• Previous Article
    On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay
  • EECT Home
  • This Issue
  • Next Article
    Decay rate of global solutions to three dimensional generalized MHD system
June  2021, 10(2): 259-270. doi: 10.3934/eect.2020065

Bounds for lifespan of solutions to strongly damped semilinear wave equations with logarithmic sources and arbitrary initial energy

School of Mathematics, Jilin University, Changchun 130012, China

* Corresponding author: Bin Guo

Received  November 2019 Revised  February 2020 Published  June 2020

Fund Project: The first author is supported by The Scientific and Technological Project of Jilin Provinces's Education Department in Thirteenth-five-Year grant JJKH20180111KJ and supported by NSFC grant 11301211

The main aim of this paper is to deal with the upper and lower bounds for blow-up time of solutions to the following equation:
$ u_{tt}-\Delta u-\Delta u_{t} = |u|^{p-2}u\log|u|, $
which has been studied in [5]. For high initial energy, it is well known that the classical potential well method is not effective. In order to overcome this difficulty, the authors apply the new energy estimate method to establish the lower bound of the
$ L^{2}(\Omega) $
norm of the solution. Furthermore, the authors construct a new control functional and combine energy inequalities with the concavity argument to prove that the solution blows up in finite time for high initial energy. Meanwhile, an estimate of the upper bound of blow-up time is also obtained. Finally, a lower bound for blow-up time is obtained by introducing a new control functional. These results fill the gap of [5].
Citation: Ge Zu, Bin Guo. Bounds for lifespan of solutions to strongly damped semilinear wave equations with logarithmic sources and arbitrary initial energy. Evolution Equations & Control Theory, 2021, 10 (2) : 259-270. doi: 10.3934/eect.2020065
References:
[1]

J. M. Ball, Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. Oxford Ser., 28 (1977), 473-486.  doi: 10.1093/qmath/28.4.473.  Google Scholar

[2]

H. Chen and S. Y. Tian, Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity, J. Differential Equations, 258 (2015), 4424-4442.  doi: 10.1016/j.jde.2015.01.038.  Google Scholar

[3]

Y. Cao and C. H. Liu, Initial boundary value problem for a mixed pseudo-parabolic $p$-Laplacian type equation with logarithmic nonlinearity, Electron. J. Differential Equations, (2018), Paper No. 116, 1–19.  Google Scholar

[4]

P. Dai, C. L. Mu and G. Y. Xu, Blow-up phenomena for a pseudo-parabolic equation with $p$-Laplacian and Logarithmic nonlinearity terms, J. Math. Anal. Appl., 481 (2020), no. 1, 123439, 27 pp. doi: 10.1016/j.jmaa.2019.123439.  Google Scholar

[5]

H. F. Di, Y. D. Shang and Z. F. Song, Initial boundary value problem for a class of strongly damped semilinear wave equations with logarithmic nonlinearity, Nonlinear Anal. Real World Appl., 51 (2020), 102968, 22 pp. doi: 10.1016/j.nonrwa.2019.102968.  Google Scholar

[6]

P. Górka, Logarithmic Klein-Gordon equation, Acta Phys. Polon. B, 40 (2009), 59-66.   Google Scholar

[7]

B. Guo and F. Liu, A lower bound for the blow-up time to a viscoelastic hyperbolic equation with nonlinear sources, Appl. Math. Lett., 60 (2016), 115-119.  doi: 10.1016/j.aml.2016.03.017.  Google Scholar

[8]

Y. J. HeH. H. Gao and H. Wang, Blow-up and decay for a class of pseudo-parabolic $p$-Laplacian equation with logarithmic nonlinearity, Comput. Math. Appl., 75 (2018), 459-469.  doi: 10.1016/j.camwa.2017.09.027.  Google Scholar

[9]

M. A. Hamza and H. Zaag, The blow-up rate for a non-scaling invariant semilinear wave equations, J. Math. Anal. Appl., 483 (2020), 123652, 34 pp. doi: 10.1016/j.jmaa.2019.123652.  Google Scholar

