• Previous Article
    On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay
  • EECT Home
  • This Issue
  • Next Article
    On finite Morse index solutions of higher order fractional elliptic equations
doi: 10.3934/eect.2020057

Vibrations of a beam between stops: Collision events and energy balance properties

University of Lyon, F-42023 Saint-Etienne, Institut Camille Jordan, UMR CNRS 5208, 23 rue Paul Michelon, 42023 Saint-Etienne Cedex 2, France

* Corresponding author: Laetitia Paoli

Received  October 2019 Revised  February 2020 Published  May 2020

We consider the model problem of an elastic beam vibrating between two stops. More precisely the beam is clamped at its left end while its right end may undergo contact and collision events with two stops. We model the interaction between the beam and the stops either with Signorini complementarity conditions when the stops are perfectly rigid or with a normal compliance contact law allowing some penetration within the stops and given by a linear relationship between the shear stress and the penetration at some positive power $ \beta $ when contact occurs.

Motivated by computational issues we study the evolution of the energy functional defined as the sum of the kinetic energy and the potential energy of elastic deformation of the beam. When contact is modelled with a normal compliance law we prove an energy conservation property. Then we interpret the relationship between the shear stress and the penetration in case of contact as a penalization of the non-penetration condition. We show that the solutions of the penalized problems converge to a strong solution of the problem with Signorini conditions as defined in [26] and we prove that the limit satisfies an energy conservation property through instantaneaous collision events.

Citation: Laetitia Paoli. Vibrations of a beam between stops: Collision events and energy balance properties. Evolution Equations & Control Theory, doi: 10.3934/eect.2020057
References:
[1]

J. Ahn and D. E. Stewart, An Euler-Bernoulli beam with dynamic contact: Discretization, convergence, and numerical results, SIAM J. Numer. Anal., 43 (2005), 1455-1480.  doi: 10.1137/S0036142903432619.  Google Scholar

[2]

L. Amerio and G. Prouse, Study of the motion of a string vibrating against an obstacle, Rend. Mat., 8 (1975), 563-585.   Google Scholar

[3]

L. Amerio, Su un problema di vincoli unilaterali per l'equazione non omogenea della corda vibrante, Pubbl. I. A. C., Ser Ⅲ, 109 (1976), 1-11.   Google Scholar

[4]

L. Amerio, On the motion of a string vibrating through a moving ring with a continuously variable diameter, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat., 62 (1977), 134-142.   Google Scholar

[5]

L. Amerio, A unilateral problem for a nonlinear vibrating string equation, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat., 64 (1978), 8-21.   Google Scholar

[6]

A. Bamberger and M. Schatzman, New results on the vibrating string with a continuous obstacle, SIAM J. Math. Anal., 14 (1983), 560-595.  doi: 10.1137/0514046.  Google Scholar

[7]

V. Barbu and T. Precupanu, Convexity and optimization in Banach spaces, in Mathematics and its Applications (East European Series), 10, D. Reidel Publishing Co., Dordrecht; Editura Academiei Republicii Socialiste România, Bucharest, 1986.  Google Scholar

[8]

I. Bock and J. Jarusěk, Solvability of dynamic contact problems for elastic von Kármán plates, SIAM J. Math. Anal., 41 (2009), 37-45.  doi: 10.1137/080712179.  Google Scholar

[9]

H. Brézis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973.  Google Scholar

[10]

C. Citrini, Sull'urto parzialmente elastico o anelastico di una corda vibrante contro un obstacolo, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat., 59 (1975), 368-376.   Google Scholar

[11]

C. Citrini, Sull'urto parzialmente elastico o anelastico di una corda vibrante contro un obstacolo. Ⅱ, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat., 59 (1975), 667-676.   Google Scholar

[12]

C. Citrini, The energy theorem in the impact of a string vibrating against a pointshaped obstacle, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat., 62 (1977), 143-149.   Google Scholar

[13]

C. Citrini, Discontinuous solutions of a nonlinear hyperbolic equation with unilateral constraints, Manuscripta Math., 29 (1979), 323-352.  doi: 10.1007/BF01303634.  Google Scholar

[14]

C. Citrini, The motion of a vibrating string in the presence of a point-shaped obstacle, Rend. Sem. Mat. Fis. Milano, 52 (1982), 353-362.  doi: 10.1007/BF02925018.  Google Scholar

[15]

