# American Institute of Mathematical Sciences

December  2020, 9(4): 1133-1151. doi: 10.3934/eect.2020057

## Vibrations of a beam between stops: Collision events and energy balance properties

 University of Lyon, F-42023 Saint-Etienne, Institut Camille Jordan, UMR CNRS 5208, 23 rue Paul Michelon, 42023 Saint-Etienne Cedex 2, France

* Corresponding author: Laetitia Paoli

Received  October 2019 Revised  February 2020 Published  December 2020 Early access  May 2020

We consider the model problem of an elastic beam vibrating between two stops. More precisely the beam is clamped at its left end while its right end may undergo contact and collision events with two stops. We model the interaction between the beam and the stops either with Signorini complementarity conditions when the stops are perfectly rigid or with a normal compliance contact law allowing some penetration within the stops and given by a linear relationship between the shear stress and the penetration at some positive power $\beta$ when contact occurs.

Motivated by computational issues we study the evolution of the energy functional defined as the sum of the kinetic energy and the potential energy of elastic deformation of the beam. When contact is modelled with a normal compliance law we prove an energy conservation property. Then we interpret the relationship between the shear stress and the penetration in case of contact as a penalization of the non-penetration condition. We show that the solutions of the penalized problems converge to a strong solution of the problem with Signorini conditions as defined in [26] and we prove that the limit satisfies an energy conservation property through instantaneaous collision events.

