doi: 10.3934/eect.2020062

Approximate controllability for Navier–Stokes equations in $ \rm3D $ cylinders under Lions boundary conditions by an explicit saturating set

Institut für Mathematik, Universität Innsbruck, Technikerstraße 13/7, A-6020 Innsbruck, Austria

* Corresponding author: duy.phan-duc@uibk.ac.at

Received  May 2019 Revised  January 2020 Published  June 2020

Fund Project: The author is supported by Universität Innsbruck. The author would like to appreciate Sérgio S. Rodrigues (RICAM Linz Austria) for his fruitful discussions to improve this work and Sy Nguyen-Ky (HAMK Finland) for all helpful figures

An explicit saturating set consisting of eigenfunctions of Stokes operator in general 3D Cylinders is proposed. The existence of saturating sets implies the approximate controllability for Navier–Stokes equations in $ \rm 3D $ Cylinders under Lions boundary conditions.

Citation: Duy Phan. Approximate controllability for Navier–Stokes equations in $ \rm3D $ cylinders under Lions boundary conditions by an explicit saturating set. Evolution Equations & Control Theory, doi: 10.3934/eect.2020062
References:
[1]

A. A. Agrachev, Some open problems, in Geometric Control Theory and Sub-Riemannian Geometry, Springer INdAM Ser. 5, Springer, Cham, 2014. doi: 10.1007/978-3-319-02132-4_1.  Google Scholar

[2]

A. A. Agrachev, S. Kuksin, A. V. Sarychev and A. Shirikyan, On finite-dimensional projections of distributions for solutions of randomly forced 2D Navier–Stokes equations, Ann. Inst. H. Poincaré Probab. Statist., 43 2007,399–415. doi: 10.1016/j.anihpb.2006.06.001.  Google Scholar

[3]

A. A. Agrachev and A. V. Sarychev, Navier–Stokes equations: Controllability by means of low modes forcing, J. Math. Fluid Mech., 7 (2005), 108-152.  doi: 10.1007/s00021-004-0110-1.  Google Scholar

[4]

A. A. Agrachev and A. V. Sarychev, Controllability of 2D Euler and Navier–Stokes equations by degenerate forcing, Commun. Math. Phys., 265 (2006), 673-697.  doi: 10.1007/s00220-006-0002-8.  Google Scholar

[5]

A. A. Agrachev and A. V. Sarychev, Solid controllability in fluid dynamics, In Instability in Models Connected with Fluid Flows Ⅰ, Springer, New York, 2008, 1–35. doi: 10.1007/978-0-387-75217-4_1.  Google Scholar

[6]

N. V. ChemetovF. Cipriano and S. Gavrilyuk, Shallow water model for lakes with friction and penetration, Math. Methods Appl. Sci., 33 (2010), 687-703.  doi: 10.1002/mma.1185.  Google Scholar

[7]

W. E and J. C. Mattingly, Ergodicity for the Navier–Stokes equation with degenerate random forcing: Finite dimensional approximation, Comm. Pure Appl. Math., 54 (2001), 1386-1402.  doi: 10.1002/cpa.10007.  Google Scholar

[8]

E. Fernández-Cara and S. Guerrero, Null controllability of the Burgers system with distributed controls, Systems Control Lett., 56 (2007), 366-372.  doi: 10.1016/j.sysconle.2006.10.022.  Google Scholar

[9]

M. Hairer and J. C. Mattingly, Ergodicity of the 2D Navier–Stokes equations with degenerate stochastic forcing, Ann. of Math., 164 (2006), 993-1032.  doi: 10.4007/annals.2006.164.993.  Google Scholar

[10]

A. A. Ilyin and E. S. Titi, Sharp estimates for the number of degrees of freedom for the damped-driven 2-D Navier–Stokes equations, J. Nonlinear Sci., 16 (2006), 233-253.  doi: 10.1007/s00332-005-0720-7.  Google Scholar

[11]

J. P. Kelliher, Navier–Stokes equations with Navier boundary conditions for a bounded domain in the plane, SIAM J. Math. Anal., 38 (2006), 210-232.  doi: 10.1137/040612336.  Google Scholar

[12]