C. Citrini and C. Marchionna, On the problem of the point shaped obstacle for the vibrating string equation $cmy = f(x, \, t, \, y, \, y_{x}, \, y_{t})$, Rend. Accad. Naz Sci. XL Mem. Mat., 5 (1981/82), 53-72.   Google Scholar

[16]

Y. Dumont and L. Paoli, Vibrations of a beam between obstacles. Convergence of a fully discretized approximation, M2AN Math. Model. Numer. Anal., 40 (2006), 705-734.  doi: 10.1051/m2an:2006031.  Google Scholar

[17]

Y. Dumont and L. Paoli, Numerical simulation of a model of vibrations with joint clearance, International Journal of Computer Applications in Technology, 33 (2008), 41-53.  doi: 10.1504/IJCAT.2008.021884.  Google Scholar

[18]

N. Dunford and J. Schwartz, Linear Operators, Interscience, New-York, 1958. Google Scholar

[19]

C. Eck, J. Jarušek and M. Krbec, Unilateral contact problems in mechanics. Variational methods and existence theorems, in Pure and Applied Mathematics (Boca Raton), 270, Chapman & Hall/CRC, Boca Raton, FL, 2005. doi: 10.1201/9781420027365.  Google Scholar

[20]

H. Hertz, Ueber die Berührung fester elastischer Körper, J. Reine Angew. Math., 92 (1882), 156-171.  doi: 10.1515/crll.1882.92.156.  Google Scholar

[21]

N. Kikuchi and J. T. Oden, Contact problems in elasticity: A study of variational inequalities and finite element methods, in SIAM Studies in Applied Mathematics, 8, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1988. doi: 10.1137/1.9781611970845.  Google Scholar

[22]

J. U. Kim, A boundary thin obstacle problem for a wave equation, Comm. Partial Differential Equations, 14 (1989), 1011-1026.  doi: 10.1080/03605308908820640.  Google Scholar

[23]

K. L. Kuttler and M. Shillor, Vibrations of a beam between two stops, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 8 (2001), 93-110.   Google Scholar

[24]

G. Lebeau and M. Schatzman, A wave problem in a half-space with a unilateral constraint at the boundary, J. Differential Equations, 53 (1984), 309-361.  doi: 10.1016/0022-0396(84)90030-5.  Google Scholar

[25]

J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Vol. 2, in Travaux et Recherches Mathématiques, 18, Dunod, Paris, 1968.  Google Scholar

[26]

L. Paoli and M. Shillor, Vibrations of a beam between two rigid stops: Strong solutions in the framework of vector-valued measures, Appl. Anal., 97 (2018), 1299-1314.  doi: 10.1080/00036811.2017.1344226.  Google Scholar

[27]

C. Pozzolini and M. Salaun, Some energy-conservative schemes for vibro-impacts of a beam on rigid obstacles, ESAIM Math. Model. Numer. Anal., 45 (2011), 1163-1192.  doi: 10.1051/m2an/2011008.  Google Scholar

[28]

C. PozzoliniY. Renard and M. Salaun, Vibro-impact of a plate on rigid obstacles: Existence theorem, convergence of a scheme and numerical simulations, IMA J. Numer. Anal., 33 (2013), 261-294.  doi: 10.1093/imanum/drr057.  Google Scholar

[29]

R. T. Rockafellar, Integrals which are convex functionals, Pacific J. Math., 24 (1968), 525-539.  doi: 10.2140/pjm.1968.24.525.  Google Scholar

[30] R. T. Rockafellar, Convex analysis, Princeton Mathematical Series, 28, Princeton University Press, Princeton, NJ, 1970.   Google Scholar
[31]

R. T. Rockafellar, Integrals which are convex functionals. Ⅱ, Pacific J. Math., 39 (1971), 439-469.  doi: 10.2140/pjm.1971.39.439.  Google Scholar

[32]

M. Schatzman, Un problème hyperbolique du 2ème ordre avec contrainte unilatérale: La corde vibrante avec obstacle ponctuel, J. Differential Equations, 36 (1980), 295-334.  doi: 10.1016/0022-0396(80)90068-6.  Google Scholar

[33]

M. Schatzman, A hyperbolic problem of second order with unilateral constraints: The vibrating string with a concave obstacle, J. Math. Anal. Appl., 73 (1980), 138-191.  doi: 10.1016/0022-247X(80)90026-8.  Google Scholar

[34]

