• Previous Article
    Stability analysis and optimal control of a stationary Stokes hemivariational inequality
  • EECT Home
  • This Issue
  • Next Article
    Numerical analysis of a nonmonotone dynamic contact problem of a non-clamped piezoelectric viscoelastic body
December  2020, 9(4): 981-993. doi: 10.3934/eect.2020060

A dynamic viscoelastic problem with friction and rate-depending contact interactions

Aix Marseille Univ, CNRS, Centrale Marseille, LMA UMR 7031, Marseille, France, Laboratoire de Mécanique et d'Acoustique, 4 Impasse Nikola Tesla, CS 40006, 13453 Marseille Cedex 13, France

Dedicated to Professor Meir Shillor on the occasion of his 70th birthday

Received  December 2019 Revised  January 2020 Published  May 2020

The aim of this work is to study a dynamic problem that constitutes a unified approach to describe some rate-depending interactions between the boundaries of two viscoelastic bodies, including relaxed unilateral contact, pointwise friction or adhesion conditions. The classical formulation of the problem is presented and two variational formulations are given as three and four-field evolution implicit equations. Based on some approximation results and an equivalent fixed point problem for a multivalued function, we prove the existence of solutions to these variational evolution problems.

Citation: Marius Cocou. A dynamic viscoelastic problem with friction and rate-depending contact interactions. Evolution Equations & Control Theory, 2020, 9 (4) : 981-993. doi: 10.3934/eect.2020060
References:
[1]

L.-E. Andersson, Existence results for quasistatic contact problems with Coulomb friction, Appl. Math. Optim., 42 (2000), 169-202.  doi: 10.1007/s002450010009.  Google Scholar

[2]

P. BoieriF. Gastaldi and D. Kinderlehrer, Existence, uniqueness, and regularity results for the two-body contact problem, Appl. Math. Optim., 15 (1987), 251-277.  doi: 10.1007/BF01442654.  Google Scholar

[3]

O. ChauW. Han and M. Sofonea, A dynamic frictional contact problem with normal damped response, Acta Appl. Math., 71 (2002), 159-178.  doi: 10.1023/A:1014501802247.  Google Scholar

[4]

O. ChauM. Shillor and M. Sofonea, Dynamic frictionless contact with adhesion, Z. Angew. Math. Phys., 55 (2004), 32-47.  doi: 10.1007/s00033-003-1089-9.  Google Scholar

[5]

M. Cocou, Existence of solutions of a dynamic Signorini's problem with nonlocal friction in viscoelasticity, Z. Angew. Math. Phys., 53 (2002), 1099-1109.  doi: 10.1007/PL00012615.  Google Scholar

[6]

M. Cocou, A class of implicit evolution inequalities and applications to dynamic contact problems, Ann. Univ. Buchar. Math. Ser., 4(LXII) (2013), 167-178.   Google Scholar

[7]

M. Cocou, A class of dynamic contact problems with Coulomb friction in viscoelasticity, Nonlinear Anal. Real World Appl., 22 (2015), 508-519.  doi: 10.1016/j.nonrwa.2014.08.012.  Google Scholar

[8]

M. Cocou, A variational inequality and applications to quasistatic problems with Coulomb friction, Appl. Anal., 97 (2018), 1357-1371.  doi: 10.1080/00036811.2017.1376249.  Google Scholar

[9]

M. Cocou and R. Rocca, Existence results for unilateral quasistatic contact problems with friction and adhesion, M2AN Math. Model. Numer. Anal., 34 (2000), 981-1001.  doi: 10.1051/m2an:2000112.  Google Scholar

[10]

M. Cocou and G. Scarella, Analysis of a dynamic unilateral contact problem for a cracked viscoelastic body, Z. Angew. Math. Phys., 57 (2006), 523-546.  doi: 10.1007/s00033-005-0013-x.  Google Scholar

[11]

M. CocouM. Schryve and M. Raous, A dynamic unilateral contact problem with adhesion and friction in viscoelasticity, Z. Angew. Math. Phys., 61 (2010), 721-743.  doi: 10.1007/s00033-009-0027-x.  Google Scholar

[12]

C. Eck, J. Jarušek and M. Krbec, Unilateral contact problems. Variational methods and existence theorems, in Pure and Applied Mathematics (Boca Raton), 270, Chapman & Hall/CRC, Boca Raton, FL, 2005. doi: 10.1201/9781420027365.  Google Scholar

[13]

K. Fan, Fixed point and minimax theorems in locally convex topological linear spaces, Proc. Nat. Acad. Sci. U.S.A., 38 (1952), 121-126.  doi: 10.1073/pnas.38.2.121.  Google Scholar

[14]