V. Nersesyan, Approximate controllability of Lagrangian trajectories of the 3D Navier–Stokes system by a finite-dimensional force, Nonlinearity, 28 (2015), 825-848.  doi: 10.1088/0951-7715/28/3/825.  Google Scholar

[13]

H. Nersisyan, Controllability of 3D incompressible Euler equations by a finite-dimensional external force, ESAIM Control Optim. Calc. Var., 16 (2010), 677-694.  doi: 10.1051/cocv/2009017.  Google Scholar

[14]

H. Nersisyan, Controllability of the 3D compressible Euler system, Comm. Partial Differential Equations, 36 (2011), 1544-1564.  doi: 10.1080/03605302.2011.596605.  Google Scholar

[15]

D. Phan and S. S. Rodrigues, Approximate controllability for equations of fluid mechanics with a few body controls, In Proceedings of the 2015 European Control Conference (ECC), Linz, Austria, 2015, 2682–2687. doi: 10.1109/ECC.2015.7330943.  Google Scholar

[16]

D. Phan and S. S. Rodrigues, Gevrey regularity for Navier–Stokes equations under Lions boundary conditions, J. Funct. Anal., 272 (2017), 2865-2898.  doi: 10.1016/j.jfa.2017.01.014.  Google Scholar

[17]

D. Phan and S. S. Rodrigues, Approximate controllability for Navier–Stokes Equations in 3D rectangles under Lions boundary conditions, J. Dyn. Control Syst., 25 (2019), 351-376.  doi: 10.1007/s10883-018-9412-0.  Google Scholar

[18]

S. S. Rodrigues, Controllability issues for the Navier–Stokes equation on a rectangle, In Proceedings 44th IEEE CDC-ECC'05, Seville, Spain, 2005, 2083–2085. doi: 10.1109/CDC.2005.1582468.  Google Scholar

[19]

S. S. Rodrigues, Navier–Stokes equation on the Rectangle: Controllability by means of low mode forcing, J. Dyn. Control Syst., 12 (2006), 517-562.  doi: 10.1007/s10883-006-0004-z.  Google Scholar

[20]

S. S. Rodrigues, Controllability of nonlinear pdes on compact Riemannian manifolds, In Proceedings WMCTF'07, Lisbon, Portugal, 2007,462–493. http://people.ricam.oeaw.ac.at/s.rodrigues/. Google Scholar

[21]

S. S. Rodrigues, Methods of Geometric Control Theory in Problems of Mathematical Physics, PhD Thesis, Universidade de Aveiro, Portugal, 2008. http://hdl.handle.net/10773/2931.  Google Scholar

[22]

M. Romito, Ergodicity of the finite dimensional approximation of the 3D Navier–Stokes equations forced by a degenerate noise, J. Statist. Phys., 114 (2004), 155-177.  doi: 10.1023/B:JOSS.0000003108.92097.5c.  Google Scholar

[23]

A. Sarychev, Controllability of the cubic Schroedinger equation via a low-dimensional source term, Math. Control Relat. Fields, 2 (2012), 247-270.  doi: 10.3934/mcrf.2012.2.247.  Google Scholar

[24]

A. Shirikyan, Approximate controllability of three-dimensional Navier–Stokes equations, Comm. Math. Phys., 266 (2006), 123-151.  doi: 10.1007/s00220-006-0007-3.  Google Scholar

[25]

A. Shirikyan, Controllability of nonlinear PDEs: Agrachev–Sarychev approach, Journées Équations aux Dérivées Partielles. Évian, 4 juin–8 juin. Exposé no. IV, 2007, 1–11. https://eudml.org/doc/10631. Google Scholar

[26]

A. Shirikyan, Exact controllability in projections for three-dimensional Navier–Stokes equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 521-537.  doi: 10.1016/j.anihpc.2006.04.002.  Google Scholar

[27]

A. Shirikyan, Euler equations are not exactly controllable by a finite-dimensional external force, Phys. D, 237 (2008), 1317-1323.  doi: 10.1016/j.physd.2008.03.021.  Google Scholar

[28]

A. Shirikyan, Global exponential stabilisation for the burgers equation with localised control, J. Éc. polytech. Math., 4: 613–632, 2017. doi: 10.5802/jep.53.  Google Scholar

[29]