[10]

C. N. Le and X. T. Le, Global solution and blow-up for a class of $p$-Laplacian evolution equations with logarithmic nonlinearity, Acta Appl. Math., 151 (2017), 149-169.  doi: 10.1007/s10440-017-0106-5.  Google Scholar

[11]

H. A. Levine, Remarks on the growth and nonexistence of solutions to nonlinear wave equations, A Seminar on PDEs - 1973, Rutgers Univ., New Brunswick, N. J., 1973, 59–70.  Google Scholar

[12]

H. A. Levine, Some additional remarks on the nonexistence of global solutions to nonlinear wave equations, SIAM J. Math. Anal., 5 (1974), 138-146.  doi: 10.1137/0505015.  Google Scholar

[13]

H. A. Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_tt=-Au+F(u)$, Trans. Amer. Math. Soc., 192 (1974), 1-21.  doi: 10.2307/1996814.  Google Scholar

[14]

L. W. Ma and Z. B. Fang, Energy decay estimates and infinite blow-up phenomena for a strongly damped semilinear wave equation with logarithmic nonlinear source, Math. Methods Appl. Sci., 41 (2018), 2639-2653.  doi: 10.1002/mma.4766.  Google Scholar

[15]

L. C. Nhan and L. X. Truong, Global solution and blow-up for a class of pseudo $p$-Laplacian evolution equations with logarithmic nonlinearity, Comput. Math. Appl., 73 (2017), 2076-2091.  doi: 10.1016/j.camwa.2017.02.030.  Google Scholar

[16]

V. Pata and S. Zelik, Smooth attractors for strongly damped wave equations, Nonlinearity, 19 (2006), 1495-1506.  doi: 10.1088/0951-7715/19/7/001.  Google Scholar

[17]

L. L. SunB. Guo and W. J. Gao, A lower bound for the blow-up time to a damped semilinear wave equation, Appl. Math. Lett., 37 (2014), 22-25.  doi: 10.1016/j.aml.2014.05.009.  Google Scholar

[18]

J. Zhou, Lower bounds for blow-up time of two nonlinear wave equations, Appl. Math. Lett., 45 (2015), 64-68.  doi: 10.1016/j.aml.2015.01.010.  Google Scholar

show all references

References:
[1]

J. M. Ball, Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. Oxford Ser., 28 (1977), 473-486.  doi: 10.1093/qmath/28.4.473.  Google Scholar

[2]

H. Chen and S. Y. Tian, Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity, J. Differential Equations, 258 (2015), 4424-4442.  doi: 10.1016/j.jde.2015.01.038.  Google Scholar

[3]

Y. Cao and C. H. Liu, Initial boundary value problem for a mixed pseudo-parabolic $p$-Laplacian type equation with logarithmic nonlinearity, Electron. J. Differential Equations, (2018), Paper No. 116, 1–19.  Google Scholar

[4]

P. Dai, C. L. Mu and G. Y. Xu, Blow-up phenomena for a pseudo-parabolic equation with $p$-Laplacian and Logarithmic nonlinearity terms, J. Math. Anal. Appl., 481 (2020), no. 1, 123439, 27 pp. doi: 10.1016/j.jmaa.2019.123439.  Google Scholar

[5]

H. F. Di, Y. D. Shang and Z. F. Song, Initial boundary value problem for a class of strongly damped semilinear wave equations with logarithmic nonlinearity, Nonlinear Anal. Real World Appl., 51 (2020), 102968, 22 pp. doi: 10.1016/j.nonrwa.2019.102968.  Google Scholar

[6]

P. Górka, Logarithmic Klein-Gordon equation, Acta Phys. Polon. B, 40 (2009), 59-66.   Google Scholar

[7]

B. Guo and F. Liu, A lower bound for the blow-up time to a viscoelastic hyperbolic equation with nonlinear sources, Appl. Math. Lett., 60 (2016), 115-119.  doi: 10.1016/j.aml.2016.03.017.  Google Scholar

[8]

