doi: 10.3934/eect.2020058

Existence for a quasistatic variational-hemivariational inequality

Guangxi Key Laboratory of Universities Optimization Control and Engineering, Calculation, and College of Sciences, Guangxi University for Nationalities, Nanning, Guangxi 530006, P.R. China

* Corresponding author: Zijia Peng

Received  November 2020 Revised  February 2020 Published  May 2020

Fund Project: This work is supported by the NNSF of China grant Nos. 11901122 and 11561007, the NSF of Guangxi, China grant No. 2018GXNSFAA050008, and the Xiangsihu Young Scholars and Innovative Research Team of GXUN, China grant No. 2018RSCXSHQN04. The first author is also supported by the European Union's Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie grant agreement No. 823731 CONMECH

This paper deals with an evolution inclusion which is an equivalent form of a variational-hemivariational inequality arising in quasistatic contact problems for viscoelastic materials. Existence of a weak solution is proved in a framework of evolution triple of spaces via the Rothe method and the theory of monotone operators. Comments on applications of the abstract result to frictional contact problems are made. The work extends the known existence result of a quasistatic hemivariational inequality by S. Migórski and A. Ochal [SIAM J. Math. Anal., 41 (2009) 1415-1435]. One of the linear and bounded operators in the inclusion is generalized to be a nonlinear and unbounded subdifferential operator of a convex functional, and a smallness condition of the coefficients is removed. Moreover, the existence of a hemivariational inequality is extended to a variational-hemivariational inequality which has wider applications.

Citation: Zijia Peng, Cuiming Ma, Zhonghui Liu. Existence for a quasistatic variational-hemivariational inequality. Evolution Equations & Control Theory, doi: 10.3934/eect.2020058
References:
[1]

S. Carl, V. K. Le and D. Motreanu, Nonsmooth Variational Problems and Their Inequalities. Comparison Principles and Applications, Springer Monographs in Mathematics, Springer, New York, 2007. doi: 10.1007/978-0-387-46252-3.  Google Scholar

[2]

F. H. Clarke, Optimization and Nonsmooth Analysis, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1983.  Google Scholar

[3]

Z. Denkowski, S. Migórski and N. S. Papageorgiou, An Introduction to Nonlinear Analysis: Applications, Kluwer Academic Publishers, Boston, MA, 2003.  Google Scholar

[4]

E. DiBenedetto and R. E. Showalter, Implicit degenerate evolution equations and applications, SIAM J. Math. Anal., 12 (1981), 731-751.  doi: 10.1137/0512062.  Google Scholar

[5]

G. Duvaut and J.-L. Lions, Inequalities in mechanics and physics, in Grundlehren der Mathematischen Wissenschaften, 219, Springer-Verlag, Berlin-New York, 1976.  Google Scholar

[6]

W. Han and M. Sofonea, Quasistatic contact problems in viscoelasticity and viscoplasticity, in AMS/IP Studies in Advanced Mathematics, 30, American Mathematical Society, Providence, RI; International Press, Somerville, MA, 2002.  Google Scholar

[7]

W. Han and M. Sofonea, Evolutionary variational inequalities arising in viscoelastic contact problems, SIAM J. Numer. Anal., 38 (2000), 556-579.  doi: 10.1137/S0036142998347309.  Google Scholar

[8]

P. Kalita, Regularity and Rothe method error estimates for parabolic hemivariational inequality, J. Math. Anal. Appl., 389 (2012), 618-631.  doi: 10.1016/j.jmaa.2011.12.007.  Google Scholar

[9]

N. Kikuchi and J. T. Oden, Contact problems in elasticity: A study of variational inequalities and finite element methods, in SIAM Studies in Applied Mathematics, 8, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1988. doi: 10.1137/1.9781611970845.  Google Scholar

[10]

A. Kulig and S. Migóski, Solvability and continuous dependence results for second order nonlinear evolution inclusions with a Volterra-type operator, Nonlinear Anal., 75 (2012), 4729-4746.  doi: 10.1016/j.na.2012.03.023.  Google Scholar

[11]

S. Migórski, Dynamic hemivariational inequality modeling viscoelastic contact problem with normal damped response and friction, Appl. Anal., 84 (2005), 669-699.  doi: 10.1080/00036810500048129.  Google Scholar

[12]

S. Migórski and A. Ochal, Quasi-static hemivariational inequality via vanishing acceleration approach, SIAM J. Math. Anal., 41 (2009), 1415-1435.  doi: 10.1137/080733231.  Google Scholar

[13]

S. Migórski and A. Ochal, A unified approach to dynamic contact problems in viscoelasticity, J. Elasticity, 83 (2006), 247-275.  doi: 10.1007/s10659-005-9034-0.  Google Scholar

[14]

