doi: 10.3934/eect.2020059

Numerical analysis of a nonmonotone dynamic contact problem of a non-clamped piezoelectric viscoelastic body

Faculty of Mathematics and Computer Science, Jagiellonian University, ul. Łojasiewicza 6, 30-348 Kraków, Poland

The paper is dedicated to Professor Meir Shillor on the occasion of his 70th birthday

Received  December 2019 Revised  March 2020 Published  May 2020

We consider a contact process between a body and a foundation. The body is assumed to be viscoelastic and piezoelectric and the contact is dynamic. Unlike many related papers, the body is assumed to be non-clamped. The contact conditions has a form of inclusions involving the Clarke subdifferential of locally Lipschitz functionals and they have nonmonotone character. The problem in its weak formulation has a form of two coupled Clarke subdifferential inclusions, from which the first one is dynamic and the second one is stationary. The main goal of the paper is numerical analysis of the studied problem. The corresponding numerical scheme is based on the spatial and temporal discretization. Furthermore, the spatial discretization is based on the first order finite element method, while the temporal discretization is based on the backward Euler scheme. We show that under suitable regularity conditions the error between the exact solution and the approximate one is estimated in an optimal way, namely it depends linearly upon the parameters of discretization.

Citation: Krzysztof Bartosz. Numerical analysis of a nonmonotone dynamic contact problem of a non-clamped piezoelectric viscoelastic body. Evolution Equations & Control Theory, doi: 10.3934/eect.2020059
References:
[1]

Y. AyyadM. Barboteu and J. R. Fernández, A frictionless viscoelastodynamic contact problem with energy consistent properties: Numerical analysis and computational aspects, Comput. Methods Appl. Mech. Engrg., 198 (2009), 669-679.  doi: 10.1016/j.cma.2008.10.004.  Google Scholar

[2]

M. BarboteuK. Bartosz and D. Danan, Analysis of a dynamic contact problem with nonmonotone friction and non-clamped boundary conditions, Appl. Numer. Math., 126 (2018), 53-77.  doi: 10.1016/j.apnum.2017.12.005.  Google Scholar

[3]

M. BarboteuK. BartoszW. Han and T. Janiczko, Numerical analysis of a hyperbolic hemivariational inequality arising in dynamic contact, SIAM J. Numer. Anal., 53 (2015), 527-550.  doi: 10.1137/140969737.  Google Scholar

[4]

M. BarboteuK. Bartosz and P. Kalita, An analytical and numerical approach to a bilateral contact problem with nonmonotone friction, Int. J. Appl. Math. Comp. Sci., 23 (2013), 263-276.  doi: 10.2478/amcs-2013-0020.  Google Scholar

[5]

M. BarboteuJ. R. Fernández and Y. Ouafik, Numerical analysis of a frictionless viscoelastic piezoelectric contact problem, M2AN Math. Model. Numer. Anal., 42 (2008), 667-682.  doi: 10.1051/m2an:2008022.  Google Scholar

[6]

M. BarboteuJ. R. Fernández and R. Tarraf, Numerical analysis of a dynamic piezoelectric contact problem arising in viscoelasticity, Comput. Methods Appl. Mech. Engrg., 197 (2008), 3724-3732.  doi: 10.1016/j.cma.2008.02.023.  Google Scholar

[7]

M. Barboteu and M. Sofonea, Analysis and numerical approach of a piezoelectric contact problem, Ann. Acad. Rom. Sci. Ser. Math. Appl., 1 (2009), 7-30.   Google Scholar

[8]

K. Bartosz, Variable time-step $\theta$-scheme for nonlinear second order evolution inclusion, Int. J. Numer. Anal. Model., 14 (2017), 842-868.   Google Scholar

[9]

K. BartoszD. Danan and P. Szafraniec, Numerical analysis of a dynamic bilateral thermoviscoelastic contact problem with nonmonotone friction law, Comput. Math. Appl., 73 (2017), 727-746.  doi: 10.1016/j.camwa.2016.12.026.  Google Scholar