M. Schatzman, The penalty method for the vibrating string with an obstacle, in Analytical and Numerical Approaches to Asymptotic Problems in Analysis (Proc. Conf., Univ. Nijmegen, Nijmegen, 1980), North-Holland Math. Stud., 47, North-Holland, Amsterdam-New York, 1981,345–357.  Google Scholar

[35]

M. Shillor, M. Sofonea and J. J. Telega, Models and analysis of quasistatic contact, in Lecture Notes in Physics, 655, Springer, Berlin, Heidelberg, 2004. doi: 10.1007/b99799.  Google Scholar

[36]

A. Signorini, Sopra alcune questioni di statica dei sistemi continui, Ann. Scuola Norm. Super. Pisa Cl. Sci., 2 (1933), 231-251.   Google Scholar

[37]

J. Simon, Compact sets in the space $L^p(0, T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[38]

R. Temam, Navier-Stokes equations, in Studies in Mathematics and its Applications, 2, North-Holland Publishing Co., Amsterdam-New York, Oxford, 1979.  Google Scholar

show all references

References:
[1]

J. Ahn and D. E. Stewart, An Euler-Bernoulli beam with dynamic contact: Discretization, convergence, and numerical results, SIAM J. Numer. Anal., 43 (2005), 1455-1480.  doi: 10.1137/S0036142903432619.  Google Scholar

[2]

L. Amerio and G. Prouse, Study of the motion of a string vibrating against an obstacle, Rend. Mat., 8 (1975), 563-585.   Google Scholar

[3]

L. Amerio, Su un problema di vincoli unilaterali per l'equazione non omogenea della corda vibrante, Pubbl. I. A. C., Ser Ⅲ, 109 (1976), 1-11.   Google Scholar

[4]

L. Amerio, On the motion of a string vibrating through a moving ring with a continuously variable diameter, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat., 62 (1977), 134-142.   Google Scholar

[5]

L. Amerio, A unilateral problem for a nonlinear vibrating string equation, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat., 64 (1978), 8-21.   Google Scholar

[6]

A. Bamberger and M. Schatzman, New results on the vibrating string with a continuous obstacle, SIAM J. Math. Anal., 14 (1983), 560-595.  doi: 10.1137/0514046.  Google Scholar

[7]

V. Barbu and T. Precupanu, Convexity and optimization in Banach spaces, in Mathematics and its Applications (East European Series), 10, D. Reidel Publishing Co., Dordrecht; Editura Academiei Republicii Socialiste România, Bucharest, 1986.  Google Scholar

[8]

I. Bock and J. Jarusěk, Solvability of dynamic contact problems for elastic von Kármán plates, SIAM J. Math. Anal., 41 (2009), 37-45.  doi: 10.1137/080712179.  Google Scholar

[9]

H. Brézis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973.  Google Scholar

[10]

C. Citrini, Sull'urto parzialmente elastico o anelastico di una corda vibrante contro un obstacolo, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat., 59 (1975), 368-376.   Google Scholar

[11]

C. Citrini, Sull'urto parzialmente elastico o anelastico di una corda vibrante contro un obstacolo. Ⅱ, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat., 59 (1975), 667-676.   Google Scholar

[12]

C. Citrini, The energy theorem in the impact of a string vibrating against a pointshaped obstacle, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat., 62 (1977), 143-149.   Google Scholar

[13]

C. Citrini, Discontinuous solutions of a nonlinear hyperbolic equation with unilateral constraints, Manuscripta Math., 29 (1979), 323-352.  doi: 10.1007/BF01303634.  Google Scholar

[14]

C. Citrini, The motion of a vibrating string in the presence of a point-shaped obstacle, Rend. Sem. Mat. Fis. Milano, 52 (1982), 353-362.  doi: 10.1007/BF02925018.  Google Scholar

[15]

C. Citrini and C. Marchionna, On the problem of the point shaped obstacle for the vibrating string equation $cmy = f(x, \, t, \, y, \, y_{x}, \, y_{t})$, Rend. Accad. Naz Sci. XL Mem. Mat., 5 (1981/82), 53-72.   Google Scholar

[16]

Y. Dumont and L. Paoli, Vibrations of a beam between obstacles. Convergence of a fully discretized approximation, M2AN Math. Model. Numer. Anal., 40 (2006), 705-734.  doi: 10.1051/m2an:2006031.  Google Scholar

[17]