R. Temam, Navier–Stokes Equations and Nonlinear Functional Analysis, CBMS-NSF Regional Conf. Ser. Appl. Math. SIAM, 2nd edition, Philadelphia, PA, 1995. Google Scholar

[30]

Y. Xiao and Z. Xin, On the vanishing viscosity limit for the 3D Navier–Stokes equations with a slip boundary condition, Comm. Pure Appl. Math., 60 (2007), 1027-1055.  doi: 10.1002/cpa.20187.  Google Scholar

[31]

Y. Xiao and Z. Xin, On the inviscid limit of the 3D Navier–Stokes equations with generalized Navier-slip boundary conditions, Commun. Math. Stat., 1 (2013), 259-279.  doi: 10.1007/s40304-013-0014-6.  Google Scholar

show all references

References:
[1]

A. A. Agrachev, Some open problems, in Geometric Control Theory and Sub-Riemannian Geometry, Springer INdAM Ser. 5, Springer, Cham, 2014. doi: 10.1007/978-3-319-02132-4_1.  Google Scholar

[2]

A. A. Agrachev, S. Kuksin, A. V. Sarychev and A. Shirikyan, On finite-dimensional projections of distributions for solutions of randomly forced 2D Navier–Stokes equations, Ann. Inst. H. Poincaré Probab. Statist., 43 2007,399–415. doi: 10.1016/j.anihpb.2006.06.001.  Google Scholar

[3]

A. A. Agrachev and A. V. Sarychev, Navier–Stokes equations: Controllability by means of low modes forcing, J. Math. Fluid Mech., 7 (2005), 108-152.  doi: 10.1007/s00021-004-0110-1.  Google Scholar

[4]

A. A. Agrachev and A. V. Sarychev, Controllability of 2D Euler and Navier–Stokes equations by degenerate forcing, Commun. Math. Phys., 265 (2006), 673-697.  doi: 10.1007/s00220-006-0002-8.  Google Scholar

[5]

A. A. Agrachev and A. V. Sarychev, Solid controllability in fluid dynamics, In Instability in Models Connected with Fluid Flows Ⅰ, Springer, New York, 2008, 1–35. doi: 10.1007/978-0-387-75217-4_1.  Google Scholar

[6]

N. V. ChemetovF. Cipriano and S. Gavrilyuk, Shallow water model for lakes with friction and penetration, Math. Methods Appl. Sci., 33 (2010), 687-703.  doi: 10.1002/mma.1185.  Google Scholar

[7]

W. E and J. C. Mattingly, Ergodicity for the Navier–Stokes equation with degenerate random forcing: Finite dimensional approximation, Comm. Pure Appl. Math., 54 (2001), 1386-1402.  doi: 10.1002/cpa.10007.  Google Scholar

[8]

E. Fernández-Cara and S. Guerrero, Null controllability of the Burgers system with distributed controls, Systems Control Lett., 56 (2007), 366-372.  doi: 10.1016/j.sysconle.2006.10.022.  Google Scholar

[9]

M. Hairer and J. C. Mattingly, Ergodicity of the 2D Navier–Stokes equations with degenerate stochastic forcing, Ann. of Math., 164 (2006), 993-1032.  doi: 10.4007/annals.2006.164.993.  Google Scholar

[10]

A. A. Ilyin and E. S. Titi, Sharp estimates for the number of degrees of freedom for the damped-driven 2-D Navier–Stokes equations, J. Nonlinear Sci., 16 (2006), 233-253.  doi: 10.1007/s00332-005-0720-7.  Google Scholar

[11]

J. P. Kelliher, Navier–Stokes equations with Navier boundary conditions for a bounded domain in the plane, SIAM J. Math. Anal., 38 (2006), 210-232.  doi: 10.1137/040612336.  Google Scholar

[12]

V. Nersesyan, Approximate controllability of Lagrangian trajectories of the 3D Navier–Stokes system by a finite-dimensional force, Nonlinearity, 28 (2015), 825-848.  doi: 10.1088/0951-7715/28/3/825.  Google Scholar

[13]

H. Nersisyan, Controllability of 3D incompressible Euler equations by a finite-dimensional external force, ESAIM Control Optim. Calc. Var., 16 (2010), 677-694.  doi: 10.1051/cocv/2009017.  Google Scholar