[10]

M. CampoJ. R. FernándezK. L. KuttlerM. Shillor and J. M. Viaño, Numerical analysis and simulations of a dynamic frictionless contact problem with damage, Comput. Methods Appl. Mech. Engrg., 196 (2006), 476-488.  doi: 10.1016/j.cma.2006.05.006.  Google Scholar

[11]

P. G. Ciarlet, The finite element method for elliptic problems, in Studies in Mathematics and its Applications, 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978.  Google Scholar

[12]

F. H. Clarke, Optimization and Nonsmooth Analysis, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1983.  Google Scholar

[13]

G. Duvaut and J.-L. Lions, Inequalities in mechanics and physics, in Grundlehren der Mathematischen Wissenschaften, 219, Springer-Verlag, Berlin-New York, 1976.  Google Scholar

[14]

W. HanM. Shillor and M. Sofonea, Variational and numerical analysis of a quasistatic viscoelastic problem with normal compliance, friction and damage, J. Comput. Appl. Math., 137 (2001), 377-398.  doi: 10.1016/S0377-0427(00)00707-X.  Google Scholar

[15]

W. Han and M. Sofonea, Quasistatic contact problems in viscoelasticity and viscoplasticity, in AMS/IP Studies in Advanced Mathematics, 30, American Mathematical Society, Providence, RI; International Press, Sommerville, MA, 2002.  Google Scholar

[16] I. R. Ionescu and M. Sofonea, Functional and Numerical Methods in Viscoplasticity, Oxford University Press, The Clarendon Press, Oxford University Press, New York, 1993.   Google Scholar
[17]

H. B. Khenous, P. Laborde and Y. Renard, On the discretization of contact problems in elastodynamics, in Analysis and Simulation of Contact Problems, Lecture Notes in Applied and Computational Mechanics, 27, Springer, Berlin, Heidelberg, 2006, 31–38. doi: 10.1007/3-540-31761-9_4.  Google Scholar

[18]

H. B. KhenousJ. Pommier and Y. Renard, Hybrid discretization of the Signorini problem with Coulomb friction: Theoretical aspects and comparison of some numerical solvers, Appl. Numer. Math., 56 (2006), 163-192.  doi: 10.1016/j.apnum.2005.03.002.  Google Scholar

[19]

A. Matei and M. Sofonea, A mixed variational formulation for a piezoelectric frictional contact problem, IMA J. Appl. Math., 82 (2017), 334-354.  doi: 10.1093/imamat/hxw052.  Google Scholar

[20]

S. MigórskiA. Ochal and M. Sofonea, A dynamic frictional contact problem for piezoelectric materials, J. Math. Anal. Appl., 361 (2010), 161-176.  doi: 10.1016/j.jmaa.2009.09.004.  Google Scholar

[21]

S. MigórskiA. Ochal and M. Sofonea, Analysis of a quasistatic contact problem for piezoelectric materials, J. Math. Anal. Appl., 382 (2011), 701-713.  doi: 10.1016/j.jmaa.2011.04.082.  Google Scholar

[22]

S. MigórskiA. Ochal and M. Sofonea, Analysis of a piezoelectric contact problem with subdifferential boundary condition, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 1007-1025.  doi: 10.1017/S0308210513000607.  Google Scholar

[23]

S. Migórski, A. Ochal and M. Sofonea, Nonlinear inclusions and hemivariational inequalities. Models and analysis of contact problems, in Advances in Mechanics and Mathematics, 26, Springer, New York, 2013. doi: 10.1007/978-1-4614-4232-5.  Google Scholar

[24]

Z. Naniewicz and P. D. Panagiotopoulos, Mathematical Theory of Hemivariational Inequalities and Applications, in Monographs and Textbooks in Pure and Applied Mathematics, 188, Marcel Dekker, Inc., New York, 1995.  Google Scholar

[25]