Citation: Laetitia Paoli. Vibrations of a beam between stops: Collision events and energy balance properties. Evolution Equations and Control Theory, 2020, 9 (4) : 1133-1151. doi: 10.3934/eect.2020057
##### References:
 [1] J. Ahn and D. E. Stewart, An Euler-Bernoulli beam with dynamic contact: Discretization, convergence, and numerical results, SIAM J. Numer. Anal., 43 (2005), 1455-1480.  doi: 10.1137/S0036142903432619. [2] L. Amerio and G. Prouse, Study of the motion of a string vibrating against an obstacle, Rend. Mat., 8 (1975), 563-585. [3] L. Amerio, Su un problema di vincoli unilaterali per l'equazione non omogenea della corda vibrante, Pubbl. I. A. C., Ser Ⅲ, 109 (1976), 1-11. [4] L. Amerio, On the motion of a string vibrating through a moving ring with a continuously variable diameter, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat., 62 (1977), 134-142. [5] L. Amerio, A unilateral problem for a nonlinear vibrating string equation, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat., 64 (1978), 8-21. [6] A. Bamberger and M. Schatzman, New results on the vibrating string with a continuous obstacle, SIAM J. Math. Anal., 14 (1983), 560-595.  doi: 10.1137/0514046. [7] V. Barbu and T. Precupanu, Convexity and optimization in Banach spaces, in Mathematics and its Applications (East European Series), 10, D. Reidel Publishing Co., Dordrecht; Editura Academiei Republicii Socialiste România, Bucharest, 1986. [8] I. Bock and J. Jarusěk, Solvability of dynamic contact problems for elastic von Kármán plates, SIAM J. Math. Anal., 41 (2009), 37-45.  doi: 10.1137/080712179. [9] H. Brézis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973. [10] C. Citrini, Sull'urto parzialmente elastico o anelastico di una corda vibrante contro un obstacolo, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat., 59 (1975), 368-376. [11] C. Citrini, Sull'urto parzialmente elastico o anelastico di una corda vibrante contro un obstacolo. Ⅱ, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat., 59 (1975), 667-676. [12] C. Citrini, The energy theorem in the impact of a string vibrating against a pointshaped obstacle, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat., 62 (1977), 143-149. [13] C. Citrini, Discontinuous solutions of a nonlinear hyperbolic equation with unilateral constraints, Manuscripta Math., 29 (1979), 323-352.  doi: 10.1007/BF01303634. [14] C. Citrini, The motion of a vibrating string in the presence of a point-shaped obstacle, Rend. Sem. Mat. Fis. Milano, 52 (1982), 353-362.  doi: 10.1007/BF02925018. [15] C. Citrini and C. Marchionna, On the problem of the point shaped obstacle for the vibrating string equation $cmy = f(x, \, t, \, y, \, y_{x}, \, y_{t})$, Rend. Accad. Naz Sci. XL Mem. Mat., 5 (1981/82), 53-72. [16] Y. Dumont and L. Paoli, Vibrations of a beam between obstacles. Convergence of a fully discretized approximation, M2AN Math. Model. Numer. Anal., 40 (2006), 705-734.  doi: 10.1051/m2an:2006031. [17] Y. Dumont and L. Paoli, Numerical simulation of a model of vibrations with joint clearance, International Journal of Computer Applications in Technology, 33 (2008), 41-53.  doi: 10.1504/IJCAT.2008.021884. [18] N. Dunford and J. Schwartz, Linear Operators, Interscience, New-York, 1958. [19] C. Eck, J. Jarušek and M. Krbec, Unilateral contact problems in mechanics. Variational methods and existence theorems, in Pure and Applied Mathematics (Boca Raton), 270, Chapman & Hall/CRC, Boca Raton, FL, 2005. doi: 10.1201/9781420027365. [20] H. Hertz, Ueber die Berührung fester elastischer Körper, J. Reine Angew. Math., 92 (1882), 156-171.  doi: 10.1515/crll.1882.92.156. [21] N. Kikuchi and J. T. Oden, Contact problems in elasticity: A study of variational inequalities and finite element methods, in SIAM Studies in Applied Mathematics, 8, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1988. doi: 10.1137/1.9781611970845. [22] J. U. Kim, A boundary thin obstacle problem for a wave equation, Comm. Partial Differential Equations, 14 (1989), 1011-1026.  doi: 10.1080/03605308908820640. [23] K. L. Kuttler and M. Shillor, Vibrations of a beam between two stops, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 8 (2001), 93-110. [24] G. Lebeau and M. Schatzman, A wave problem in a half-space with a unilateral constraint at the boundary, J. Differential Equations, 53 (1984), 309-361.  doi: 10.1016/0022-0396(84)90030-5. [25] J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Vol. 2, in Travaux et Recherches Mathématiques, 18, Dunod, Paris, 1968. [26] L. Paoli and M. Shillor, Vibrations of a beam between two rigid stops: Strong solutions in the framework of vector-valued measures, Appl. Anal., 97 (2018), 1299-1314.  doi: 10.1080/00036811.2017.1344226. [27] C. Pozzolini and M. Salaun, Some energy-conservative schemes for vibro-impacts of a beam on rigid obstacles, ESAIM Math. Model. Numer. Anal., 45 (2011), 1163-1192.  doi: 10.1051/m2an/2011008. [28] C. Pozzolini, Y. Renard and M. Salaun, Vibro-impact of a plate on rigid obstacles: Existence theorem, convergence of a scheme and numerical simulations, IMA J. Numer. Anal., 33 (2013), 261-294.  doi: 10.1093/imanum/drr057. [29] R. T. Rockafellar, Integrals which are convex functionals, Pacific J. Math., 24 (1968), 525-539.  doi: 10.2140/pjm.1968.24.525. [30] R. T. Rockafellar, Convex analysis, Princeton Mathematical Series, 28, Princeton University Press, Princeton, NJ, 1970. [31] R. T. Rockafellar, Integrals which are convex functionals. Ⅱ, Pacific J. Math., 39 (1971), 439-469.  doi: 10.2140/pjm.1971.39.439. [32] M. Schatzman, Un problème hyperbolique du 2ème ordre avec contrainte unilatérale: La corde vibrante avec obstacle ponctuel, J. Differential Equations, 36 (1980), 295-334.  doi: 10.1016/0022-0396(80)90068-6. [33] M. Schatzman, A hyperbolic problem of second order with unilateral constraints: The vibrating string with a concave obstacle, J. Math. Anal. Appl., 73 (1980), 138-191.  doi: 10.1016/0022-247X(80)90026-8. [34] M. Schatzman, The penalty method for the vibrating string with an obstacle, in Analytical and Numerical Approaches to Asymptotic Problems in Analysis (Proc. Conf., Univ. Nijmegen, Nijmegen, 1980), North-Holland Math. Stud., 47, North-Holland, Amsterdam-New York, 1981,345–357. [35] M. Shillor, M. Sofonea and J. J. Telega, Models and analysis of quasistatic contact, in Lecture Notes in Physics, 655, Springer, Berlin, Heidelberg, 2004. doi: 10.1007/b99799. [36] A. Signorini, Sopra alcune questioni di statica dei sistemi continui, Ann. Scuola Norm. Super. Pisa Cl. Sci., 2 (1933), 231-251. [37] J. Simon, Compact sets in the space $L^p(0, T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360. [38] R. Temam, Navier-Stokes equations, in Studies in Mathematics and its Applications, 2, North-Holland Publishing Co., Amsterdam-New York, Oxford, 1979.

