• Previous Article
    Approximate controllability for Navier–Stokes equations in $ \rm3D $ cylinders under Lions boundary conditions by an explicit saturating set
  • EECT Home
  • This Issue
  • Next Article
    Uniform boundary observability with Legendre-Galerkin formulations of the 1-D wave equation
March  2021, 10(1): 155-198. doi: 10.3934/eect.2020061

Local wellposedness of quasilinear Maxwell equations with absorbing boundary conditions

1. 

Department of Mathematics, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany

2. 

Department of Mathematics, University of Bielefeld, Postfach 100131, 33501 Bielefeld, Germany

* Corresponding author: Roland Schnaubelt

Received  December 2018 Revised  March 2020 Published  June 2020

Fund Project: Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 258734477 – SFB 1173

In this article we provide a local wellposedness theory for quasilinear Maxwell equations with absorbing boundary conditions in $ {\mathcal{H}}^m $ for $ m \geq 3 $. The Maxwell equations are equipped with instantaneous nonlinear material laws leading to a quasilinear symmetric hyperbolic first order system. We consider both linear and nonlinear absorbing boundary conditions. We show existence and uniqueness of a local solution, provide a blow-up criterion in the Lipschitz norm, and prove the continuous dependence on the data. In the case of nonlinear boundary conditions we need a smallness assumption on the tangential trace of the solution. The proof is based on detailed apriori estimates and the regularity theory for the corresponding linear problem which we also develop here.

Citation: Roland Schnaubelt, Martin Spitz. Local wellposedness of quasilinear Maxwell equations with absorbing boundary conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 155-198. doi: 10.3934/eect.2020061
References:
[1]

S. Benzoni-Gavage and D. Serre, Multidimensional Hyperbolic Partial Differential Equations, The Clarendon Press, Oxford University Press, Oxford, 2007.  Google Scholar

[2]

K. BuschG. von FreymannS. LindenS. MingaleevL. Tkeshelashvili and M. Wegener, Periodic nanostructures for photonics, Phys. Reports, 444 (2007), 101-202.  doi: 10.1016/j.physrep.2007.02.011.  Google Scholar

[3]

J. Cagnol and M. Eller, Boundary regularity for Maxwell's equations with applications to shape optimization, J. Differential Equations, 250 (2011), 1114-1136.  doi: 10.1016/j.jde.2010.08.004.  Google Scholar

[4]

J. Chazarain and A. Piriou, Introduction to the Theory of Linear Partial Differential Equations., North-Holland Publishing Co., Amsterdam-New York, 1982.  Google Scholar

[5]

P. D'Ancona, S. Nicaise and R. Schnaubelt, Blow-up for nonlinear Maxwell equations, Electron. J. Differential Equations, (2018), paper No. 73, 9 pp.  Google Scholar

[6]

R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 3, Spectral Theory and Applications, Springer-Verlag, Berlin, 2000.  Google Scholar

[7]

M. Eller, On symmetric hyperbolic boundary problems with nonhomogeneous conservative boundary conditions., SIAM J. Math. Anal., 44 (2012), 1925-1949.  doi: 10.1137/110834652.  Google Scholar

[8]

M. EllerJ. E. Lagnese and S. Nicaise, Decay rates for solutions of a Maxwell system with nonlinear boundary damping, Comput. Appl. Math., 21 (2002), 135-165.   Google Scholar

[9] M. Fabrizio and A. Morro, Electromagnetism of Continuous Media, Oxford University Press, Oxford, 2003.  doi: 10.1093/acprof:oso/9780198527008.001.0001.  Google Scholar
[10]

O. Gués, Problème mixte hyperbolique quasi-linéaire caractéristique, Comm. Partial Differential Equations, 15 (1990), 595-645.  doi: 10.1080/03605309908820701.  Google Scholar

[11]

L. Hörmander, Linear Partial Differential Operators, Springer Verlag, Berlin-New York, 1976.  Google Scholar

[12]

T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Rational Mech. Anal., 58 (1975), 181-205.  doi: 10.1007/BF00280740.  Google Scholar

[13]

I. Lasiecka, M. Pokojovy and R. Schnaubelt, Exponential decay of quasilinear Maxwell equations with interior conductivity, NoDEA Nonlinear Differential Equations Appl., 26 (2019), no. 6, Paper No. 51, 34 pp. doi: 10.1007/s00030-019-0595-1.  Google Scholar

[14]