P. D. Panagiotopoulos, Inequality Problems in Mechanics and Applications. Convex and Nonconvex Energy Problems, Birkhäuser Boston, Inc., Boston, MA, 1985. doi: 10.1007/978-1-4612-5152-1.  Google Scholar

[26]

M. Sofonea and Y. Ouafik, A piezoelectric contact problem with normal compliance, Appl. Math. (Warsaw), 32 (2005), 425-442.  doi: 10.4064/am32-4-5.  Google Scholar

show all references

References:
[1]

Y. AyyadM. Barboteu and J. R. Fernández, A frictionless viscoelastodynamic contact problem with energy consistent properties: Numerical analysis and computational aspects, Comput. Methods Appl. Mech. Engrg., 198 (2009), 669-679.  doi: 10.1016/j.cma.2008.10.004.  Google Scholar

[2]

M. BarboteuK. Bartosz and D. Danan, Analysis of a dynamic contact problem with nonmonotone friction and non-clamped boundary conditions, Appl. Numer. Math., 126 (2018), 53-77.  doi: 10.1016/j.apnum.2017.12.005.  Google Scholar

[3]

M. BarboteuK. BartoszW. Han and T. Janiczko, Numerical analysis of a hyperbolic hemivariational inequality arising in dynamic contact, SIAM J. Numer. Anal., 53 (2015), 527-550.  doi: 10.1137/140969737.  Google Scholar

[4]

M. BarboteuK. Bartosz and P. Kalita, An analytical and numerical approach to a bilateral contact problem with nonmonotone friction, Int. J. Appl. Math. Comp. Sci., 23 (2013), 263-276.  doi: 10.2478/amcs-2013-0020.  Google Scholar

[5]

M. BarboteuJ. R. Fernández and Y. Ouafik, Numerical analysis of a frictionless viscoelastic piezoelectric contact problem, M2AN Math. Model. Numer. Anal., 42 (2008), 667-682.  doi: 10.1051/m2an:2008022.  Google Scholar

[6]

M. BarboteuJ. R. Fernández and R. Tarraf, Numerical analysis of a dynamic piezoelectric contact problem arising in viscoelasticity, Comput. Methods Appl. Mech. Engrg., 197 (2008), 3724-3732.  doi: 10.1016/j.cma.2008.02.023.  Google Scholar

[7]

M. Barboteu and M. Sofonea, Analysis and numerical approach of a piezoelectric contact problem, Ann. Acad. Rom. Sci. Ser. Math. Appl., 1 (2009), 7-30.   Google Scholar

[8]

K. Bartosz, Variable time-step $\theta$-scheme for nonlinear second order evolution inclusion, Int. J. Numer. Anal. Model., 14 (2017), 842-868.   Google Scholar

[9]

K. BartoszD. Danan and P. Szafraniec, Numerical analysis of a dynamic bilateral thermoviscoelastic contact problem with nonmonotone friction law, Comput. Math. Appl., 73 (2017), 727-746.  doi: 10.1016/j.camwa.2016.12.026.  Google Scholar

[10]

M. CampoJ. R. FernándezK. L. KuttlerM. Shillor and J. M. Viaño, Numerical analysis and simulations of a dynamic frictionless contact problem with damage, Comput. Methods Appl. Mech. Engrg., 196 (2006), 476-488.  doi: 10.1016/j.cma.2006.05.006.  Google Scholar

[11]

P. G. Ciarlet, The finite element method for elliptic problems, in Studies in Mathematics and its Applications, 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978.  Google Scholar

[12]

F. H. Clarke, Optimization and Nonsmooth Analysis, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1983.  Google Scholar

[13]

G. Duvaut and J.-L. Lions, Inequalities in mechanics and physics, in Grundlehren der Mathematischen Wissenschaften, 219, Springer-Verlag, Berlin-New York, 1976.  Google Scholar

[14]

W. HanM. Shillor and M. Sofonea, Variational and numerical analysis of a quasistatic viscoelastic problem with normal compliance, friction and damage, J. Comput. Appl. Math., 137 (2001), 377-398.  doi: 10.1016/S0377-0427(00)00707-X.  Google Scholar

