-
Previous Article
Numerical analysis of a nonmonotone dynamic contact problem of a non-clamped piezoelectric viscoelastic body
- EECT Home
- This Issue
-
Next Article
A nonsmooth approach for the modelling of a mechanical rotary drilling system with friction
Measurable solutions to general evolution inclusions
1. | Department of Mathematics and Statistics, Oakland University, Rochester MI 48309 USA |
2. | Retired |
3. | School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China |
This work establishes the existence of measurable solutions to evolution inclusions involving set-valued pseudomonotone operators that depend on a random variable $ \omega\in \Omega $ that is an element of a measurable space $ (\Omega, \mathcal{F}) $. This result considerably extends the current existence results for such evolution inclusions since there are no assumptions made on the uniqueness of the solution, even in the cases where the parameter $ \omega $ is held constant, which leads to the usual evolution inclusion. Moreover, when one assumes the uniqueness of the solution, then the existence of progressively measurable solutions under reasonable and mild assumptions on the set-valued operators, initial data and forcing functions is established. The theory developed here allows for the inclusion of memory or history dependent terms and degenerate equations of mixed type. The proof is based on a new result for measurable solutions to a parameter dependent family of elliptic equations. Finally, when the choice $ \omega = t $ is made, where $ t $ is the time and $ \Omega = [0, T] $, the results apply to a wide range of quasistatic inclusions, many of which arise naturally in contact mechanics, among many other applications.
References:
[1] |
K. T. Andrews, K. L. Kuttler, J. Li and M. Shillor,
Measurable solutions for elliptic inclusions and quasistatic problems, Comput. Math. Appl., 77 (2019), 2869-2882.
doi: 10.1016/j.camwa.2018.09.025. |
[2] |
J.-P. Aubin and H. Frankowska, Set-valued analysis, in Systems & Control: Foundations & Applications, 2, Birkhäuser Boston, Inc., Boston, MA, 1990. |
[3] |
A. Bensoussan and R. Temam,
Équations stochastiques du type Navier-Stokes, J. Funct. Anal., 13 (1973), 195-222.
doi: 10.1016/0022-1236(73)90045-1. |
[4] |
H. Brézis,
Équations et inéquations non linéaires dans les espaces vectoriels en dualité, Ann. Inst. Fourier (Grenoble), 18 (1968), 115-175.
doi: 10.5802/aif.280. |
[5] |
H. Brézis, On some degenerate nonlinear parabolic equations, Proc. Symposia in Pure Math., 18 (1970), 28-28. Google Scholar |
[6] |
Z. Denkowski, S. Migórski and N. S. Papageorgiu, An Introduction to Nonlinear Analysis: Theory, Kluwer Academic Publishers, Boston, MA, 2003.
doi: 10.1007/978-1-4419-9158-4. |
[7] |
W. Han and M. Sofonea, Quasistatic contact problems in viscoelasticity and viscoplasticity, in AMS/IP Studies in Advanced Mathematics, 30, American Mathematical Society, Providence, RI; International Press, Somerville, MA, 2002. |
[8] |
S. Hu and N. S. Papageorgiou, Handbook of multivalued analysis. Vol. I. Theory, in Mathematics and its Applications, 419, Kluwer Academic Publishers, Dordrecht, 1997.
doi: 10.1007/978-1-4615-6359-4. |
[9] |
K. L. Kuttler,
Non-degenerate implicit evolution inclusions, Electron. J. Differential Equations, 2000 (2000), 1-20.
|
[10] |
K. L. Kuttler and J. Li,
Measurable solutions for stochastic evolution equations without uniqueness, Appl. Anal., 94 (2015), 2456-2477.
doi: 10.1080/00036811.2014.989498. |
[11] |
K. L. Kuttler, J. Li and M. Shillor, A general product measurability theorem with applications to variational inequalities, Electron. J. Differential Equations, 2016 (2016), 12 pp. |
[12] |
K. L. Kuttler and M. Shillor,
Set-valued pseudomonotone maps and degenerate evolution inclusions, Commun. Contemp. Math., 1 (1999), 87-123.