A. Majda and S. Osher, Initial-boundary value problems for hyperbolic equations with uniformly characteristic boundary, Comm. Pure Appl. Math., 28 (1975), 607-675.  doi: 10.1002/cpa.3160280504.  Google Scholar

[15]

R. H. Picard and W. M. Zajaczkowski, Local existence of solutions of impedance initial-boundary value problem for non-linear Maxwell equations, Math. Methods Appl. Sci., 18 (1995), 169-199.  doi: 10.1002/mma.1670180302.  Google Scholar

[16]

M. Pokojovy and R. Schnaubelt, Boundary stabilization of quasilinear Maxwell equations, J. Differential Equations, 268 (2020), 784-812.  doi: 10.1016/j.jde.2019.08.032.  Google Scholar

[17]

J. Rauch, $\mathcal{L}_2$ is a continuable initial condition for Kreiss' mixed problems, Comm. Pure Appl. Math., 25 (1972), 265-285.  doi: 10.1002/cpa.3160250305.  Google Scholar

[18]

J. Rauch, Symmetric positive systems with boundary characteristic of constant multiplicity, Trans. Amer. Math. Soc., 291 (1985), 167-187.  doi: 10.1090/S0002-9947-1985-0797053-4.  Google Scholar

[19]

R. Schnaubelt and M. Spitz, Local wellposedness of quasilinear Maxwell equations with conservative interface conditions, preprint, 2018, arXiv: 1811.08714. Google Scholar

[20]

P. Secchi, Well-posedness of characteristic symmetric hyperbolic systems, Arch. Rational Mech. Anal., 134 (1996), 155-197.  doi: 10.1007/BF00379552.  Google Scholar

[21]

M. Spitz, Local wellposedness of nonlinear Maxwell equations, Ph.D. thesis, Karlsruhe Institute of Technology, 2017. https://publikationen.bibliothek.kit.edu/1000078030. Google Scholar

[22]

M. Spitz, Regularity theory for nonautonomous Maxwell equations with perfectly conducting boundary conditions, preprint, arXiv: 1805.00671. Google Scholar

[23]

M. Spitz, Local wellposedness of nonlinear Maxwell equations with perfectly conducting boundary conditions, J. Differential Equations, 266 (2019), 5012-5063.  doi: 10.1016/j.jde.2018.10.019.  Google Scholar

show all references

References:
[1]

S. Benzoni-Gavage and D. Serre, Multidimensional Hyperbolic Partial Differential Equations, The Clarendon Press, Oxford University Press, Oxford, 2007.  Google Scholar

[2]

K. BuschG. von FreymannS. LindenS. MingaleevL. Tkeshelashvili and M. Wegener, Periodic nanostructures for photonics, Phys. Reports, 444 (2007), 101-202.  doi: 10.1016/j.physrep.2007.02.011.  Google Scholar

[3]

J. Cagnol and M. Eller, Boundary regularity for Maxwell's equations with applications to shape optimization, J. Differential Equations, 250 (2011), 1114-1136.  doi: 10.1016/j.jde.2010.08.004.  Google Scholar

[4]

J. Chazarain and A. Piriou, Introduction to the Theory of Linear Partial Differential Equations., North-Holland Publishing Co., Amsterdam-New York, 1982.  Google Scholar

[5]

P. D'Ancona, S. Nicaise and R. Schnaubelt, Blow-up for nonlinear Maxwell equations, Electron. J. Differential Equations, (2018), paper No. 73, 9 pp.  Google Scholar

[6]

R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 3, Spectral Theory and Applications, Springer-Verlag, Berlin, 2000.  Google Scholar

[7]

M. Eller, On symmetric hyperbolic boundary problems with nonhomogeneous conservative boundary conditions., SIAM J. Math. Anal., 44 (2012), 1925-1949.  doi: 10.1137/110834652.  Google Scholar

[8]

M. EllerJ. E. Lagnese and S. Nicaise, Decay rates for solutions of a Maxwell system with nonlinear boundary damping, Comput. Appl. Math., 21 (2002), 135-165.   Google Scholar

[9] M. Fabrizio and A. Morro, Electromagnetism of Continuous Media, Oxford University Press, Oxford, 2003.  doi: 10.1093/acprof:oso/9780198527008.001.0001.  Google Scholar
[10]

O. Gués, Problème mixte hyperbolique quasi-linéaire caractéristique, Comm. Partial Differential Equations, 15 (1990), 595-645.  doi: 10.1080/03605309908820701.  Google Scholar