W. Han and M. Sofonea, Quasistatic contact problems in viscoelasticity and viscoplasticity, in AMS/IP Studies in Advanced Mathematics, 30, American Mathematical Society, Providence, RI; International Press, Somerville, MA, 2002.  Google Scholar

[15]

J. Jarušek, Dynamic contact problems with given friction for viscoelastic bodies, Czechoslovak Math. J., 46 (1996), 475-487.   Google Scholar

[16]

N. Kikuchi and J. T. Oden, Contact problems in elasticity: A study of variational inequalities and finite element methods, in SIAM Studies in Applied Mathematics, 8, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1988. doi: 10.1137/1.9781611970845.  Google Scholar

[17]

K. L. Kuttler, Dynamic friction contact problems for general normal and friction laws, Nonlinear Anal., 28 (1997), 559-575.  doi: 10.1016/0362-546X(95)00170-Z.  Google Scholar

[18]

K. L. Kuttler and M. Shillor, Dynamic bilateral contact with discontinuous friction coefficient, Nonlinear Anal., 45 (2001), 309-327.  doi: 10.1016/S0362-546X(99)00345-4.  Google Scholar

[19]

K. L. Kuttler and M. Shillor, Dynamic contact with Signorini's condition and slip rate dependent friction, Electron. J. Differential Equations, 2004 (2004), 1-21.   Google Scholar

[20]

K. L. KuttlerM. Shillor and J. R. Fernández, Existence and regularity for dynamic viscoelastic adhesive contact with damage, Appl. Math. Optim., 53 (2006), 31-66.  doi: 10.1007/s00245-005-0837-y.  Google Scholar

[21]

J. A. C. Martins and J. T. Oden, Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws, Nonlinear Anal., 11 (1987), 407-428.  doi: 10.1016/0362-546X(87)90055-1.  Google Scholar

[22]

S. Migórski and A. Ochal, A unified approach to dynamic contact problems in viscoelasticity, J. Elasticity, 83 (2006), 247-275.  doi: 10.1007/s10659-005-9034-0.  Google Scholar

[23]

S. Migórski, A. Ochal and M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities, Springer, New York, 2013. Google Scholar

[24]

Z. Naniewicz and P. D. Panagiotopoulos, Mathematical theory of hemivariational inequalities and applications, in Monographs and Textbooks in Pure and Applied Mathematics, 188, Marcel Dekker, Inc., New York, 1995.  Google Scholar

[25]

P. D. Panagiotopoulos, Hemivariational Inequalities. Applications in Mechanics and Engineering, Springer-Verlag, Berlin, 1993. doi: 10.1007/978-3-642-51677-1.  Google Scholar

[26]

P. J. Rabier and O. V. Savin, Fixed points of multi-valued maps and static Coulomb friction problems, J. Elasticity, 58 (2000), 155-176.  doi: 10.1023/A:1007619416280.  Google Scholar

[27]

M. RaousL. Cangémi and M. Cocou, A consistent model coupling adhesion, friction, and unilateral contact, Comput. Methods Appl. Mech. Engrg., 177 (1999), 383-399.  doi: 10.1016/S0045-7825(98)00389-2.  Google Scholar

[28]

R. Rocca and M. Cocou, Existence and approximation of a solution to quasistatic Signorini problem with local friction, Internat. J. Engrg. Sci., 39 (2001), 1233-1255.  doi: 10.1016/S0020-7225(00)00089-6.  Google Scholar

[29]

R. Rocca and M. Cocou, Numerical analysis of quasistatic unilateral contact problems with local friction, SIAM J. Numer. Anal., 39 (2001), 1324-1342.  doi: 10.1137/S0036142900382600.  Google Scholar

[30]

M. Shillor, M. Sofonea and J. J. Telega, Models and analysis of quasistatic contact, in Lecture Notes in Physics, 655, Springer, Berlin, Heidelberg, 2004. Google Scholar

[31]

J. Simon, Compact sets in the space $L^{p}(0, T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[32]

M. Sofonea, W. Han and M. Shillor, Analysis and approximation of contact problems with adhesion or damage, in Pure and Applied Mathematics (Boca Raton), 276, Chapman & Hall/CRC, Boca Raton, FL, 2006.  Google Scholar

show all references

References:
[1]

L.-E. Andersson, Existence results for quasistatic contact problems with Coulomb friction, Appl. Math. Optim., 42 (2000), 169-202.  doi: 10.1007/s002450010009.  Google Scholar

[2]

P. BoieriF. Gastaldi and D. Kinderlehrer, Existence, uniqueness, and regularity results for the two-body contact problem, Appl. Math. Optim., 15 (1987), 251-277.  doi: 10.1007/BF01442654.  Google Scholar

[3]

