-
Previous Article
Stabilization of the transmission wave/plate equation with variable coefficients on $ {\mathbb{R}}^n $
- EECT Home
- This Issue
-
Next Article
On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay
Multiscale homogenization of integral convex functionals in Orlicz Sobolev setting
1. | Higher Teacher, Training College Mathematics department. University of Bamenda, Faculty of Sciences, P.O. Box 39, Bambili, Cameroon |
2. | Universitá degli Studi del Sannio, Dipartimento di Scienze e Tecnologie, Via De Sanctis, Benevento, 82100, Italy |
3. | University of Yaounde I, École Normale Supérieure de Yaoundé, P.O. Box 47 Yaounde, Cameroon |
4. | Dipartimento di Scienze di Base ed Applicate per l’Ingegneria, Sapienza Università di Roma, Via Antonio Scarpa, 16, 00161 Roma, Italy |
The $ \Gamma $-limit of a family of functionals $ u\mapsto \int_{\Omega }f\left( \frac{x}{\varepsilon },\frac{x}{\varepsilon ^{2}},D^{s}u\right) dx $ is obtained for $ s = 1,2 $ and when the integrand $ f = f\left( y,z,v\right) $ is a continous function, periodic in $ y $ and $ z $ and convex with respect to $ v $ with nonstandard growth. The reiterated two-scale limits of second order derivatives are characterized in this setting.
References:
[1] |
R. Adams, Sobolev Spaces, Academic Press, New York-London, 1975.
![]() ![]() |
[2] |
R. Adams,
On the Orlicz-Sobolev imbedding theorem, J. Functional Analysis, 24 (1977), 241-257.
doi: 10.1016/0022-1236(77)90055-6. |
[3] |
G. Allaire,
Homogenization and two scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518.
doi: 10.1137/0523084. |
[4] |
G. Allaire and M. Briane,
Multiscale convergence and reiterated homogenization, Proc. Royal Soc. Edin., 126 (1996), 297-342.
doi: 10.1017/S0308210500022757. |
[5] |
M. Baía and I. Fonseca,
The limit behavior of a family of variational multiscale problems, Indiana Univ. Math. J., 56 (2007), 1-50.
doi: 10.1512/iumj.2007.56.2869. |
[6] |
G. Carita, A. M. Ribeiro and E. Zappale, An homogenization result in $W^{1, p}\times L^q$, J. Convex Anal., 18, n. 4, (2011), 1093–1126. |
[7] |
M. Chmara and J. Maksymiuk,
Anisotropic Orlicz-Sobolev spaces of vector valued functions and Lagrange equations, J. Math. Anal. Appl., 456 (2017), 457-475.
doi: 10.1016/j.jmaa.2017.07.032. |
[8] |
A. Cianchi, Higher-order Sobolev and Poincaré inequalities in Orlicz spaces, Forum Math., 18, (2006), n. 5,745–767.
doi: 10.1515/FORUM.2006.037. |
[9] |
D. Cioranescu, A. Damlamian and R. De Arcangelis, Homogenization of quasiconvex integrals via the periodic unfolding method, SIAM J. Math. Anal., 37, n. 5. (2006), 1435–1453.
doi: 10.1137/040620898. |
[10] |
D. Cioranescu, A. Damlamian and G. Griso, The periodic unfolding method in homogenization, SIAM J. Math. Anal., 40, n. 4, (2008), 1585–1620.
doi: 10.1137/080713148. |
[11] |
D. Cioranescu, A. Damlamian and G. Griso, The periodic unfolding method, Series in Contemporary Mathematics, Vol. 3, Springer, Singapore, 2018.
doi: 10.1007/978-981-13-3032-2. |
[12] |
G. Dal Maso, An Introduction to $\Gamma$-Convergence, Birkhäuser Boston, Inc., Boston, MA, 1993.
doi: 10.1007/978-1-4612-0327-8. |
[13] |
W. Desch and R. Grimmer,
On the wellposedness of constitutive laws involving dissipation potentials, Trans. Amer. Math. Soc., 353 (2001), 5095-5120.