[14]

H. Nersisyan, Controllability of the 3D compressible Euler system, Comm. Partial Differential Equations, 36 (2011), 1544-1564.  doi: 10.1080/03605302.2011.596605.  Google Scholar

[15]

D. Phan and S. S. Rodrigues, Approximate controllability for equations of fluid mechanics with a few body controls, In Proceedings of the 2015 European Control Conference (ECC), Linz, Austria, 2015, 2682–2687. doi: 10.1109/ECC.2015.7330943.  Google Scholar

[16]

D. Phan and S. S. Rodrigues, Gevrey regularity for Navier–Stokes equations under Lions boundary conditions, J. Funct. Anal., 272 (2017), 2865-2898.  doi: 10.1016/j.jfa.2017.01.014.  Google Scholar

[17]

D. Phan and S. S. Rodrigues, Approximate controllability for Navier–Stokes Equations in 3D rectangles under Lions boundary conditions, J. Dyn. Control Syst., 25 (2019), 351-376.  doi: 10.1007/s10883-018-9412-0.  Google Scholar

[18]

S. S. Rodrigues, Controllability issues for the Navier–Stokes equation on a rectangle, In Proceedings 44th IEEE CDC-ECC'05, Seville, Spain, 2005, 2083–2085. doi: 10.1109/CDC.2005.1582468.  Google Scholar

[19]

S. S. Rodrigues, Navier–Stokes equation on the Rectangle: Controllability by means of low mode forcing, J. Dyn. Control Syst., 12 (2006), 517-562.  doi: 10.1007/s10883-006-0004-z.  Google Scholar

[20]

S. S. Rodrigues, Controllability of nonlinear pdes on compact Riemannian manifolds, In Proceedings WMCTF'07, Lisbon, Portugal, 2007,462–493. http://people.ricam.oeaw.ac.at/s.rodrigues/. Google Scholar

[21]

S. S. Rodrigues, Methods of Geometric Control Theory in Problems of Mathematical Physics, PhD Thesis, Universidade de Aveiro, Portugal, 2008. http://hdl.handle.net/10773/2931.  Google Scholar

[22]

M. Romito, Ergodicity of the finite dimensional approximation of the 3D Navier–Stokes equations forced by a degenerate noise, J. Statist. Phys., 114 (2004), 155-177.  doi: 10.1023/B:JOSS.0000003108.92097.5c.  Google Scholar

[23]

A. Sarychev, Controllability of the cubic Schroedinger equation via a low-dimensional source term, Math. Control Relat. Fields, 2 (2012), 247-270.  doi: 10.3934/mcrf.2012.2.247.  Google Scholar

[24]

A. Shirikyan, Approximate controllability of three-dimensional Navier–Stokes equations, Comm. Math. Phys., 266 (2006), 123-151.  doi: 10.1007/s00220-006-0007-3.  Google Scholar

[25]

A. Shirikyan, Controllability of nonlinear PDEs: Agrachev–Sarychev approach, Journées Équations aux Dérivées Partielles. Évian, 4 juin–8 juin. Exposé no. IV, 2007, 1–11. https://eudml.org/doc/10631. Google Scholar

[26]

A. Shirikyan, Exact controllability in projections for three-dimensional Navier–Stokes equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 521-537.  doi: 10.1016/j.anihpc.2006.04.002.  Google Scholar

[27]

A. Shirikyan, Euler equations are not exactly controllable by a finite-dimensional external force, Phys. D, 237 (2008), 1317-1323.  doi: 10.1016/j.physd.2008.03.021.  Google Scholar

[28]

A. Shirikyan, Global exponential stabilisation for the burgers equation with localised control, J. Éc. polytech. Math., 4: 613–632, 2017. doi: 10.5802/jep.53.  Google Scholar

[29]

R. Temam, Navier–Stokes Equations and Nonlinear Functional Analysis, CBMS-NSF Regional Conf. Ser. Appl. Math. SIAM, 2nd edition, Philadelphia, PA, 1995. Google Scholar

[30]

Y. Xiao and Z. Xin, On the vanishing viscosity limit for the 3D Navier–Stokes equations with a slip boundary condition, Comm. Pure Appl. Math., 60 (2007), 1027-1055.  doi: 10.1002/cpa.20187.  Google Scholar