show all references

##### References:
 [1] J. Ahn and D. E. Stewart, An Euler-Bernoulli beam with dynamic contact: Discretization, convergence, and numerical results, SIAM J. Numer. Anal., 43 (2005), 1455-1480.  doi: 10.1137/S0036142903432619. [2] L. Amerio and G. Prouse, Study of the motion of a string vibrating against an obstacle, Rend. Mat., 8 (1975), 563-585. [3] L. Amerio, Su un problema di vincoli unilaterali per l'equazione non omogenea della corda vibrante, Pubbl. I. A. C., Ser Ⅲ, 109 (1976), 1-11. [4] L. Amerio, On the motion of a string vibrating through a moving ring with a continuously variable diameter, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat., 62 (1977), 134-142. [5] L. Amerio, A unilateral problem for a nonlinear vibrating string equation, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat., 64 (1978), 8-21. [6] A. Bamberger and M. Schatzman, New results on the vibrating string with a continuous obstacle, SIAM J. Math. Anal., 14 (1983), 560-595.  doi: 10.1137/0514046. [7] V. Barbu and T. Precupanu, Convexity and optimization in Banach spaces, in Mathematics and its Applications (East European Series), 10, D. Reidel Publishing Co., Dordrecht; Editura Academiei Republicii Socialiste România, Bucharest, 1986. [8] I. Bock and J. Jarusěk, Solvability of dynamic contact problems for elastic von Kármán plates, SIAM J. Math. Anal., 41 (2009), 37-45.  doi: 10.1137/080712179. [9] H. Brézis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973. [10] C. Citrini, Sull'urto parzialmente elastico o anelastico di una corda vibrante contro un obstacolo, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat., 59 (1975), 368-376. [11] C. Citrini, Sull'urto parzialmente elastico o anelastico di una corda vibrante contro un obstacolo. Ⅱ, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat., 59 (1975), 667-676. [12] C. Citrini, The energy theorem in the impact of a string vibrating against a pointshaped obstacle, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat., 62 (1977), 143-149. [13] C. Citrini, Discontinuous solutions of a nonlinear hyperbolic equation with unilateral constraints, Manuscripta Math., 29 (1979), 323-352.  doi: 10.1007/BF01303634. [14] C. Citrini, The motion of a vibrating string in the presence of a point-shaped obstacle, Rend. Sem. Mat. Fis. Milano, 52 (1982), 353-362.  doi: 10.1007/BF02925018. [15] C. Citrini and C. Marchionna, On the problem of the point shaped obstacle for the vibrating string equation $cmy = f(x, \, t, \, y, \, y_{x}, \, y_{t})$, Rend. Accad. Naz Sci. XL Mem. Mat., 5 (1981/82), 53-72. [16] Y. Dumont and L. Paoli, Vibrations of a beam between obstacles. Convergence of a fully discretized approximation, M2AN Math. Model. Numer. Anal., 40 (2006), 705-734.  doi: 10.1051/m2an:2006031. [17] Y. Dumont and L. Paoli, Numerical simulation of a model of vibrations with joint clearance, International Journal of Computer Applications in Technology, 33 (2008), 41-53.  doi: 10.1504/IJCAT.2008.021884. [18] N. Dunford and J. Schwartz, Linear Operators, Interscience, New-York, 1958. [19] C. Eck, J. Jarušek and M. Krbec, Unilateral contact problems in mechanics. Variational methods and existence theorems, in Pure and Applied Mathematics (Boca Raton), 270, Chapman & Hall/CRC, Boca Raton, FL, 2005. doi: 10.1201/9781420027365. [20] H. Hertz, Ueber die Berührung fester elastischer Körper, J. Reine Angew. Math., 92 (1882), 156-171.  doi: 10.1515/crll.1882.92.156. [21] N. Kikuchi and J. T. Oden, Contact problems in elasticity: A study of variational inequalities and finite element methods, in SIAM Studies in Applied Mathematics, 8, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1988. doi: 10.1137/1.9781611970845. [22] J. U. Kim, A boundary thin obstacle problem for a wave equation, Comm. Partial Differential Equations, 14 (1989), 1011-1026.  