S. Migórski, A. Ochal and M. Sofonea, Nonlinear inclusions and hemivariational inequalities: Models and analysis of contact problems, in Advances in Mechanics and Mathematics, 26, Springer, New York, 2013. doi: 10.1007/978-1-4614-4232-5.  Google Scholar

[15]

S. Migórski and S. Zeng, Noncoercive hyperbolic variational inequalities with applications to contact mechanics, J. Math. Anal. Appl., 455 (2017), 619-637.  doi: 10.1016/j.jmaa.2017.05.072.  Google Scholar

[16]

S. Migórski and S. Zeng, Hyperbolic hemivariational inequalities controlled by evolution equations with application to adhensive contact model, Nonlinear Anal. Real World Appl., 43 (2018), 121-143.  doi: 10.1016/j.nonrwa.2018.02.008.  Google Scholar

[17]

Z. Naniewicz and P. D. Panagiotopoulos, Mathematical theory of hemivariational inequalities and applications, in Monographs and Textbooks in Pure and Applied Mathematics, 188, Marcel Dekker, Inc., New York, 1995.  Google Scholar

[18]

P. D. Panagiotopoulos, Inequality Problems in Mechanics and Applications. Convex and Nonconvex Energy Functions, Birkhäuser Boston, Inc., Boston, MA, 1985. doi: 10.1007/978-1-4612-5152-1.  Google Scholar

[19]

Z. Peng, Existence of a class of variational inequalities modelling quasi-static viscoelastic contact problems, ZAMM Z. Angew. Math. Mech., 99 (2019), 20 pp. doi: 10.1002/zamm.201800172.  Google Scholar

[20]

Z. Peng, Existence and regularity results for doubly nonlinear inclusions with nonmonotone perturbation, Nonlinear Anal., 115 (2015), 71-88.  doi: 10.1016/j.na.2014.12.010.  Google Scholar

[21]

Z. Peng and Z. Liu, Evolution hemivariational inequality problems with doubly nonlinear operators, J. Global Optim., 51 (2011), 413-427.  doi: 10.1007/s10898-010-9634-5.  Google Scholar

[22]

Z. PengZ. Liu and X. Liu, Boundary hemivariational inequality problems with doubly nonlinear operators, Math. Ann., 356 (2013), 1339-1358.  doi: 10.1007/s00208-012-0884-z.  Google Scholar

[23]

M. RochdiM. Shillor and M. Sofonea, A quasistatic contact problem with directional friction and damped response, Appl. Anal., 68 (1998), 409-422.  doi: 10.1080/00036819808840639.  Google Scholar

[24]

M. Shillor, M. Sofonea and J. J. Telega, Models and analysis of quasistatic contact, in Lecture Notes in Physics, 655, Springer, Berlin, Heidelberg, 2004. Google Scholar

[25]

M. Sofonea and A. Matei, Mathematical models in contact mechanics, in London Mathematical Society Lecture Note Series, 398, Cambridge University Press, Cambridge, 2012. Google Scholar

[26]

M. Sofonea and S. Migórski, Variational-hemivariational Inequalities with Applications, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2018.  Google Scholar

[27]

E. Zeidler, Nonlinear Functional Analysis and its Applications. II/B. Nonlinear Monotone Operators, Springer-verlag, New York, 1990. doi: 10.1007/978-1-4612-0985-0.  Google Scholar

[28]

E. Zeidler, Nonlinear Functional Analysis and its Applications. III. Variational Methods and Optimization, Springer-Verlag, New York, 1985. doi: 10.1007/978-1-4612-5020-3.  Google Scholar

show all references

References:
[1]

S. Carl, V. K. Le and D. Motreanu, Nonsmooth Variational Problems and Their Inequalities. Comparison Principles and Applications, Springer Monographs in Mathematics, Springer, New York, 2007. doi: 10.1007/978-0-387-46252-3.  Google Scholar

[2]

F. H. Clarke, Optimization and Nonsmooth Analysis, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1983.  Google Scholar

[3]

Z. Denkowski, S. Migórski and N. S. Papageorgiou, An Introduction to Nonlinear Analysis: Applications, Kluwer Academic Publishers, Boston, MA, 2003.  Google Scholar

[4]

E. DiBenedetto and R. E. Showalter, Implicit degenerate evolution equations and applications, SIAM J. Math. Anal., 12 (1981), 731-751.  doi: 10.1137/0512062.  Google Scholar

[5]

G. Duvaut and J.-L. Lions, Inequalities in mechanics and physics, in Grundlehren der Mathematischen Wissenschaften, 219, Springer-Verlag, Berlin-New York, 1976.  Google Scholar

[6]

W. Han and M. Sofonea, Quasistatic contact problems in viscoelasticity and viscoplasticity, in AMS/IP Studies in Advanced Mathematics, 30, American Mathematical Society, Providence, RI; International Press, Somerville, MA, 2002.  Google Scholar