doi: 10.1142/S0219199799000067. |
[13] |
J.-L. Lions, Quelques Méthods de Résolution des Problèmes aux Limites Non Linéaires, Dunod; Gauthier-Villars, Paris, 1969. |
[14] |
S. Migórski, A. Ochal and M. Sofonea, Nonlinear inclusions and hemivariational inequalities, in Advances in Mechanics and Mathematics, 26, Springer, New York, 2013.
doi: 10.1007/978-1-4614-4232-5. |
[15] |
Z. Naniewicz and P. D. Panagiotopoulos, Mathematical theory of hemivariational inequalities and applications, in Monographs and Textbooks in Pure and Applied Mathematics, 188, Marcel Dekker, Inc., New York, 1995. |
[16] |
M. Shillor, M. Sofonea and J. J. Telega, Models and analysis of quasistatic contact, in Lecture Notes in Physics, 655, Springer, Berlin, Heidelberg, 2004.
doi: 10.1007/b99799. |
[17] |
M. Sofonea, W. Han and M. Shillor, Analysis and approximations of contact problems with adhesion or damage, in Pure and Applied Mathematics (Boca Raton), 276, Chapman & Hall/CRC, Boca Raton, FL, 2006. |
show all references
References:
[1] |
K. T. Andrews, K. L. Kuttler, J. Li and M. Shillor,
Measurable solutions for elliptic inclusions and quasistatic problems, Comput. Math. Appl., 77 (2019), 2869-2882.
doi: 10.1016/j.camwa.2018.09.025. |
[2] |
J.-P. Aubin and H. Frankowska, Set-valued analysis, in Systems & Control: Foundations & Applications, 2, Birkhäuser Boston, Inc., Boston, MA, 1990. |
[3] |
A. Bensoussan and R. Temam,
Équations stochastiques du type Navier-Stokes, J. Funct. Anal., 13 (1973), 195-222.
doi: 10.1016/0022-1236(73)90045-1. |
[4] |
H. Brézis,
Équations et inéquations non linéaires dans les espaces vectoriels en dualité, Ann. Inst. Fourier (Grenoble), 18 (1968), 115-175.
doi: 10.5802/aif.280. |
[5] |
H. Brézis, On some degenerate nonlinear parabolic equations, Proc. Symposia in Pure Math., 18 (1970), 28-28. Google Scholar |
[6] |
Z. Denkowski, S. Migórski and N. S. Papageorgiu, An Introduction to Nonlinear Analysis: Theory, Kluwer Academic Publishers, Boston, MA, 2003.
doi: 10.1007/978-1-4419-9158-4. |
[7] |
W. Han and M. Sofonea, Quasistatic contact problems in viscoelasticity and viscoplasticity, in AMS/IP Studies in Advanced Mathematics, 30, American Mathematical Society, Providence, RI; International Press, Somerville, MA, 2002. |
[8] |
S. Hu and N. S. Papageorgiou, Handbook of multivalued analysis. Vol. I. Theory, in Mathematics and its Applications, 419, Kluwer Academic Publishers, Dordrecht, 1997.
doi: 10.1007/978-1-4615-6359-4. |
[9] |
K. L. Kuttler,
Non-degenerate implicit evolution inclusions, Electron. J. Differential Equations, 2000 (2000), 1-20.
|
[10] |
K. L. Kuttler and J. Li,
Measurable solutions for stochastic evolution equations without uniqueness, Appl. Anal., 94 (2015), 2456-2477.
doi: 10.1080/00036811.2014.989498. |
[11] |
K. L. Kuttler, J. Li and M. Shillor, A general product measurability theorem with applications to variational inequalities, Electron. J. Differential Equations, 2016 (2016), 12 pp. |
[12] |
K. L. Kuttler and M. Shillor,
Set-valued pseudomonotone maps and degenerate evolution inclusions, Commun. Contemp. Math., 1 (1999), 87-123.
