• Previous Article
    Conditional regularity for the 3D Navier-Stokes equations in terms of the middle eigenvalue of the strain tensor
  • EECT Home
  • This Issue
  • Next Article
    New results on controllability of fractional evolution systems with order $ \alpha\in (1,2) $
doi: 10.3934/eect.2020064

Decay rate of global solutions to three dimensional generalized MHD system

1. 

College of Science, Zhongyuan University of Technology, Zhengzhou 450007, China

2. 

School of Mathematics and Statistics, North China University of Water Resources and Electric Power, Zhengzhou 450011, China

* Corresponding author: Yinxia Wang

Received  September 2019 Published  June 2020

Fund Project: The second author is supported in part by the Basic Research Project of Key Scientific Research Project Plan of Universities in Henan Province(Grant No. 20ZX002)

We investigate the initial value problem for the three dimensional generalized incompressible MHD system. Analyticity of global solutions was proved by energy method in the Fourier space and continuous argument. Then decay rate of global small solutions in the function space $ \mathcal {X}^{1-2\alpha}\bigcap \mathcal {X}^{1-2\beta} $ follows by constructing time weighted energy inequality.

Citation: Yanxia Niu, Yinxia Wang, Qingnian Zhang. Decay rate of global solutions to three dimensional generalized MHD system. Evolution Equations & Control Theory, doi: 10.3934/eect.2020064
References:
[1]

H. Bae, Existence and analyticity of Lei-Lin solution to Navier-Stokes equations, Proc. Amer. Math. Soc., 143 (2015), 2887-2892.  doi: 10.1090/S0002-9939-2015-12266-6.  Google Scholar

[2]

J. Benameur, Long time decay to the Lei-Lin solution of 3D Navier-Stokes equations, J. Math. Anal. Appl., 422 (2015), 424-434.  doi: 10.1016/j.jmaa.2014.08.039.  Google Scholar

[3]

J. Benameur and M. Bennaceur, Large time behavior of solutions to the 3D-NSE in spaces $\mathcal {X}^{\sigma}$, preprint, arXiv: 1901.09122v1. Google Scholar

[4]

Y. Cai and Z. Lei, Global well-posedness of the incompressible magnetohydrodynamics, Arch. Ration. Mech. Anal., 228 (2018), 969-993.  doi: 10.1007/s00205-017-1210-4.  Google Scholar

[5]

C. Cao and J. Wu, Two regularity criteria for the 3D MHD equations, J. Differential Equations, 248 (2010), 2263-2274.  doi: 10.1016/j.jde.2009.09.020.  Google Scholar

[6]

J. FanF. LiG. Nakamura and Z. Tan, Regularity criteria for the three-dimensional magnetohydrodynamic equations, J. Differential Equations, 256 (2014), 2858-2875.  doi: 10.1016/j.jde.2014.01.021.  Google Scholar

[7]

C. HeX. Huang and Y. Wang, On some new global existence results for 3D magnetohydrodynamic equations, Nonlinearity, 27 (2014), 343-352.  doi: 10.1088/0951-7715/27/2/343.  Google Scholar

[8]

X. Jia and Y. Zhou, On regularity criteria for the 3D incompressible MHD equations involving one velocity component, J. Math. Fluid Mech., 18 (2016), 187-206.  doi: 10.1007/s00021-015-0246-1.  Google Scholar

[9]

Z. Lei and F. Lin, Global mild solutions of Navier-Stokes equations, Comm. Pure Appl. Math., 64 (2011), 1297-1304.  doi: 10.1002/cpa.20361.  Google Scholar

[10]

Z. Lei, On axially symmetric incompressible magnetohydrodynamics in three dimensions, J. Differential Equations, 259 (2015), 3202-3215.  doi: 10.1016/j.jde.2015.04.017.  Google Scholar

[11]

F. G. Liu and Y.-Z. Wang, Global solutions to three-dimensional generalized MHD equations with large initial data, Z. Angew Math. Phys., 70 (2019), no. 3, Paper No. 69, 12 pp. doi: 10.1007/s00033-019-1113-3.  Google Scholar

[12]

Y. LinH. Zhang and Y. Zhou, Global smooth solutions of MHD equations with large data, J. Differential Equations, 261 (2016), 102-112.  doi: 10.1016/j.jde.2016.03.002.  Google Scholar

[13]

C. Miao and B. Yuan, On the well-posedness of the Cauchy problem for an MHD system in Besov spaces, Math. Methods Appl. Sci., 32 (2009), 53-76.  doi: 10.1002/mma.1026.  Google Scholar

[14]

F. Wang and K. Wang, Global existence of 3D MHD equations with mixed partial dissipation and magnetic diffusion, Nonlinear Anal. Real World Appl., 14 (2013), 526-535.  doi: 10.1016/j.nonrwa.2012.07.013.  Google Scholar

[15]

F. Wang, On global regularity of incompressile MHD equations in $\mathbb{R}^3$, J. Math. Anal. Appl., 454 (2017), 936-941.  doi: 10.1016/j.jmaa.2017.05.045.  Google Scholar

[16]

W. WangT. Qin and Q. Bie, Global well-posedness and analyticity results to 3D generalized magnetohydrodynamics equations, Appl. Math. Lett., 59 (2016), 65-70.  doi: 10.1016/j.aml.2016.03.009.  Google Scholar

[17]

Y.-Z. Wang and K. Wang, Global well-posedness of the three dimensional magnetohydrodynamics equations, Nonlinear Anal. Real World Appl., 17 (2014), 245-251.  doi: 10.1016/j.nonrwa.2013.12.002.  Google Scholar

[18]

Y.-Z. Wang and P. Li, Global existence of three dimensional incompressible MHD flows, Math. Methods. Appl. Sci., 39 (2016), 4246-4256.  doi: 10.1002/mma.3862.  Google Scholar

[19]

Y. Wang, Asymptotic decay of solutions to 3D MHD equations, Nonlinear Anal., 132 (2016), 115-125.  doi: 10.1016/j.na.2015.11.002.  Google Scholar

[20]

Y. XiaoB. Yuan and Q. Zhang, Temporal decay estimate of solutions to 3D generalized magnetohydrodynamics system, Appl. Math. Lett., 98 (2019), 108-113.  doi: 10.1016/j.aml.2019.06.003.  Google Scholar

[21]

Z. Ye, Global well-posedness and decay results to 3D generalized viscous magnetohydrodynamic equations, Ann. Mat. Pura Appl., 195 (2016), 1111-1121.  doi: 10.1007/s10231-015-0507-x.  Google Scholar

[22]

Z. Ye and X. P. Zhao, Global well-posedness of the generalized magnetohydrodynamic equations, Z. Angew. Math. Phys., 69 (2018), 1-26.  doi: 10.1007/s00033-018-1021-y.  Google Scholar

[23]

Z. Zhang and Z. Y. Yin, Global well-posedness for the generalized Navier-Stokes system, preprint, 2013, arXiv: 1306.3735v1. Google Scholar

[24]

Z. J. Zhang, Refined regularity criteria for the MHD system involving only two components of the solution, Appl. Anal., 96 (2017), 2130-2139.  doi: 10.1080/00036811.2016.1207245.  Google Scholar

[25]

Y. Zhou, Regularity criteria for the generalized viscous MHD equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 491-505.  doi: 10.1016/j.anihpc.2006.03.014.  Google Scholar

[26]

Y. Zhou and J. Fan, Logarithmically improved regularity criteria for the 3D viscous MHD equations, Forum Math., 24 (2012), 691-708.  doi: 10.1515/form.2011.079.  Google Scholar

show all references

References:
[1]

H. Bae, Existence and analyticity of Lei-Lin solution to Navier-Stokes equations, Proc. Amer. Math. Soc., 143 (2015), 2887-2892.  doi: 10.1090/S0002-9939-2015-12266-6.  Google Scholar

[2]

J. Benameur, Long time decay to the Lei-Lin solution of 3D Navier-Stokes equations, J. Math. Anal. Appl., 422 (2015), 424-434.  doi: 10.1016/j.jmaa.2014.08.039.  Google Scholar

[3]

J. Benameur and M. Bennaceur, Large time behavior of solutions to the 3D-NSE in spaces $\mathcal {X}^{\sigma}$, preprint, arXiv: 1901.09122v1. Google Scholar

[4]

Y. Cai and Z. Lei, Global well-posedness of the incompressible magnetohydrodynamics, Arch. Ration. Mech. Anal., 228 (2018), 969-993.  doi: 10.1007/s00205-017-1210-4.  Google Scholar

[5]

C. Cao and J. Wu, Two regularity criteria for the 3D MHD equations, J. Differential Equations, 248 (2010), 2263-2274.  doi: 10.1016/j.jde.2009.09.020.  Google Scholar

[6]

J. FanF. LiG. Nakamura and Z. Tan, Regularity criteria for the three-dimensional magnetohydrodynamic equations, J. Differential Equations, 256 (2014), 2858-2875.  doi: 10.1016/j.jde.2014.01.021.  Google Scholar

[7]

C. HeX. Huang and Y. Wang, On some new global existence results for 3D magnetohydrodynamic equations, Nonlinearity, 27 (2014), 343-352.  doi: 10.1088/0951-7715/27/2/343.  Google Scholar

[8]

X. Jia and Y. Zhou, On regularity criteria for the 3D incompressible MHD equations involving one velocity component, J. Math. Fluid Mech., 18 (2016), 187-206.  doi: 10.1007/s00021-015-0246-1.  Google Scholar

[9]

Z. Lei and F. Lin, Global mild solutions of Navier-Stokes equations, Comm. Pure Appl. Math., 64 (2011), 1297-1304.  doi: 10.1002/cpa.20361.  Google Scholar

[10]

Z. Lei, On axially symmetric incompressible magnetohydrodynamics in three dimensions, J. Differential Equations, 259 (2015), 3202-3215.  doi: 10.1016/j.jde.2015.04.017.  Google Scholar

[11]

F. G. Liu and Y.-Z. Wang, Global solutions to three-dimensional generalized MHD equations with large initial data, Z. Angew Math. Phys., 70 (2019), no. 3, Paper No. 69, 12 pp. doi: 10.1007/s00033-019-1113-3.  Google Scholar

[12]

Y. LinH. Zhang and Y. Zhou, Global smooth solutions of MHD equations with large data, J. Differential Equations, 261 (2016), 102-112.  doi: 10.1016/j.jde.2016.03.002.  Google Scholar

[13]

C. Miao and B. Yuan, On the well-posedness of the Cauchy problem for an MHD system in Besov spaces, Math. Methods Appl. Sci., 32 (2009), 53-76.  doi: 10.1002/mma.1026.  Google Scholar

[14]

F. Wang and K. Wang, Global existence of 3D MHD equations with mixed partial dissipation and magnetic diffusion, Nonlinear Anal. Real World Appl., 14 (2013), 526-535.  doi: 10.1016/j.nonrwa.2012.07.013.  Google Scholar

[15]

F. Wang, On global regularity of incompressile MHD equations in $\mathbb{R}^3$, J. Math. Anal. Appl., 454 (2017), 936-941.  doi: 10.1016/j.jmaa.2017.05.045.  Google Scholar

[16]

W. WangT. Qin and Q. Bie, Global well-posedness and analyticity results to 3D generalized magnetohydrodynamics equations, Appl. Math. Lett., 59 (2016), 65-70.  doi: 10.1016/j.aml.2016.03.009.  Google Scholar

[17]

Y.-Z. Wang and K. Wang, Global well-posedness of the three dimensional magnetohydrodynamics equations, Nonlinear Anal. Real World Appl., 17 (2014), 245-251.  doi: 10.1016/j.nonrwa.2013.12.002.  Google Scholar

[18]

Y.-Z. Wang and P. Li, Global existence of three dimensional incompressible MHD flows, Math. Methods. Appl. Sci., 39 (2016), 4246-4256.  doi: 10.1002/mma.3862.  Google Scholar

[19]

Y. Wang, Asymptotic decay of solutions to 3D MHD equations, Nonlinear Anal., 132 (2016), 115-125.  doi: 10.1016/j.na.2015.11.002.  Google Scholar

[20]

Y. XiaoB. Yuan and Q. Zhang, Temporal decay estimate of solutions to 3D generalized magnetohydrodynamics system, Appl. Math. Lett., 98 (2019), 108-113.  doi: 10.1016/j.aml.2019.06.003.  Google Scholar

[21]

Z. Ye, Global well-posedness and decay results to 3D generalized viscous magnetohydrodynamic equations, Ann. Mat. Pura Appl., 195 (2016), 1111-1121.  doi: 10.1007/s10231-015-0507-x.  Google Scholar

[22]

Z. Ye and X. P. Zhao, Global well-posedness of the generalized magnetohydrodynamic equations, Z. Angew. Math. Phys., 69 (2018), 1-26.  doi: 10.1007/s00033-018-1021-y.  Google Scholar

[23]

Z. Zhang and Z. Y. Yin, Global well-posedness for the generalized Navier-Stokes system, preprint, 2013, arXiv: 1306.3735v1. Google Scholar

[24]

Z. J. Zhang, Refined regularity criteria for the MHD system involving only two components of the solution, Appl. Anal., 96 (2017), 2130-2139.  doi: 10.1080/00036811.2016.1207245.  Google Scholar

[25]

Y. Zhou, Regularity criteria for the generalized viscous MHD equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 491-505.  doi: 10.1016/j.anihpc.2006.03.014.  Google Scholar

[26]

Y. Zhou and J. Fan, Logarithmically improved regularity criteria for the 3D viscous MHD equations, Forum Math., 24 (2012), 691-708.  doi: 10.1515/form.2011.079.  Google Scholar

[1]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[2]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[3]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[4]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[5]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[6]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[7]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[8]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[9]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[10]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[11]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[12]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[13]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[14]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[15]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[16]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[17]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[18]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[19]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[20]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (41)
  • HTML views (163)
  • Cited by (0)

Other articles
by authors

[Back to Top]