doi: 10.1090/S0002-9947-01-02847-1. |
[14] |
I. Fonseca and E. Zappale,
Multiscale relaxation of convex functionals, J. Convex Anal., 10 (2003), 325-350.
|
[15] |
M. Focardi,
Semicontinuity of vectorial functionals in Orlicz-Sobolev spaces, Rend. Istit. Mat. Univ. Trieste, 29 (1997), 141-161.
|
[16] |
J. F. Tachago and H. Nnang,
Two-scale convergence of Integral functionals with convex, periodic and Nonstandard Growth Integrands, Acta Appl. Math., 121 (2012), 175-196.
doi: 10.1007/s10440-012-9702-6. |
[17] |
J. F. Tachago, H. Nnang and E. Zappale, Relaxation of periodic and nonstandard growth integrands by means of two scale convergence, in Integral Methods in Science and Engineering–Analytic Treatment and Numerical Approximations, Birkhäuser/Springer, Cham, 2019, 123–132.
doi: 10.1007/978-3-030-16077-7. |
[18] |
J. Fotso Tachago, H. Nnang and E. Zappale, Reiterated periodic homogenization of integral functionals with convex and nonstandard growth integrands, Opuscula Math., 41 (2021), 113-143.
doi: 10.7494/OpMath.2021.41.1.113. |
[19] |
A. Gaudiello and O. Guibé,
Homogenization of an evolution problem with $ L\log L$ data in a domain with oscillating boundary, Ann. Mat. Pura Appl., 197 (2018), 153-169.
doi: 10.1007/s10231-017-0673-0. |
[20] |
A. Ioffe,
On lower semicontinuity of integral functionals. I, SIAM Journ. Control Optim., 15 (1977), 521-538.
doi: 10.1137/0315035. |
[21] |
R. K. Bogning and H. Nnang,
Periodic homogenization of parabolic nonstandard monotone operators, Acta Appl. Math., 125 (2013), 209-229.
doi: 10.1007/s10440-012-9788-x. |
[22] |
P. A. Kozarzewski and E. Zappale,
Orlicz equi-integrability for scaled gradients, J. Elliptic Parabol. Equ., 3 (2017), 1-13.
doi: 10.1007/s41808-017-0001-2. |
[23] |
P. A. Kozarzewski and E. Zappale, A note on optimal design for thin structures in the Orlicz-Sobolev setting, Integral Methods in Science and Engineering, Vol. 1, (2017), Birkhäuser Basel, 161–171. |
[24] |
D. Lukkassen, G. Nguetseng, H. Nnang and P. Wall,
Reiterated homogenization of nonlinear monotone operators in a general deterministic setting, J. Funct. Spaces Appl., 7 (2009), 121-152.
doi: 10.1155/2009/102486. |
[25] |
G. Nguetseng,
A general convergent result for functional related to the theory of homogenization, SIAM J. Math. Anal., 20 (1989), 608-623.
doi: 10.1137/0520043. |
[26] |
G. Nguetseng and H. Nnang, Homogenization of nonlinear monotone operators beyong the periodic setting, Electron. J. Differential Equations (2003), No. 36, 1–24. |
[27] |
H. Nnang, Homogenéisation déterministe d'opérateurs monotones, Fac. Sc. University of Yaoundé 1, Yaoundé, 2004. |
[28] |
H. Nnang,
Deterministic Homogenization of Nonlinear Degenerated Elliptic Operators with Nonstandard Growth, Act. Math. Sin., 30 (2014), 1621-1654.
doi: 10.1007/s10114-014-2131-x. |
[29] |
M. M. Rao and Z. D. Ren, Theory of Orlicz spaces, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 146, Marcel Dekker, Inc., New York, 1991. |
[30] |
E. Zappale,
A note on dimension reduction for unbounded integrals with periodic microstructure via the unfolding method for slender domains, Evol. Equ. Control Theory, 6 (2017), 299-318.