[11]

L. Hörmander, Linear Partial Differential Operators, Springer Verlag, Berlin-New York, 1976.  Google Scholar

[12]

T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Rational Mech. Anal., 58 (1975), 181-205.  doi: 10.1007/BF00280740.  Google Scholar

[13]

I. Lasiecka, M. Pokojovy and R. Schnaubelt, Exponential decay of quasilinear Maxwell equations with interior conductivity, NoDEA Nonlinear Differential Equations Appl., 26 (2019), no. 6, Paper No. 51, 34 pp. doi: 10.1007/s00030-019-0595-1.  Google Scholar

[14]

A. Majda and S. Osher, Initial-boundary value problems for hyperbolic equations with uniformly characteristic boundary, Comm. Pure Appl. Math., 28 (1975), 607-675.  doi: 10.1002/cpa.3160280504.  Google Scholar

[15]

R. H. Picard and W. M. Zajaczkowski, Local existence of solutions of impedance initial-boundary value problem for non-linear Maxwell equations, Math. Methods Appl. Sci., 18 (1995), 169-199.  doi: 10.1002/mma.1670180302.  Google Scholar

[16]

M. Pokojovy and R. Schnaubelt, Boundary stabilization of quasilinear Maxwell equations, J. Differential Equations, 268 (2020), 784-812.  doi: 10.1016/j.jde.2019.08.032.  Google Scholar

[17]

J. Rauch, $\mathcal{L}_2$ is a continuable initial condition for Kreiss' mixed problems, Comm. Pure Appl. Math., 25 (1972), 265-285.  doi: 10.1002/cpa.3160250305.  Google Scholar

[18]

J. Rauch, Symmetric positive systems with boundary characteristic of constant multiplicity, Trans. Amer. Math. Soc., 291 (1985), 167-187.  doi: 10.1090/S0002-9947-1985-0797053-4.  Google Scholar

[19]

R. Schnaubelt and M. Spitz, Local wellposedness of quasilinear Maxwell equations with conservative interface conditions, preprint, 2018, arXiv: 1811.08714. Google Scholar

[20]

P. Secchi, Well-posedness of characteristic symmetric hyperbolic systems, Arch. Rational Mech. Anal., 134 (1996), 155-197.  doi: 10.1007/BF00379552.  Google Scholar

[21]

M. Spitz, Local wellposedness of nonlinear Maxwell equations, Ph.D. thesis, Karlsruhe Institute of Technology, 2017. https://publikationen.bibliothek.kit.edu/1000078030. Google Scholar

[22]

M. Spitz, Regularity theory for nonautonomous Maxwell equations with perfectly conducting boundary conditions, preprint, arXiv: 1805.00671. Google Scholar

[23]

M. Spitz, Local wellposedness of nonlinear Maxwell equations with perfectly conducting boundary conditions, J. Differential Equations, 266 (2019), 5012-5063.  doi: 10.1016/j.jde.2018.10.019.  Google Scholar

[1]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[2]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[3]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[4]

Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318

[5]

Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388

[6]

Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391

[7]

Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039

[8]

Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052

[9]

Franck Davhys Reval Langa, Morgan Pierre. A doubly splitting scheme for the Caginalp system with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 653-676. doi: 10.3934/dcdss.2020353

[10]

Fang Li, Bo You. On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021024

[11]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036

[12]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[13]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[14]

Kuntal Bhandari, Franck Boyer. Boundary null-controllability of coupled parabolic systems with Robin conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 61-102. doi: 10.3934/eect.2020052

[15]

Qianqian Hou, Tai-Chia Lin, Zhi-An Wang. On a singularly perturbed semi-linear problem with Robin boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 401-414. doi: 10.3934/dcdsb.2020083

[16]

Wenrui Hao, King-Yeung Lam, Yuan Lou. Ecological and evolutionary dynamics in advective environments: Critical domain size and boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 367-400. doi: 10.3934/dcdsb.2020283

[17]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[18]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[19]

Tong Tang, Jianzhu Sun. Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020377

[20]

Xiaofeng Ren, David Shoup. The impact of the domain boundary on an inhibitory system: Interior discs and boundary half discs. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3957-3979. doi: 10.3934/dcds.2020048

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (67)
  • HTML views (263)
  • Cited by (0)

Other articles
by authors

[Back to Top]