O. ChauW. Han and M. Sofonea, A dynamic frictional contact problem with normal damped response, Acta Appl. Math., 71 (2002), 159-178.  doi: 10.1023/A:1014501802247.  Google Scholar

[4]

O. ChauM. Shillor and M. Sofonea, Dynamic frictionless contact with adhesion, Z. Angew. Math. Phys., 55 (2004), 32-47.  doi: 10.1007/s00033-003-1089-9.  Google Scholar

[5]

M. Cocou, Existence of solutions of a dynamic Signorini's problem with nonlocal friction in viscoelasticity, Z. Angew. Math. Phys., 53 (2002), 1099-1109.  doi: 10.1007/PL00012615.  Google Scholar

[6]

M. Cocou, A class of implicit evolution inequalities and applications to dynamic contact problems, Ann. Univ. Buchar. Math. Ser., 4(LXII) (2013), 167-178.   Google Scholar

[7]

M. Cocou, A class of dynamic contact problems with Coulomb friction in viscoelasticity, Nonlinear Anal. Real World Appl., 22 (2015), 508-519.  doi: 10.1016/j.nonrwa.2014.08.012.  Google Scholar

[8]

M. Cocou, A variational inequality and applications to quasistatic problems with Coulomb friction, Appl. Anal., 97 (2018), 1357-1371.  doi: 10.1080/00036811.2017.1376249.  Google Scholar

[9]

M. Cocou and R. Rocca, Existence results for unilateral quasistatic contact problems with friction and adhesion, M2AN Math. Model. Numer. Anal., 34 (2000), 981-1001.  doi: 10.1051/m2an:2000112.  Google Scholar

[10]

M. Cocou and G. Scarella, Analysis of a dynamic unilateral contact problem for a cracked viscoelastic body, Z. Angew. Math. Phys., 57 (2006), 523-546.  doi: 10.1007/s00033-005-0013-x.  Google Scholar

[11]

M. CocouM. Schryve and M. Raous, A dynamic unilateral contact problem with adhesion and friction in viscoelasticity, Z. Angew. Math. Phys., 61 (2010), 721-743.  doi: 10.1007/s00033-009-0027-x.  Google Scholar

[12]

C. Eck, J. Jarušek and M. Krbec, Unilateral contact problems. Variational methods and existence theorems, in Pure and Applied Mathematics (Boca Raton), 270, Chapman & Hall/CRC, Boca Raton, FL, 2005. doi: 10.1201/9781420027365.  Google Scholar

[13]

K. Fan, Fixed point and minimax theorems in locally convex topological linear spaces, Proc. Nat. Acad. Sci. U.S.A., 38 (1952), 121-126.  doi: 10.1073/pnas.38.2.121.  Google Scholar

[14]

W. Han and M. Sofonea, Quasistatic contact problems in viscoelasticity and viscoplasticity, in AMS/IP Studies in Advanced Mathematics, 30, American Mathematical Society, Providence, RI; International Press, Somerville, MA, 2002.  Google Scholar

[15]

J. Jarušek, Dynamic contact problems with given friction for viscoelastic bodies, Czechoslovak Math. J., 46 (1996), 475-487.   Google Scholar

[16]

N. Kikuchi and J. T. Oden, Contact problems in elasticity: A study of variational inequalities and finite element methods, in SIAM Studies in Applied Mathematics, 8, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1988. doi: 10.1137/1.9781611970845.  Google Scholar

[17]

K. L. Kuttler, Dynamic friction contact problems for general normal and friction laws, Nonlinear Anal., 28 (1997), 559-575.  doi: 10.1016/0362-546X(95)00170-Z.  Google Scholar

[18]

K. L. Kuttler and M. Shillor, Dynamic bilateral contact with discontinuous friction coefficient, Nonlinear Anal., 45 (2001), 309-327.  doi: 10.1016/S0362-546X(99)00345-4.  Google Scholar

[19]

K. L. Kuttler and M. Shillor, Dynamic contact with Signorini's condition and slip rate dependent friction, Electron. J. Differential Equations, 2004 (2004), 1-21.   Google Scholar

[20]

K. L. KuttlerM. Shillor and J. R. Fernández, Existence and regularity for dynamic viscoelastic adhesive contact with damage, Appl. Math. Optim., 53 (2006), 31-66.  doi: 10.1007/s00245-005-0837-y.  Google Scholar

[21]

J. A. C. Martins and J. T. Oden, Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws, Nonlinear Anal., 11 (1987), 407-428.  doi: 10.1016/0362-546X(87)90055-1.  Google Scholar

[22]

S. Migórski and A. Ochal, A unified approach to dynamic contact problems in viscoelasticity, J. Elasticity, 83 (2006), 247-275.  doi: 10.1007/s10659-005-9034-0.  Google Scholar