Y. Dumont and L. Paoli, Numerical simulation of a model of vibrations with joint clearance, International Journal of Computer Applications in Technology, 33 (2008), 41-53.  doi: 10.1504/IJCAT.2008.021884.  Google Scholar

[18]

N. Dunford and J. Schwartz, Linear Operators, Interscience, New-York, 1958. Google Scholar

[19]

C. Eck, J. Jarušek and M. Krbec, Unilateral contact problems in mechanics. Variational methods and existence theorems, in Pure and Applied Mathematics (Boca Raton), 270, Chapman & Hall/CRC, Boca Raton, FL, 2005. doi: 10.1201/9781420027365.  Google Scholar

[20]

H. Hertz, Ueber die Berührung fester elastischer Körper, J. Reine Angew. Math., 92 (1882), 156-171.  doi: 10.1515/crll.1882.92.156.  Google Scholar

[21]

N. Kikuchi and J. T. Oden, Contact problems in elasticity: A study of variational inequalities and finite element methods, in SIAM Studies in Applied Mathematics, 8, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1988. doi: 10.1137/1.9781611970845.  Google Scholar

[22]

J. U. Kim, A boundary thin obstacle problem for a wave equation, Comm. Partial Differential Equations, 14 (1989), 1011-1026.  doi: 10.1080/03605308908820640.  Google Scholar

[23]

K. L. Kuttler and M. Shillor, Vibrations of a beam between two stops, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 8 (2001), 93-110.   Google Scholar

[24]

G. Lebeau and M. Schatzman, A wave problem in a half-space with a unilateral constraint at the boundary, J. Differential Equations, 53 (1984), 309-361.  doi: 10.1016/0022-0396(84)90030-5.  Google Scholar

[25]

J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Vol. 2, in Travaux et Recherches Mathématiques, 18, Dunod, Paris, 1968.  Google Scholar

[26]

L. Paoli and M. Shillor, Vibrations of a beam between two rigid stops: Strong solutions in the framework of vector-valued measures, Appl. Anal., 97 (2018), 1299-1314.  doi: 10.1080/00036811.2017.1344226.  Google Scholar

[27]

C. Pozzolini and M. Salaun, Some energy-conservative schemes for vibro-impacts of a beam on rigid obstacles, ESAIM Math. Model. Numer. Anal., 45 (2011), 1163-1192.  doi: 10.1051/m2an/2011008.  Google Scholar

[28]

C. PozzoliniY. Renard and M. Salaun, Vibro-impact of a plate on rigid obstacles: Existence theorem, convergence of a scheme and numerical simulations, IMA J. Numer. Anal., 33 (2013), 261-294.  doi: 10.1093/imanum/drr057.  Google Scholar

[29]

R. T. Rockafellar, Integrals which are convex functionals, Pacific J. Math., 24 (1968), 525-539.  doi: 10.2140/pjm.1968.24.525.  Google Scholar

[30] R. T. Rockafellar, Convex analysis, Princeton Mathematical Series, 28, Princeton University Press, Princeton, NJ, 1970.   Google Scholar
[31]

R. T. Rockafellar, Integrals which are convex functionals. Ⅱ, Pacific J. Math., 39 (1971), 439-469.  doi: 10.2140/pjm.1971.39.439.  Google Scholar

[32]

M. Schatzman, Un problème hyperbolique du 2ème ordre avec contrainte unilatérale: La corde vibrante avec obstacle ponctuel, J. Differential Equations, 36 (1980), 295-334.  doi: 10.1016/0022-0396(80)90068-6.  Google Scholar

[33]

M. Schatzman, A hyperbolic problem of second order with unilateral constraints: The vibrating string with a concave obstacle, J. Math. Anal. Appl., 73 (1980), 138-191.  doi: 10.1016/0022-247X(80)90026-8.  Google Scholar

[34]

M. Schatzman, The penalty method for the vibrating string with an obstacle, in Analytical and Numerical Approaches to Asymptotic Problems in Analysis (Proc. Conf., Univ. Nijmegen, Nijmegen, 1980), North-Holland Math. Stud., 47, North-Holland, Amsterdam-New York, 1981,345–357.  Google Scholar

[35]

M. Shillor, M. Sofonea and J. J. Telega, Models and analysis of quasistatic contact, in Lecture Notes in Physics, 655, Springer, Berlin, Heidelberg, 2004. doi: 10.1007/b99799.  Google Scholar

[36]