[31]

Y. Xiao and Z. Xin, On the inviscid limit of the 3D Navier–Stokes equations with generalized Navier-slip boundary conditions, Commun. Math. Stat., 1 (2013), 259-279.  doi: 10.1007/s40304-013-0014-6.  Google Scholar

Figure 1.  Induction Step based on the decomposition (19)
Figure 2.  Step 3.3.1
Figure 3.  Step 3.3.2
Figure 4.  Step 3.3.3
[1]

Maxim Arnold, Walter Craig. On the size of the Navier - Stokes singular set. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1165-1178. doi: 10.3934/dcds.2010.28.1165

[2]

Oscar P. Manley. Some physical considerations attendant to the approximate inertial manifolds for Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 1996, 2 (4) : 585-593. doi: 10.3934/dcds.1996.2.585

[3]

Valentin Keyantuo, Mahamadi Warma. On the interior approximate controllability for fractional wave equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3719-3739. doi: 10.3934/dcds.2016.36.3719

[4]

Hugo Leiva, Nelson Merentes, José L. Sánchez. Approximate controllability of semilinear reaction diffusion equations. Mathematical Control & Related Fields, 2012, 2 (2) : 171-182. doi: 10.3934/mcrf.2012.2.171

[5]

Adam Larios, Yuan Pei. Approximate continuous data assimilation of the 2D Navier-Stokes equations via the Voigt-regularization with observable data. Evolution Equations & Control Theory, 2020, 9 (3) : 733-751. doi: 10.3934/eect.2020031

[6]

Andrei Fursikov. Local existence theorems with unbounded set of input data and unboundedness of stable invariant manifolds for 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 269-289. doi: 10.3934/dcdss.2010.3.269

[7]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[8]

Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149

[9]

Lianwen Wang. Approximate controllability and approximate null controllability of semilinear systems. Communications on Pure & Applied Analysis, 2006, 5 (4) : 953-962. doi: 10.3934/cpaa.2006.5.953

[10]

Abdelaziz Bennour, Farid Ammar Khodja, Djamel Teniou. Exact and approximate controllability of coupled one-dimensional hyperbolic equations. Evolution Equations & Control Theory, 2017, 6 (4) : 487-516. doi: 10.3934/eect.2017025

[11]

Pengyu Chen, Xuping Zhang. Approximate controllability of nonlocal problem for non-autonomous stochastic evolution equations. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020076

[12]

Luigi C. Berselli, Tae-Yeon Kim, Leo G. Rebholz. Analysis of a reduced-order approximate deconvolution model and its interpretation as a Navier-Stokes-Voigt regularization. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1027-1050. doi: 10.3934/dcdsb.2016.21.1027

[13]

Hermenegildo Borges de Oliveira. Anisotropically diffused and damped Navier-Stokes equations. Conference Publications, 2015, 2015 (special) : 349-358. doi: 10.3934/proc.2015.0349

[14]

D. Wirosoetisno. Navier--Stokes equations on a rapidly rotating sphere. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1251-1259. doi: 10.3934/dcdsb.2015.20.1251

[15]

Mustafa A. H. Al-Jaboori, D. Wirosoetisno. Navier--Stokes equations on the $\beta$-plane. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 687-701. doi: 10.3934/dcdsb.2011.16.687

[16]

Hyukjin Kwean. Kwak transformation and Navier-Stokes equations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 433-446. doi: 10.3934/cpaa.2004.3.433

[17]

Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747

[18]

C. Foias, M. S Jolly, I. Kukavica, E. S. Titi. The Lorenz equation as a metaphor for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 403-429. doi: 10.3934/dcds.2001.7.403

[19]

Tian Ma, Shouhong Wang. Asymptotic structure for solutions of the Navier--Stokes equations. Discrete & Continuous Dynamical Systems - A, 2004, 11 (1) : 189-204. doi: 10.3934/dcds.2004.11.189

[20]

Igor Kukavica. On regularity for the Navier-Stokes equations in Morrey spaces. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1319-1328. doi: 10.3934/dcds.2010.26.1319

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (15)
  • HTML views (27)
  • Cited by (0)

Other articles
by authors

[Back to Top]