doi: 10.1142/S0219199799000067. |
[13] |
J.-L. Lions, Quelques Méthods de Résolution des Problèmes aux Limites Non Linéaires, Dunod; Gauthier-Villars, Paris, 1969. |
[14] |
S. Migórski, A. Ochal and M. Sofonea, Nonlinear inclusions and hemivariational inequalities, in Advances in Mechanics and Mathematics, 26, Springer, New York, 2013.
doi: 10.1007/978-1-4614-4232-5. |
[15] |
Z. Naniewicz and P. D. Panagiotopoulos, Mathematical theory of hemivariational inequalities and applications, in Monographs and Textbooks in Pure and Applied Mathematics, 188, Marcel Dekker, Inc., New York, 1995. |
[16] |
M. Shillor, M. Sofonea and J. J. Telega, Models and analysis of quasistatic contact, in Lecture Notes in Physics, 655, Springer, Berlin, Heidelberg, 2004.
doi: 10.1007/b99799. |
[17] |
M. Sofonea, W. Han and M. Shillor, Analysis and approximations of contact problems with adhesion or damage, in Pure and Applied Mathematics (Boca Raton), 276, Chapman & Hall/CRC, Boca Raton, FL, 2006. |
[1] |
Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations & Control Theory, 2021, 10 (1) : 37-59. doi: 10.3934/eect.2020051 |
[2] |
Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020164 |
[3] |
Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021026 |
[4] |
Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324 |
[5] |
Michiel Bertsch, Flavia Smarrazzo, Andrea Terracina, Alberto Tesei. Signed Radon measure-valued solutions of flux saturated scalar conservation laws. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3143-3169. doi: 10.3934/dcds.2020041 |
[6] |
Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127 |
[7] |
Ryuji Kajikiya. Existence of nodal solutions for the sublinear Moore-Nehari differential equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1483-1506. doi: 10.3934/dcds.2020326 |
[8] |
Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180 |
[9] |
Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002 |
[10] |
Nitha Niralda P C, Sunil Mathew. On properties of similarity boundary of attractors in product dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021004 |
[11] |
Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362 |
[12] |
Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310 |
[13] |
Timothy Chumley, Renato Feres. Entropy production in random billiards. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1319-1346. doi: 10.3934/dcds.2020319 |
[14] |
Buddhadev Pal, Pankaj Kumar. A family of multiply warped product semi-Riemannian Einstein metrics. Journal of Geometric Mechanics, 2020, 12 (4) : 553-562. doi: 10.3934/jgm.2020017 |
[15] |
Chaman Kumar. On Milstein-type scheme for SDE driven by Lévy noise with super-linear coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1405-1446. doi: 10.3934/dcdsb.2020167 |
[16] |
Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020169 |
[17] |
Sumit Kumar Debnath, Pantelimon Stǎnicǎ, Nibedita Kundu, Tanmay Choudhury. Secure and efficient multiparty private set intersection cardinality. Advances in Mathematics of Communications, 2021, 15 (2) : 365-386. doi: 10.3934/amc.2020071 |
[18] |
Patrick W. Dondl, Martin Jesenko. Threshold phenomenon for homogenized fronts in random elastic media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 353-372. doi: 10.3934/dcdss.2020329 |
[19] |
Ömer Arslan, Selçuk Kürşat İşleyen. A model and two heuristic methods for The Multi-Product Inventory-Location-Routing Problem with heterogeneous fleet. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021002 |
[20] |
Bing Sun, Liangyun Chen, Yan Cao. On the universal $ \alpha $-central extensions of the semi-direct product of Hom-preLie algebras. Electronic Research Archive, , () : -. doi: 10.3934/era.2021004 |
2019 Impact Factor: 0.953
Tools
Metrics
Other articles
by authors
[Back to Top]