[7]

W. Han and M. Sofonea, Evolutionary variational inequalities arising in viscoelastic contact problems, SIAM J. Numer. Anal., 38 (2000), 556-579.  doi: 10.1137/S0036142998347309.  Google Scholar

[8]

P. Kalita, Regularity and Rothe method error estimates for parabolic hemivariational inequality, J. Math. Anal. Appl., 389 (2012), 618-631.  doi: 10.1016/j.jmaa.2011.12.007.  Google Scholar

[9]

N. Kikuchi and J. T. Oden, Contact problems in elasticity: A study of variational inequalities and finite element methods, in SIAM Studies in Applied Mathematics, 8, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1988. doi: 10.1137/1.9781611970845.  Google Scholar

[10]

A. Kulig and S. Migóski, Solvability and continuous dependence results for second order nonlinear evolution inclusions with a Volterra-type operator, Nonlinear Anal., 75 (2012), 4729-4746.  doi: 10.1016/j.na.2012.03.023.  Google Scholar

[11]

S. Migórski, Dynamic hemivariational inequality modeling viscoelastic contact problem with normal damped response and friction, Appl. Anal., 84 (2005), 669-699.  doi: 10.1080/00036810500048129.  Google Scholar

[12]

S. Migórski and A. Ochal, Quasi-static hemivariational inequality via vanishing acceleration approach, SIAM J. Math. Anal., 41 (2009), 1415-1435.  doi: 10.1137/080733231.  Google Scholar

[13]

S. Migórski and A. Ochal, A unified approach to dynamic contact problems in viscoelasticity, J. Elasticity, 83 (2006), 247-275.  doi: 10.1007/s10659-005-9034-0.  Google Scholar

[14]

S. Migórski, A. Ochal and M. Sofonea, Nonlinear inclusions and hemivariational inequalities: Models and analysis of contact problems, in Advances in Mechanics and Mathematics, 26, Springer, New York, 2013. doi: 10.1007/978-1-4614-4232-5.  Google Scholar

[15]

S. Migórski and S. Zeng, Noncoercive hyperbolic variational inequalities with applications to contact mechanics, J. Math. Anal. Appl., 455 (2017), 619-637.  doi: 10.1016/j.jmaa.2017.05.072.  Google Scholar

[16]

S. Migórski and S. Zeng, Hyperbolic hemivariational inequalities controlled by evolution equations with application to adhensive contact model, Nonlinear Anal. Real World Appl., 43 (2018), 121-143.  doi: 10.1016/j.nonrwa.2018.02.008.  Google Scholar

[17]

Z. Naniewicz and P. D. Panagiotopoulos, Mathematical theory of hemivariational inequalities and applications, in Monographs and Textbooks in Pure and Applied Mathematics, 188, Marcel Dekker, Inc., New York, 1995.  Google Scholar

[18]

P. D. Panagiotopoulos, Inequality Problems in Mechanics and Applications. Convex and Nonconvex Energy Functions, Birkhäuser Boston, Inc., Boston, MA, 1985. doi: 10.1007/978-1-4612-5152-1.  Google Scholar

[19]

Z. Peng, Existence of a class of variational inequalities modelling quasi-static viscoelastic contact problems, ZAMM Z. Angew. Math. Mech., 99 (2019), 20 pp. doi: 10.1002/zamm.201800172.  Google Scholar

[20]

Z. Peng, Existence and regularity results for doubly nonlinear inclusions with nonmonotone perturbation, Nonlinear Anal., 115 (2015), 71-88.  doi: 10.1016/j.na.2014.12.010.  Google Scholar

[21]

Z. Peng and Z. Liu, Evolution hemivariational inequality problems with doubly nonlinear operators, J. Global Optim., 51 (2011), 413-427.  doi: 10.1007/s10898-010-9634-5.  Google Scholar

[22]

Z. PengZ. Liu and X. Liu, Boundary hemivariational inequality problems with doubly nonlinear operators, Math. Ann., 356 (2013), 1339-1358.  doi: 10.1007/s00208-012-0884-z.  Google Scholar

[23]

M. RochdiM. Shillor and M. Sofonea, A quasistatic contact problem with directional friction and damped response, Appl. Anal., 68 (1998), 409-422.  doi: 10.1080/00036819808840639.  Google Scholar

[24]

M. Shillor, M. Sofonea and J. J. Telega, Models and analysis of quasistatic contact, in Lecture Notes in Physics, 655, Springer, Berlin, Heidelberg, 2004. Google Scholar

[25]

M. Sofonea and A. Matei, Mathematical models in contact mechanics, in London Mathematical Society Lecture Note Series, 398, Cambridge University Press, Cambridge, 2012. Google Scholar

[26]

M. Sofonea and S. Migórski, Variational-hemivariational Inequalities with Applications, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2018.  Google Scholar