[15]

W. Han and M. Sofonea, Quasistatic contact problems in viscoelasticity and viscoplasticity, in AMS/IP Studies in Advanced Mathematics, 30, American Mathematical Society, Providence, RI; International Press, Sommerville, MA, 2002.  Google Scholar

[16] I. R. Ionescu and M. Sofonea, Functional and Numerical Methods in Viscoplasticity, Oxford University Press, The Clarendon Press, Oxford University Press, New York, 1993.   Google Scholar
[17]

H. B. Khenous, P. Laborde and Y. Renard, On the discretization of contact problems in elastodynamics, in Analysis and Simulation of Contact Problems, Lecture Notes in Applied and Computational Mechanics, 27, Springer, Berlin, Heidelberg, 2006, 31–38. doi: 10.1007/3-540-31761-9_4.  Google Scholar

[18]

H. B. KhenousJ. Pommier and Y. Renard, Hybrid discretization of the Signorini problem with Coulomb friction: Theoretical aspects and comparison of some numerical solvers, Appl. Numer. Math., 56 (2006), 163-192.  doi: 10.1016/j.apnum.2005.03.002.  Google Scholar

[19]

A. Matei and M. Sofonea, A mixed variational formulation for a piezoelectric frictional contact problem, IMA J. Appl. Math., 82 (2017), 334-354.  doi: 10.1093/imamat/hxw052.  Google Scholar

[20]

S. MigórskiA. Ochal and M. Sofonea, A dynamic frictional contact problem for piezoelectric materials, J. Math. Anal. Appl., 361 (2010), 161-176.  doi: 10.1016/j.jmaa.2009.09.004.  Google Scholar

[21]

S. MigórskiA. Ochal and M. Sofonea, Analysis of a quasistatic contact problem for piezoelectric materials, J. Math. Anal. Appl., 382 (2011), 701-713.  doi: 10.1016/j.jmaa.2011.04.082.  Google Scholar

[22]

S. MigórskiA. Ochal and M. Sofonea, Analysis of a piezoelectric contact problem with subdifferential boundary condition, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 1007-1025.  doi: 10.1017/S0308210513000607.  Google Scholar

[23]

S. Migórski, A. Ochal and M. Sofonea, Nonlinear inclusions and hemivariational inequalities. Models and analysis of contact problems, in Advances in Mechanics and Mathematics, 26, Springer, New York, 2013. doi: 10.1007/978-1-4614-4232-5.  Google Scholar

[24]

Z. Naniewicz and P. D. Panagiotopoulos, Mathematical Theory of Hemivariational Inequalities and Applications, in Monographs and Textbooks in Pure and Applied Mathematics, 188, Marcel Dekker, Inc., New York, 1995.  Google Scholar

[25]

P. D. Panagiotopoulos, Inequality Problems in Mechanics and Applications. Convex and Nonconvex Energy Problems, Birkhäuser Boston, Inc., Boston, MA, 1985. doi: 10.1007/978-1-4612-5152-1.  Google Scholar

[26]

M. Sofonea and Y. Ouafik, A piezoelectric contact problem with normal compliance, Appl. Math. (Warsaw), 32 (2005), 425-442.  doi: 10.4064/am32-4-5.  Google Scholar

[1]

Marius Cocou. A dynamic viscoelastic problem with friction and rate-depending contact interactions. Evolution Equations & Control Theory, 2019, 0 (0) : 0-0. doi: 10.3934/eect.2020060

[2]

Stanislaw Migórski, Anna Ochal, Mircea Sofonea. Analysis of a dynamic Elastic-Viscoplastic contact problem with friction. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 887-902. doi: 10.3934/dcdsb.2008.10.887

[3]

Leszek Gasiński, Piotr Kalita. On dynamic contact problem with generalized Coulomb friction, normal compliance and damage. Evolution Equations & Control Theory, 2019, 0 (0) : 0-0. doi: 10.3934/eect.2020049