doi: 10.1080/03605308908820640. [23] K. L. Kuttler and M. Shillor, Vibrations of a beam between two stops, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 8 (2001), 93-110. [24] G. Lebeau and M. Schatzman, A wave problem in a half-space with a unilateral constraint at the boundary, J. Differential Equations, 53 (1984), 309-361.  doi: 10.1016/0022-0396(84)90030-5. [25] J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Vol. 2, in Travaux et Recherches Mathématiques, 18, Dunod, Paris, 1968. [26] L. Paoli and M. Shillor, Vibrations of a beam between two rigid stops: Strong solutions in the framework of vector-valued measures, Appl. Anal., 97 (2018), 1299-1314.  doi: 10.1080/00036811.2017.1344226. [27] C. Pozzolini and M. Salaun, Some energy-conservative schemes for vibro-impacts of a beam on rigid obstacles, ESAIM Math. Model. Numer. Anal., 45 (2011), 1163-1192.  doi: 10.1051/m2an/2011008. [28] C. Pozzolini, Y. Renard and M. Salaun, Vibro-impact of a plate on rigid obstacles: Existence theorem, convergence of a scheme and numerical simulations, IMA J. Numer. Anal., 33 (2013), 261-294.  doi: 10.1093/imanum/drr057. [29] R. T. Rockafellar, Integrals which are convex functionals, Pacific J. Math., 24 (1968), 525-539.  doi: 10.2140/pjm.1968.24.525. [30] R. T. Rockafellar, Convex analysis, Princeton Mathematical Series, 28, Princeton University Press, Princeton, NJ, 1970. [31] R. T. Rockafellar, Integrals which are convex functionals. Ⅱ, Pacific J. Math., 39 (1971), 439-469.  doi: 10.2140/pjm.1971.39.439. [32] M. Schatzman, Un problème hyperbolique du 2ème ordre avec contrainte unilatérale: La corde vibrante avec obstacle ponctuel, J. Differential Equations, 36 (1980), 295-334.  doi: 10.1016/0022-0396(80)90068-6. [33] M. Schatzman, A hyperbolic problem of second order with unilateral constraints: The vibrating string with a concave obstacle, J. Math. Anal. Appl., 73 (1980), 138-191.  doi: 10.1016/0022-247X(80)90026-8. [34] M. Schatzman, The penalty method for the vibrating string with an obstacle, in Analytical and Numerical Approaches to Asymptotic Problems in Analysis (Proc. Conf., Univ. Nijmegen, Nijmegen, 1980), North-Holland Math. Stud., 47, North-Holland, Amsterdam-New York, 1981,345–357. [35] M. Shillor, M. Sofonea and J. J. Telega, Models and analysis of quasistatic contact, in Lecture Notes in Physics, 655, Springer, Berlin, Heidelberg, 2004. doi: 10.1007/b99799. [36] A. Signorini, Sopra alcune questioni di statica dei sistemi continui, Ann. Scuola Norm. Super. Pisa Cl. Sci., 2 (1933), 231-251. [37] J. Simon, Compact sets in the space $L^p(0, T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360. [38] R. Temam, Navier-Stokes equations, in Studies in Mathematics and its Applications, 2, North-Holland Publishing Co., Amsterdam-New York, Oxford, 1979.
The mechanical setting
 [1] Leszek Gasiński, Piotr Kalita. On dynamic contact problem with generalized Coulomb friction, normal compliance and damage. Evolution Equations and Control Theory, 2020, 9 (4) : 1009-1026. doi: 10.3934/eect.2020049 [2] Xilu Wang, Xiaoliang Cheng. Continuous dependence and optimal control of a dynamic elastic-viscoplastic contact problem with non-monotone boundary conditions. