerics, in Control of Partial Differential Equations, Lecture Notes in Mathematics, 2048, Springer, Berlin, Heidelberg, 2012,245–340.
doi: 10.1007/978-3-642-27893-8_5. |
[12] |
S. Ervedoza and E. Zuazua, Numerical Approximation of Exact Controls for Waves, SpringerBriefs in Mathematics, Springer, New York, 2013.
doi: 10.1007/978-1-4614-5808-1. |
[13] |
R. Glowinski,
Ensuring well-posedness by analogy: Stokes problem and boundary control for the wave equation, J. Comput. Phys., 103 (1992), 189-221.
doi: 10.1016/0021-9991(92)90396-G. |
[14] |
R. Glowinski, W. Kinton and M. F. Wheeler,
A mixed finite element formulation for the boundary controllability of the wave equation, Internat. J. Numer. Methods Engrg., 27 (1989), 623-635.
doi: 10.1002/nme.1620270313. |
[15] |
R. Glowinski, C. H. Li and J.-L. Lions,
A numerical approach to the exact boundary controllability of the wave equation. I. Dirichlet controls: Description of the numerical methods, Japan J. Appl. Math., 7 (1990), 1-76.
doi: 10.1007/BF03167891. |
[16] |
M. J. Grote, A. Schneebeli and D. Schötzau,
Discontinuous Galerkin finite element method for the wave equation, SIAM J. Numer. Anal., 44 (2006), 2408-2431.
doi: 10.1137/05063194X. |
[17] |
P. Hansbo,
Nitsche's method for interface problems in computational mechanics, GAMM-Mitt., 28 (2005), 183-206.
doi: 10.1002/gamm.201490018. |
[18] |
J. S. Hesthaven and R. M. Kirby,
Filtering in Legendre spectral methods, Math. Comp., 77 (2008), 1425-1452.
doi: 10.1090/S0025-5718-08-02110-8. |
[19] |
J. A. Infante and E. Zuazua,
Boundary observability for the space semi-discretizations of the $1$-D wave equation, M2AN Math. Model. Numer. Anal., 33 (1999), 407-438.
doi: 10.1051/m2an:1999123. |
[20] |
V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, RAM: Research in Applied Mathematics, Masson, Paris; John Wiley & Sons, Ltd., Chichester, 1994. |
[21] |
I. Lasiecka, J.-L. Lions and R. Triggiani,
Nonhomogeneous boundary value problems for second order hyperbolic operators, J. Math. Pures Appl., 65 (1986), 149-192.
|
[22] |
I. Lasiecka and R. Triggiani,
Regularity of hyperbolic equations under $L_{2}(0, \, T;L_{2}(\Gamma))$-Dirichlet boundary terms, Appl. Math. Optim., 10 (1983), 275-286.
doi: 10.1007/BF01448390. |
[23] |
I. Lasiecka and R. Triggiani,
Exact controllability of the Euler-Bernoulli equation with controls in the Dirichlet and Neumann boundary conditions: A nonconservative case, SIAM J. Control Optim., 27 (1989), 330-373.
doi: 10.1137/0327018. |
[24] |
I. Lasiecka and R. Triggiani,
Exact controllability of the wave equation with Neumann boundary control, Appl. Math. Optim., 19 (1989), 243-290.
doi: 10.1007/BF01448201. |
[25] |
I. Lasiecka and R. Triggiani, Differential and algebraic riccati equations with applications to boundary/point control problems: Continuous theory and approximation theory, in Lecture Notes in Control and Information Sciences, 164, Springer-Verlag, Berlin, 1991.
doi: 10.1007/BFb0006880. |
[26] |
J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1, in Research in Applied Mathematics, 8, Masson, Paris, 1988. |
[27] |
A. Marica and E. Zuazua, Symmetric Discontinuous Galerkin Methods for 1-D Waves. Fourier Analysis, Propagation, Observability and Applications, SpringerBriefs in Mathematics, Springer, New York, 2014.
doi: 10.1007/978-1-4614-5811-1. |
[28] |
M. Negreanu and E. Zuazua,
Convergence of a multigrid method for the controllability of a 1-d wave equation, C. R. Math. Acad. Sci. Paris, 338 (2004), 413-418.
doi: 10.1016/j.crma.2003.11.032. |
[29] |
J. Nitsche,
Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind, Abh. Math. Sem. Univ. Hamburg, 36 (1971), 9-15.
doi: 10.1007/BF02995904. |
[30] |
J. Shen,
Efficient spectral-Galerkin method. I. Direct solvers of second- and fourth-order equations using Legendre polynomials, SIAM J. Sci. Comput., 15 (1994), 1489-1505.
doi: 10.1137/0915089. |
[31] |
R. Triggiani,
Exact boundary controllability on ${L}_2({\Omega})\times {H}^{-1}({\Omega})$ of the wave equation with Dirichlet boundary control acting on a portion of the boundary $\partial\Omega$, and related problems, Appl. Math. Optim., 18 (1988), 241-277.
doi: 10.1007/BF01443625. |
[32] |
M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 2009.
doi: 10.1007/978-3-7643-8994-9. |
[33] |
H. Vandeven,
On the eigenvalues of second-order spectral differentiation operators, Comput. Methods Appl. Mech. Engrg., 80 (1990), 313-318.
doi: 10.1016/0045-7825(90)90035-K. |
[34] |
T. Warburton and J. S. Hesthaven,
On the constants in $hp$-finite element trace inverse inequalities, Comput. Methods Appl. Mech. Engrg., 192 (2003), 2765-2773.
doi: 10.1016/S0045-7825(03)00294-9. |
[35] |
E. Zuazua,
Boundary observability for the finite-difference space semi-discretizations of the 2-D wave equation in the square, J. Math. Pures Appl., 78 (1999), 523-563.
doi: 10.1016/S0021-7824(98)00008-7. |
[36] |
E. Zuazua,
Propagation, observation, and control of waves approximated by finite difference methods, SIAM Rev., 47 (2005), 197-243.
doi: 10.1137/S0036144503432862. |












[1] |
Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571 |
[2] |
Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020444 |
[3] |
Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021004 |
[4] |
Yanan Li, Zhijian Yang, Na Feng. Uniform attractors and their continuity for the non-autonomous Kirchhoff wave models. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021018 |
[5] |
Oleg Yu. Imanuvilov, Jean Pierre Puel. On global controllability of 2-D Burgers equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 299-313. doi: 10.3934/dcds.2009.23.299 |
[6] |
Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021015 |
[7] |
Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021022 |
[8] |
Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034 |
[9] |
Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020319 |
[10] |
Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270 |
[11] |
Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388 |
[12] |
Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243 |
[13] |
Pengyan Ding, Zhijian Yang. Well-posedness and attractor for a strongly damped wave equation with supercritical nonlinearity on $ \mathbb{R}^{N} $. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021006 |
[14] |
Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020033 |
[15] |
Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298 |
[16] |
Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020104 |
[17] |
Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292 |
[18] |
Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020049 |
[19] |
Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020 doi: 10.3934/naco.2020055 |
[20] |
Kuntal Bhandari, Franck Boyer. Boundary null-controllability of coupled parabolic systems with Robin conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 61-102. doi: 10.3934/eect.2020052 |
2019 Impact Factor: 0.953
Tools
Metrics
Other articles
by authors
[Back to Top]