A. Signorini, Sopra alcune questioni di statica dei sistemi continui, Ann. Scuola Norm. Super. Pisa Cl. Sci., 2 (1933), 231-251.   Google Scholar

[37]

J. Simon, Compact sets in the space $L^p(0, T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[38]

R. Temam, Navier-Stokes equations, in Studies in Mathematics and its Applications, 2, North-Holland Publishing Co., Amsterdam-New York, Oxford, 1979.  Google Scholar

Figure 1.  The mechanical setting
[1]

Leszek Gasiński, Piotr Kalita. On dynamic contact problem with generalized Coulomb friction, normal compliance and damage. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020049

[2]

Mircea Sofonea, Meir Shillor. A viscoplastic contact problem with a normal compliance with limited penetration condition and history-dependent stiffness coefficient. Communications on Pure & Applied Analysis, 2014, 13 (1) : 371-387. doi: 10.3934/cpaa.2014.13.371

[3]

Stanislaw Migórski, Anna Ochal, Mircea Sofonea. Analysis of a dynamic Elastic-Viscoplastic contact problem with friction. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 887-902. doi: 10.3934/dcdsb.2008.10.887

[4]

Andaluzia Matei, Mircea Sofonea. Dual formulation of a viscoplastic contact problem with unilateral constraint. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1587-1598. doi: 10.3934/dcdss.2013.6.1587

[5]

P. De Maesschalck. Gevrey normal forms for nilpotent contact points of order two. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 677-688. doi: 10.3934/dcds.2014.34.677

[6]

Maria-Magdalena Boureanu, Andaluzia Matei, Mircea Sofonea. Analysis of a contact problem for electro-elastic-visco-plastic materials. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1185-1203. doi: 10.3934/cpaa.2012.11.1185

[7]

Nelly Point, Silvano Erlicher. Pseudo-potentials and bipotential: A constructive procedure for non-associated plasticity and unilateral contact. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 567-590. doi: 10.3934/dcdss.2013.6.567

[8]

Marius Cocou. A dynamic viscoelastic problem with friction and rate-depending contact interactions. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020060

[9]

Xiao-Ping Wang, Xianmin Xu. A dynamic theory for contact angle hysteresis on chemically rough boundary. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 1061-1073. doi: 10.3934/dcds.2017044

[10]

Khalid Addi, Oanh Chau, Daniel Goeleven. On some frictional contact problems with velocity condition for elastic and visco-elastic materials. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1039-1051. doi: 10.3934/dcds.2011.31.1039

[11]

Jeffrey Boland. On rigidity properties of contact time changes of locally symmetric geodesic flows. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 645-650. doi: 10.3934/dcds.2000.6.645

[12]

Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91

[13]

Feimin Huang, Yi Wang, Tong Yang. Fluid dynamic limit to the Riemann Solutions of Euler equations: I. Superposition of rarefaction waves and contact discontinuity. Kinetic & Related Models, 2010, 3 (4) : 685-728. doi: 10.3934/krm.2010.3.685

[14]

Krzysztof Bartosz. Numerical analysis of a nonmonotone dynamic contact problem of a non-clamped piezoelectric viscoelastic body. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020059

[15]

Tien-Tsan Shieh. From gradient theory of phase transition to a generalized minimal interface problem with a contact energy. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2729-2755. doi: 10.3934/dcds.2016.36.2729

[16]

James Walsh. Diffusive heat transport in Budyko's energy balance climate model with a dynamic ice line. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2687-2715. doi: 10.3934/dcdsb.2017131

[17]

Mina Youssef, Caterina Scoglio. Mitigation of epidemics in contact networks through optimal contact adaptation. Mathematical Biosciences & Engineering, 2013, 10 (4) : 1227-1251. doi: 10.3934/mbe.2013.10.1227

[18]

Abbas Bahri. Recent results in contact form geometry. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 21-30. doi: 10.3934/dcds.2004.10.21

[19]

Alessandro Morando, Yuri Trakhinin, Paola Trebeschi. On local existence of MHD contact discontinuities. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 289-313. doi: 10.3934/dcdss.2016.9.289

[20]

Antonio DeSimone, Natalie Grunewald, Felix Otto. A new model for contact angle hysteresis. Networks & Heterogeneous Media, 2007, 2 (2) : 211-225. doi: 10.3934/nhm.2007.2.211

2019 Impact Factor: 0.953

Article outline

Figures and Tables

[Back to Top]