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2021064 [3] Mircea Sofonea, Meir Shillor. A viscoplastic contact problem with a normal compliance with limited penetration condition and history-dependent stiffness coefficient. Communications on Pure and Applied Analysis, 2014, 13 (1) : 371-387. doi: 10.3934/cpaa.2014.13.371 [4] Stanislaw Migórski, Anna Ochal, Mircea Sofonea. Analysis of a dynamic Elastic-Viscoplastic contact problem with friction. Discrete and Continuous Dynamical Systems - B, 2008, 10 (4) : 887-902. doi: 10.3934/dcdsb.2008.10.887 [5] Andaluzia Matei, Mircea Sofonea. Dual formulation of a viscoplastic contact problem with unilateral constraint. Discrete and Continuous Dynamical Systems - S, 2013, 6 (6) : 1587-1598. doi: 10.3934/dcdss.2013.6.1587 [6] P. De Maesschalck. Gevrey normal forms for nilpotent contact points of order two. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 677-688. doi: 10.3934/dcds.2014.34.677 [7] Nelly Point, Silvano Erlicher. Pseudo-potentials and bipotential: A constructive procedure for non-associated plasticity and unilateral contact. Discrete and Continuous Dynamical Systems - S, 2013, 6 (2) : 567-590. doi: 10.3934/dcdss.2013.6.567 [8] Maria-Magdalena Boureanu, Andaluzia Matei, Mircea Sofonea. Analysis of a contact problem for electro-elastic-visco-plastic materials. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1185-1203. doi: 10.3934/cpaa.2012.11.1185 [9] Jeffrey Boland. On rigidity properties of contact time changes of locally symmetric geodesic flows. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 645-650. doi: 10.3934/dcds.2000.6.645 [10] Marius Cocou. A dynamic viscoelastic problem with friction and rate-depending contact interactions. Evolution Equations and Control Theory, 2020, 9 (4) : 981-993. doi: 10.3934/eect.2020060 [11] Xiao-Ping Wang, Xianmin Xu. A dynamic theory for contact angle hysteresis on chemically rough boundary. Discrete and Continuous Dynamical Systems, 2017, 37 (2) : 1061-1073. doi: 10.3934/dcds.2017044 [12] Khalid Addi, Oanh Chau, Daniel Goeleven. On some frictional contact problems with velocity condition for elastic and visco-elastic materials. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1039-1051. doi: 10.3934/dcds.2011.31.1039 [13] Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control and Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91 [14] Tien-Tsan Shieh. From gradient theory of phase transition to a generalized minimal interface problem with a contact energy. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2729-2755. doi: 10.3934/dcds.2016.36.2729 [15] Feimin Huang, Yi Wang, Tong Yang. Fluid dynamic limit to the Riemann Solutions of Euler equations: I. Superposition of rarefaction waves and contact discontinuity. Kinetic and Related Models, 2010, 3 (4) : 685-728. doi: 10.3934/krm.2010.3.685 [16] Krzysztof Bartosz. Numerical analysis of a nonmonotone dynamic contact problem of a non-clamped piezoelectric viscoelastic body. Evolution Equations and Control Theory, 2020, 9 (4) : 961-980. doi: 10.3934/eect.2020059 [17] James Walsh. Diffusive heat transport in Budyko's energy balance climate model with a dynamic ice line. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2687-2715. doi: 10.3934/dcdsb.2017131 [18] Mina Youssef, Caterina Scoglio. Mitigation of epidemics in contact networks through optimal contact adaptation. Mathematical Biosciences & Engineering, 2013, 10 (4) : 1227-1251. doi: 10.3934/mbe.2013.10.1227 [19] Abbas Bahri. Recent results in contact form geometry. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 21-30. doi: 10.3934/dcds.2004.10.21 [20] Alessandro Morando, Yuri Trakhinin, Paola Trebeschi. On local existence of MHD contact discontinuities. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 289-313. doi: 10.3934/dcdss.2016.9.289

2021 Impact Factor: 1.169