Y. J. HeH. H. Gao and H. Wang, Blow-up and decay for a class of pseudo-parabolic $p$-Laplacian equation with logarithmic nonlinearity, Comput. Math. Appl., 75 (2018), 459-469.  doi: 10.1016/j.camwa.2017.09.027.  Google Scholar

[9]

M. A. Hamza and H. Zaag, The blow-up rate for a non-scaling invariant semilinear wave equations, J. Math. Anal. Appl., 483 (2020), 123652, 34 pp. doi: 10.1016/j.jmaa.2019.123652.  Google Scholar

[10]

C. N. Le and X. T. Le, Global solution and blow-up for a class of $p$-Laplacian evolution equations with logarithmic nonlinearity, Acta Appl. Math., 151 (2017), 149-169.  doi: 10.1007/s10440-017-0106-5.  Google Scholar

[11]

H. A. Levine, Remarks on the growth and nonexistence of solutions to nonlinear wave equations, A Seminar on PDEs - 1973, Rutgers Univ., New Brunswick, N. J., 1973, 59–70.  Google Scholar

[12]

H. A. Levine, Some additional remarks on the nonexistence of global solutions to nonlinear wave equations, SIAM J. Math. Anal., 5 (1974), 138-146.  doi: 10.1137/0505015.  Google Scholar

[13]

H. A. Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_tt=-Au+F(u)$, Trans. Amer. Math. Soc., 192 (1974), 1-21.  doi: 10.2307/1996814.  Google Scholar

[14]

L. W. Ma and Z. B. Fang, Energy decay estimates and infinite blow-up phenomena for a strongly damped semilinear wave equation with logarithmic nonlinear source, Math. Methods Appl. Sci., 41 (2018), 2639-2653.  doi: 10.1002/mma.4766.  Google Scholar

[15]

L. C. Nhan and L. X. Truong, Global solution and blow-up for a class of pseudo $p$-Laplacian evolution equations with logarithmic nonlinearity, Comput. Math. Appl., 73 (2017), 2076-2091.  doi: 10.1016/j.camwa.2017.02.030.  Google Scholar

[16]

V. Pata and S. Zelik, Smooth attractors for strongly damped wave equations, Nonlinearity, 19 (2006), 1495-1506.  doi: 10.1088/0951-7715/19/7/001.  Google Scholar

[17]

L. L. SunB. Guo and W. J. Gao, A lower bound for the blow-up time to a damped semilinear wave equation, Appl. Math. Lett., 37 (2014), 22-25.  doi: 10.1016/j.aml.2014.05.009.  Google Scholar

[18]

J. Zhou, Lower bounds for blow-up time of two nonlinear wave equations, Appl. Math. Lett., 45 (2015), 64-68.  doi: 10.1016/j.aml.2015.01.010.  Google Scholar

[1]

Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020136

[2]

Zhi-Min Chen, Philip A. Wilson. Stability of oscillatory gravity wave trains with energy dissipation and Benjamin-Feir instability. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2329-2341. doi: 10.3934/dcdsb.2012.17.2329

[3]

Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637

[4]

Xiaohu Wang, Dingshi Li, Jun Shen. Wong-Zakai approximations and attractors for stochastic wave equations driven by additive noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2829-2855. doi: 10.3934/dcdsb.2020207

[5]

Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912

[6]

Vassili Gelfreich, Carles Simó. High-precision computations of divergent asymptotic series and homoclinic phenomena. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 511-536. doi: 10.3934/dcdsb.2008.10.511

[7]

Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151

[8]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[9]

Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817

[10]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[11]

Habib Ammari, Josselin Garnier, Vincent Jugnon. Detection, reconstruction, and characterization algorithms from noisy data in multistatic wave imaging. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 389-417. doi: 10.3934/dcdss.2015.8.389

[12]

Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021020

[13]

Elena K. Kostousova. External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021015

[14]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[15]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[16]

José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030

[17]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[18]

Nikolaos Roidos. Expanding solutions of quasilinear parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021026

[19]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[20]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

2019 Impact Factor: 0.953

Article outline

[Back to Top]