doi: 10.3934/eect.2017016. |
show all references
References:
[1] |
R. Adams, Sobolev Spaces, Academic Press, New York-London, 1975.
![]() ![]() |
[2] |
R. Adams,
On the Orlicz-Sobolev imbedding theorem, J. Functional Analysis, 24 (1977), 241-257.
doi: 10.1016/0022-1236(77)90055-6. |
[3] |
G. Allaire,
Homogenization and two scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518.
doi: 10.1137/0523084. |
[4] |
G. Allaire and M. Briane,
Multiscale convergence and reiterated homogenization, Proc. Royal Soc. Edin., 126 (1996), 297-342.
doi: 10.1017/S0308210500022757. |
[5] |
M. Baía and I. Fonseca,
The limit behavior of a family of variational multiscale problems, Indiana Univ. Math. J., 56 (2007), 1-50.
doi: 10.1512/iumj.2007.56.2869. |
[6] |
G. Carita, A. M. Ribeiro and E. Zappale, An homogenization result in $W^{1, p}\times L^q$, J. Convex Anal., 18, n. 4, (2011), 1093–1126. |
[7] |
M. Chmara and J. Maksymiuk,
Anisotropic Orlicz-Sobolev spaces of vector valued functions and Lagrange equations, J. Math. Anal. Appl., 456 (2017), 457-475.
doi: 10.1016/j.jmaa.2017.07.032. |
[8] |
A. Cianchi, Higher-order Sobolev and Poincaré inequalities in Orlicz spaces, Forum Math., 18, (2006), n. 5,745–767.
doi: 10.1515/FORUM.2006.037. |
[9] |
D. Cioranescu, A. Damlamian and R. De Arcangelis, Homogenization of quasiconvex integrals via the periodic unfolding method, SIAM J. Math. Anal., 37, n. 5. (2006), 1435–1453.
doi: 10.1137/040620898. |
[10] |
D. Cioranescu, A. Damlamian and G. Griso, The periodic unfolding method in homogenization, SIAM J. Math. Anal., 40, n. 4, (2008), 1585–1620.
doi: 10.1137/080713148. |
[11] |
D. Cioranescu, A. Damlamian and G. Griso, The periodic unfolding method, Series in Contemporary Mathematics, Vol. 3, Springer, Singapore, 2018.
doi: 10.1007/978-981-13-3032-2. |
[12] |
G. Dal Maso, An Introduction to $\Gamma$-Convergence, Birkhäuser Boston, Inc., Boston, MA, 1993.
doi: 10.1007/978-1-4612-0327-8. |
[13] |
W. Desch and R. Grimmer,
On the wellposedness of constitutive laws involving dissipation potentials, Trans. Amer. Math. Soc., 353 (2001), 5095-5120.
doi: 10.1090/S0002-9947-01-02847-1. |
[14] |
I. Fonseca and E. Zappale,
Multiscale relaxation of convex functionals, J. Convex Anal., 10 (2003), 325-350.
|
[15] |
M. Focardi,
Semicontinuity of vectorial functionals in Orlicz-Sobolev spaces, Rend. Istit. Mat. Univ. Trieste, 29 (1997), 141-161.
|
[16] |
J. F. Tachago and H. Nnang,
Two-scale convergence of Integral functionals with convex, periodic and Nonstandard Growth Integrands, Acta Appl. Math., 121 (2012), 175-196.
doi: 10.1007/s10440-012-9702-6. |
[17] |
J. F. Tachago, H. Nnang and E. Zappale, Relaxation of periodic and nonstandard growth integrands by means of two scale convergence, in Integral Methods in Science and Engineering–Analytic Treatment and Numerical Approximations, Birkhäuser/Springer, Cham, 2019, 123–132.
doi: 10.1007/978-3-030-16077-7. |
[18] |
J. Fotso Tachago, H. Nnang and E. Zappale, Reiterated periodic homogenization of integral functionals with convex and nonstandard growth integrands, