• Previous Article
    On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay
  • EECT Home
  • This Issue
  • Next Article
    Decay rate of global solutions to three dimensional generalized MHD system
June  2021, 10(2): 259-270. doi: 10.3934/eect.2020065

Bounds for lifespan of solutions to strongly damped semilinear wave equations with logarithmic sources and arbitrary initial energy

School of Mathematics, Jilin University, Changchun 130012, China

* Corresponding author: Bin Guo

Received  November 2019 Revised  February 2020 Published  June 2021 Early access  June 2020

Fund Project: The first author is supported by The Scientific and Technological Project of Jilin Provinces's Education Department in Thirteenth-five-Year grant JJKH20180111KJ and supported by NSFC grant 11301211

The main aim of this paper is to deal with the upper and lower bounds for blow-up time of solutions to the following equation:
$ u_{tt}-\Delta u-\Delta u_{t} = |u|^{p-2}u\log|u|, $
which has been studied in [5]. For high initial energy, it is well known that the classical potential well method is not effective. In order to overcome this difficulty, the authors apply the new energy estimate method to establish the lower bound of the
$ L^{2}(\Omega) $
norm of the solution. Furthermore, the authors construct a new control functional and combine energy inequalities with the concavity argument to prove that the solution blows up in finite time for high initial energy. Meanwhile, an estimate of the upper bound of blow-up time is also obtained. Finally, a lower bound for blow-up time is obtained by introducing a new control functional. These results fill the gap of [5].
Citation: Ge Zu, Bin Guo. Bounds for lifespan of solutions to strongly damped semilinear wave equations with logarithmic sources and arbitrary initial energy. Evolution Equations & Control Theory, 2021, 10 (2) : 259-270. doi: 10.3934/eect.2020065
References:
[1]

J. M. Ball, Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. Oxford Ser., 28 (1977), 473-486.  doi: 10.1093/qmath/28.4.473.  Google Scholar

[2]

H. Chen and S. Y. Tian, Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity, J. Differential Equations, 258 (2015), 4424-4442.  doi: 10.1016/j.jde.2015.01.038.  Google Scholar

[3]

Y. Cao and C. H. Liu, Initial boundary value problem for a mixed pseudo-parabolic $p$-Laplacian type equation with logarithmic nonlinearity, Electron. J. Differential Equations, (2018), Paper No. 116, 1–19.  Google Scholar

[4]

P. Dai, C. L. Mu and G. Y. Xu, Blow-up phenomena for a pseudo-parabolic equation with $p$-Laplacian and Logarithmic nonlinearity terms, J. Math. Anal. Appl., 481 (2020), no. 1, 123439, 27 pp. doi: 10.1016/j.jmaa.2019.123439.  Google Scholar

[5]

H. F. Di, Y. D. Shang and Z. F. Song, Initial boundary value problem for a class of strongly damped semilinear wave equations with logarithmic nonlinearity, Nonlinear Anal. Real World Appl., 51 (2020), 102968, 22 pp. doi: 10.1016/j.nonrwa.2019.102968.  Google Scholar

[6]

P. Górka, Logarithmic Klein-Gordon equation, Acta Phys. Polon. B, 40 (2009), 59-66.   Google Scholar

[7]

B. Guo and F. Liu, A lower bound for the blow-up time to a viscoelastic hyperbolic equation with nonlinear sources, Appl. Math. Lett., 60 (2016), 115-119.  doi: 10.1016/j.aml.2016.03.017.  Google Scholar

[8]

Y. J. HeH. H. Gao and H. Wang, Blow-up and decay for a class of pseudo-parabolic $p$-Laplacian equation with logarithmic nonlinearity, Comput. Math. Appl., 75 (2018), 459-469.  doi: 10.1016/j.camwa.2017.09.027.  Google Scholar

[9]

M. A. Hamza and H. Zaag, The blow-up rate for a non-scaling invariant semilinear wave equations, J. Math. Anal. Appl., 483 (2020), 123652, 34 pp. doi: 10.1016/j.jmaa.2019.123652.  Google Scholar

[10]

C. N. Le and X. T. Le, Global solution and blow-up for a class of $p$-Laplacian evolution equations with logarithmic nonlinearity, Acta Appl. Math., 151 (2017), 149-169.  doi: 10.1007/s10440-017-0106-5.  Google Scholar

[11]

H. A. Levine, Remarks on the growth and nonexistence of solutions to nonlinear wave equations, A Seminar on PDEs - 1973, Rutgers Univ., New Brunswick, N. J., 1973, 59–70.  Google Scholar

[12]

H. A. Levine, Some additional remarks on the nonexistence of global solutions to nonlinear wave equations, SIAM J. Math. Anal., 5 (1974), 138-146.  doi: 10.1137/0505015.  Google Scholar

[13]

H. A. Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_tt=-Au+F(u)$, Trans. Amer. Math. Soc., 192 (1974), 1-21.  doi: 10.2307/1996814.  Google Scholar

[14]

L. W. Ma and Z. B. Fang, Energy decay estimates and infinite blow-up phenomena for a strongly damped semilinear wave equation with logarithmic nonlinear source, Math. Methods Appl. Sci., 41 (2018), 2639-2653.  doi: 10.1002/mma.4766.  Google Scholar

[15]

L. C. Nhan and L. X. Truong, Global solution and blow-up for a class of pseudo $p$-Laplacian evolution equations with logarithmic nonlinearity, Comput. Math. Appl., 73 (2017), 2076-2091.  doi: 10.1016/j.camwa.2017.02.030.  Google Scholar

[16]

V. Pata and S. Zelik, Smooth attractors for strongly damped wave equations, Nonlinearity, 19 (2006), 1495-1506.  doi: 10.1088/0951-7715/19/7/001.  Google Scholar

[17]

L. L. SunB. Guo and W. J. Gao, A lower bound for the blow-up time to a damped semilinear wave equation, Appl. Math. Lett., 37 (2014), 22-25.  doi: 10.1016/j.aml.2014.05.009.  Google Scholar

[18]

J. Zhou, Lower bounds for blow-up time of two nonlinear wave equations, Appl. Math. Lett., 45 (2015), 64-68.  doi: 10.1016/j.aml.2015.01.010.  Google Scholar

show all references

References:
[1]

J. M. Ball, Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. Oxford Ser., 28 (1977), 473-486.  doi: 10.1093/qmath/28.4.473.  Google Scholar

[2]

H. Chen and S. Y. Tian, Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity, J. Differential Equations, 258 (2015), 4424-4442.  doi: 10.1016/j.jde.2015.01.038.  Google Scholar

[3]

Y. Cao and C. H. Liu, Initial boundary value problem for a mixed pseudo-parabolic $p$-Laplacian type equation with logarithmic nonlinearity, Electron. J. Differential Equations, (2018), Paper No. 116, 1–19.  Google Scholar

[4]

P. Dai, C. L. Mu and G. Y. Xu, Blow-up phenomena for a pseudo-parabolic equation with $p$-Laplacian and Logarithmic nonlinearity terms, J. Math. Anal. Appl., 481 (2020), no. 1, 123439, 27 pp. doi: 10.1016/j.jmaa.2019.123439.  Google Scholar

[5]

H. F. Di, Y. D. Shang and Z. F. Song, Initial boundary value problem for a class of strongly damped semilinear wave equations with logarithmic nonlinearity, Nonlinear Anal. Real World Appl., 51 (2020), 102968, 22 pp. doi: 10.1016/j.nonrwa.2019.102968.  Google Scholar

[6]

P. Górka, Logarithmic Klein-Gordon equation, Acta Phys. Polon. B, 40 (2009), 59-66.   Google Scholar

[7]

B. Guo and F. Liu, A lower bound for the blow-up time to a viscoelastic hyperbolic equation with nonlinear sources, Appl. Math. Lett., 60 (2016), 115-119.  doi: 10.1016/j.aml.2016.03.017.  Google Scholar

[8]

Y. J. HeH. H. Gao and H. Wang, Blow-up and decay for a class of pseudo-parabolic $p$-Laplacian equation with logarithmic nonlinearity, Comput. Math. Appl., 75 (2018), 459-469.  doi: 10.1016/j.camwa.2017.09.027.  Google Scholar

[9]

M. A. Hamza and H. Zaag, The blow-up rate for a non-scaling invariant semilinear wave equations, J. Math. Anal. Appl., 483 (2020), 123652, 34 pp. doi: 10.1016/j.jmaa.2019.123652.  Google Scholar

[10]

C. N. Le and X. T. Le, Global solution and blow-up for a class of $p$-Laplacian evolution equations with logarithmic nonlinearity, Acta Appl. Math., 151 (2017), 149-169.  doi: 10.1007/s10440-017-0106-5.  Google Scholar

[11]

H. A. Levine, Remarks on the growth and nonexistence of solutions to nonlinear wave equations, A Seminar on PDEs - 1973, Rutgers Univ., New Brunswick, N. J., 1973, 59–70.  Google Scholar

[12]

H. A. Levine, Some additional remarks on the nonexistence of global solutions to nonlinear wave equations, SIAM J. Math. Anal., 5 (1974), 138-146.  doi: 10.1137/0505015.  Google Scholar

[13]

H. A. Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_tt=-Au+F(u)$, Trans. Amer. Math. Soc., 192 (1974), 1-21.  doi: 10.2307/1996814.  Google Scholar

[14]

L. W. Ma and Z. B. Fang, Energy decay estimates and infinite blow-up phenomena for a strongly damped semilinear wave equation with logarithmic nonlinear source, Math. Methods Appl. Sci., 41 (2018), 2639-2653.  doi: 10.1002/mma.4766.  Google Scholar

[15]

L. C. Nhan and L. X. Truong, Global solution and blow-up for a class of pseudo $p$-Laplacian evolution equations with logarithmic nonlinearity, Comput. Math. Appl., 73 (2017), 2076-2091.  doi: 10.1016/j.camwa.2017.02.030.  Google Scholar

[16]

V. Pata and S. Zelik, Smooth attractors for strongly damped wave equations, Nonlinearity, 19 (2006), 1495-1506.  doi: 10.1088/0951-7715/19/7/001.  Google Scholar

[17]

L. L. SunB. Guo and W. J. Gao, A lower bound for the blow-up time to a damped semilinear wave equation, Appl. Math. Lett., 37 (2014), 22-25.  doi: 10.1016/j.aml.2014.05.009.  Google Scholar

[18]

J. Zhou, Lower bounds for blow-up time of two nonlinear wave equations, Appl. Math. Lett., 45 (2015), 64-68.  doi: 10.1016/j.aml.2015.01.010.  Google Scholar

[1]

Menglan Liao. The lifespan of solutions for a viscoelastic wave equation with a strong damping and logarithmic nonlinearity. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021025

[2]

Yuzhu Han, Qi Li. Lifespan of solutions to a damped plate equation with logarithmic nonlinearity. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020101

[3]

Tarek Saanouni. Global well-posedness of some high-order semilinear wave and Schrödinger type equations with exponential nonlinearity. Communications on Pure & Applied Analysis, 2014, 13 (1) : 273-291. doi: 10.3934/cpaa.2014.13.273

[4]

Irena Lasiecka, Roberto Triggiani. Global exact controllability of semilinear wave equations by a double compactness/uniqueness argument. Conference Publications, 2005, 2005 (Special) : 556-565. doi: 10.3934/proc.2005.2005.556

[5]

Bilgesu A. Bilgin, Varga K. Kalantarov. Non-existence of global solutions to nonlinear wave equations with positive initial energy. Communications on Pure & Applied Analysis, 2018, 17 (3) : 987-999. doi: 10.3934/cpaa.2018048

[6]

Dongbing Zha, Yi Zhou. The lifespan for quasilinear wave equations with multiple propagation speeds in four space dimensions. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1167-1186. doi: 10.3934/cpaa.2014.13.1167

[7]

Kyouhei Wakasa. The lifespan of solutions to semilinear damped wave equations in one space dimension. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1265-1283. doi: 10.3934/cpaa.2016.15.1265

[8]

Hui Yang, Yuzhu Han. Initial boundary value problem for a strongly damped wave equation with a general nonlinearity. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021019

[9]

Yannick Privat, Emmanuel Trélat, Enrique Zuazua. Complexity and regularity of maximal energy domains for the wave equation with fixed initial data. Discrete & Continuous Dynamical Systems, 2015, 35 (12) : 6133-6153. doi: 10.3934/dcds.2015.35.6133

[10]

Gisèle Ruiz Goldstein, Jerome A. Goldstein, Fabiana Travessini De Cezaro. Equipartition of energy for nonautonomous wave equations. Discrete & Continuous Dynamical Systems - S, 2017, 10 (1) : 75-85. doi: 10.3934/dcdss.2017004

[11]

Hua Chen, Huiyang Xu. Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity. Discrete & Continuous Dynamical Systems, 2019, 39 (2) : 1185-1203. doi: 10.3934/dcds.2019051

[12]

Xiaoqiang Dai, Chao Yang, Shaobin Huang, Tao Yu, Yuanran Zhu. Finite time blow-up for a wave equation with dynamic boundary condition at critical and high energy levels in control systems. Electronic Research Archive, 2020, 28 (1) : 91-102. doi: 10.3934/era.2020006

[13]

Marcello D'Abbicco, Giovanni Girardi, Giséle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Equipartition of energy for nonautonomous damped wave equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 597-613. doi: 10.3934/dcdss.2020364

[14]

Carlos E. Kenig. The method of energy channels for nonlinear wave equations. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 6979-6993. doi: 10.3934/dcds.2019240

[15]

Daniel Bouche, Youngjoon Hong, Chang-Yeol Jung. Asymptotic analysis of the scattering problem for the Helmholtz equations with high wave numbers. Discrete & Continuous Dynamical Systems, 2017, 37 (3) : 1159-1181. doi: 10.3934/dcds.2017048

[16]

Vedran Sohinger. Bounds on the growth of high Sobolev norms of solutions to 2D Hartree equations. Discrete & Continuous Dynamical Systems, 2012, 32 (10) : 3733-3771. doi: 10.3934/dcds.2012.32.3733

[17]

Bi Ping, Maoan Han. Oscillation of second order difference equations with advanced argument. Conference Publications, 2003, 2003 (Special) : 108-112. doi: 10.3934/proc.2003.2003.108

[18]

Haixia Li. Lifespan of solutions to a parabolic type Kirchhoff equation with time-dependent nonlinearity. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020088

[19]

Yanbing Yang, Runzhang Xu. Nonlinear wave equation with both strongly and weakly damped terms: Supercritical initial energy finite time blow up. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1351-1358. doi: 10.3934/cpaa.2019065

[20]

Daomin Cao, Hang Li. High energy solutions of the Choquard equation. Discrete & Continuous Dynamical Systems, 2018, 38 (6) : 3023-3032. doi: 10.3934/dcds.2018129

2020 Impact Factor: 1.081

Metrics

  • PDF downloads (248)
  • HTML views (417)
  • Cited by (1)

Other articles
by authors

[Back to Top]