[4]

Yi Shi, Kai Bao, Xiao-Ping Wang. 3D adaptive finite element method for a phase field model for the moving contact line problems. Inverse Problems & Imaging, 2013, 7 (3) : 947-959. doi: 10.3934/ipi.2013.7.947

[5]

Géry de Saxcé. Modelling contact with isotropic and anisotropic friction by the bipotential approach. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 409-425. doi: 10.3934/dcdss.2016004

[6]

Kun Wang, Yinnian He, Yueqiang Shang. Fully discrete finite element method for the viscoelastic fluid motion equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 665-684. doi: 10.3934/dcdsb.2010.13.665

[7]

Alain Léger, Elaine Pratt. On the equilibria and qualitative dynamics of a forced nonlinear oscillator with contact and friction. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 501-527. doi: 10.3934/dcdss.2016009

[8]

Stanislaw Migórski. A class of hemivariational inequalities for electroelastic contact problems with slip dependent friction. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 117-126. doi: 10.3934/dcdss.2008.1.117

[9]

Francesco Maddalena, Danilo Percivale, Franco Tomarelli. Adhesive flexible material structures. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 553-574. doi: 10.3934/dcdsb.2012.17.553

[10]

Stanisław Migórski, Anna Ochal, Mircea Sofonea. Analysis of a frictional contact problem for viscoelastic materials with long memory. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 687-705. doi: 10.3934/dcdsb.2011.15.687

[11]

Toyohiko Aiki. A free boundary problem for an elastic material. Conference Publications, 2007, 2007 (Special) : 10-17. doi: 10.3934/proc.2007.2007.10

[12]

Christos V. Nikolopoulos, Georgios E. Zouraris. Numerical solution of a non-local elliptic problem modeling a thermistor with a finite element and a finite volume method. Conference Publications, 2007, 2007 (Special) : 768-778. doi: 10.3934/proc.2007.2007.768

[13]

Toyohiko Aiki, Joost Hulshof, Nobuyuki Kenmochi, Adrian Muntean. Analysis of non-equilibrium evolution problems: Selected topics in material and life sciences. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : i-iii. doi: 10.3934/dcdss.2014.7.1i

[14]

Xiao-Ping Wang, Xianmin Xu. A dynamic theory for contact angle hysteresis on chemically rough boundary. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 1061-1073. doi: 10.3934/dcds.2017044

[15]

Giovanna Citti, Maria Manfredini, Alessandro Sarti. Finite difference approximation of the Mumford and Shah functional in a contact manifold of the Heisenberg space. Communications on Pure & Applied Analysis, 2010, 9 (4) : 905-927. doi: 10.3934/cpaa.2010.9.905

[16]

Yinnian He, Yanping Lin, Weiwei Sun. Stabilized finite element method for the non-stationary Navier-Stokes problem. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 41-68. doi: 10.3934/dcdsb.2006.6.41

[17]

Lijuan Wang, Jun Zou. Error estimates of finite element methods for parameter identifications in elliptic and parabolic systems. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1641-1670. doi: 10.3934/dcdsb.2010.14.1641

[18]

Jie Shen, Xiaofeng Yang. Error estimates for finite element approximations of consistent splitting schemes for incompressible flows. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 663-676. doi: 10.3934/dcdsb.2007.8.663

[19]

Simone Göttlich, Sebastian Kühn, Jan Peter Ohst, Stefan Ruzika, Markus Thiemann. Evacuation dynamics influenced by spreading hazardous material. Networks & Heterogeneous Media, 2011, 6 (3) : 443-464. doi: 10.3934/nhm.2011.6.443

[20]

Cornel M. Murea, H. G. E. Hentschel. A finite element method for growth in biological development. Mathematical Biosciences & Engineering, 2007, 4 (2) : 339-353. doi: 10.3934/mbe.2007.4.339

2018 Impact Factor: 1.048

Article outline

[Back to Top]