[27]

E. Zeidler, Nonlinear Functional Analysis and its Applications. II/B. Nonlinear Monotone Operators, Springer-verlag, New York, 1990. doi: 10.1007/978-1-4612-0985-0.  Google Scholar

[28]

E. Zeidler, Nonlinear Functional Analysis and its Applications. III. Variational Methods and Optimization, Springer-Verlag, New York, 1985. doi: 10.1007/978-1-4612-5020-3.  Google Scholar

[1]

Zhenhai Liu, Van Thien Nguyen, Jen-Chih Yao, Shengda Zeng. History-dependent differential variational-hemivariational inequalities with applications to contact mechanics. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020044

[2]

Stanislaw Migórski. Hemivariational inequality for a frictional contact problem in elasto-piezoelectricity. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1339-1356. doi: 10.3934/dcdsb.2006.6.1339

[3]

Stanisław Migórski, Biao Zeng. Convergence of solutions to inverse problems for a class of variational-hemivariational inequalities. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4477-4498. doi: 10.3934/dcdsb.2018172

[4]

Yekini Shehu, Olaniyi Iyiola. On a modified extragradient method for variational inequality problem with application to industrial electricity production. Journal of Industrial & Management Optimization, 2019, 15 (1) : 319-342. doi: 10.3934/jimo.2018045

[5]

Stanisław Migórski. A note on optimal control problem for a hemivariational inequality modeling fluid flow. Conference Publications, 2013, 2013 (special) : 545-554. doi: 10.3934/proc.2013.2013.545

[6]

Zhenhai Liu, Stanislaw Migórski. Noncoercive damping in dynamic hemivariational inequality with application to problem of piezoelectricity. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 129-143. doi: 10.3934/dcdsb.2008.9.129

[7]

Leszek Gasiński. Optimal control problem of Bolza-type for evolution hemivariational inequality. Conference Publications, 2003, 2003 (Special) : 320-326. doi: 10.3934/proc.2003.2003.320

[8]

Preeyanuch Chuasuk, Ferdinard Ogbuisi, Yekini Shehu, Prasit Cholamjiak. New inertial method for generalized split variational inclusion problems. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020123

[9]

Stanisław Migórski, Anna Ochal, Mircea Sofonea. Analysis of a frictional contact problem for viscoelastic materials with long memory. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 687-705. doi: 10.3934/dcdsb.2011.15.687

[10]

Marius Cocou. A dynamic viscoelastic problem with friction and rate-depending contact interactions. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020060

[11]

S. J. Li, Z. M. Fang. On the stability of a dual weak vector variational inequality problem. Journal of Industrial & Management Optimization, 2008, 4 (1) : 155-165. doi: 10.3934/jimo.2008.4.155

[12]

Frank Jochmann. A variational inequality in Bean's model for superconductors with displacement current. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 545-565. doi: 10.3934/dcds.2009.25.545

[13]

Li Wang, Yang Li, Liwei Zhang. A differential equation method for solving box constrained variational inequality problems. Journal of Industrial & Management Optimization, 2011, 7 (1) : 183-198. doi: 10.3934/jimo.2011.7.183

[14]

Hui-Qiang Ma, Nan-Jing Huang. Neural network smoothing approximation method for stochastic variational inequality problems. Journal of Industrial & Management Optimization, 2015, 11 (2) : 645-660. doi: 10.3934/jimo.2015.11.645

[15]

Ming Chen, Chongchao Huang. A power penalty method for a class of linearly constrained variational inequality. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1381-1396. doi: 10.3934/jimo.2018012

[16]

Walter Allegretto, Yanping Lin, Shuqing Ma. On the box method for a non-local parabolic variational inequality. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 71-88. doi: 10.3934/dcdsb.2001.1.71

[17]

Shuang Chen, Li-Ping Pang, Dan Li. An inexact semismooth Newton method for variational inequality with symmetric cone constraints. Journal of Industrial & Management Optimization, 2015, 11 (3) : 733-746. doi: 10.3934/jimo.2015.11.733

[18]

Krzysztof Bartosz. Numerical analysis of a nonmonotone dynamic contact problem of a non-clamped piezoelectric viscoelastic body. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020059

[19]

T. A. Shaposhnikova, M. N. Zubova. Homogenization problem for a parabolic variational inequality with constraints on subsets situated on the boundary of the domain. Networks & Heterogeneous Media, 2008, 3 (3) : 675-689. doi: 10.3934/nhm.2008.3.675

[20]

Junfeng Yang. Dynamic power price problem: An inverse variational inequality approach. Journal of Industrial & Management Optimization, 2008, 4 (4) : 673-684. doi: 10.3934/jimo.2008.4.673

2019 Impact Factor: 0.953

Article outline

[Back to Top]