[23]

S. Migórski, A. Ochal and M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities, Springer, New York, 2013. Google Scholar

[24]

Z. Naniewicz and P. D. Panagiotopoulos, Mathematical theory of hemivariational inequalities and applications, in Monographs and Textbooks in Pure and Applied Mathematics, 188, Marcel Dekker, Inc., New York, 1995.  Google Scholar

[25]

P. D. Panagiotopoulos, Hemivariational Inequalities. Applications in Mechanics and Engineering, Springer-Verlag, Berlin, 1993. doi: 10.1007/978-3-642-51677-1.  Google Scholar

[26]

P. J. Rabier and O. V. Savin, Fixed points of multi-valued maps and static Coulomb friction problems, J. Elasticity, 58 (2000), 155-176.  doi: 10.1023/A:1007619416280.  Google Scholar

[27]

M. RaousL. Cangémi and M. Cocou, A consistent model coupling adhesion, friction, and unilateral contact, Comput. Methods Appl. Mech. Engrg., 177 (1999), 383-399.  doi: 10.1016/S0045-7825(98)00389-2.  Google Scholar

[28]

R. Rocca and M. Cocou, Existence and approximation of a solution to quasistatic Signorini problem with local friction, Internat. J. Engrg. Sci., 39 (2001), 1233-1255.  doi: 10.1016/S0020-7225(00)00089-6.  Google Scholar

[29]

R. Rocca and M. Cocou, Numerical analysis of quasistatic unilateral contact problems with local friction, SIAM J. Numer. Anal., 39 (2001), 1324-1342.  doi: 10.1137/S0036142900382600.  Google Scholar

[30]

M. Shillor, M. Sofonea and J. J. Telega, Models and analysis of quasistatic contact, in Lecture Notes in Physics, 655, Springer, Berlin, Heidelberg, 2004. Google Scholar

[31]

J. Simon, Compact sets in the space $L^{p}(0, T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[32]

M. Sofonea, W. Han and M. Shillor, Analysis and approximation of contact problems with adhesion or damage, in Pure and Applied Mathematics (Boca Raton), 276, Chapman & Hall/CRC, Boca Raton, FL, 2006.  Google Scholar

[1]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[2]

Yasemin Şengül. Viscoelasticity with limiting strain. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 57-70. doi: 10.3934/dcdss.2020330

[3]

Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002

[4]

Vadim Azhmyakov, Juan P. Fernández-Gutiérrez, Erik I. Verriest, Stefan W. Pickl. A separation based optimization approach to Dynamic Maximal Covering Location Problems with switched structure. Journal of Industrial & Management Optimization, 2021, 17 (2) : 669-686. doi: 10.3934/jimo.2019128

[5]

Alberto Bressan, Carlotta Donadello. On the convergence of viscous approximations after shock interactions. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 29-48. doi: 10.3934/dcds.2009.23.29

[6]

Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2021001

[7]

Onur Şimşek, O. Erhun Kundakcioglu. Cost of fairness in agent scheduling for contact centers. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021001

[8]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[9]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051

[10]

Elvio Accinelli, Humberto Muñiz. A dynamic for production economies with multiple equilibria. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021002

[11]

Michiel Bertsch, Flavia Smarrazzo, Andrea Terracina, Alberto Tesei. Signed Radon measure-valued solutions of flux saturated scalar conservation laws. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3143-3169. doi: 10.3934/dcds.2020041

[12]

Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226

[13]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[14]

Sumit Kumar Debnath, Pantelimon Stǎnicǎ, Nibedita Kundu, Tanmay Choudhury. Secure and efficient multiparty private set intersection cardinality. Advances in Mathematics of Communications, 2021, 15 (2) : 365-386. doi: 10.3934/amc.2020071

[15]

Ali Wehbe, Rayan Nasser, Nahla Noun. Stability of N-D transmission problem in viscoelasticity with localized Kelvin-Voigt damping under different types of geometric conditions. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020050

[16]

Chao Xing, Zhigang Pan, Quan Wang. Stabilities and dynamic transitions of the Fitzhugh-Nagumo system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 775-794. doi: 10.3934/dcdsb.2020134

[17]

P. K. Jha, R. Lipton. Finite element approximation of nonlocal dynamic fracture models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1675-1710. doi: 10.3934/dcdsb.2020178

[18]

Marcos C. Mota, Regilene D. S. Oliveira. Dynamic aspects of Sprott BC chaotic system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1653-1673. doi: 10.3934/dcdsb.2020177

[19]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102

[20]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (123)
  • HTML views (285)
  • Cited by (1)

Other articles
by authors

[Back to Top]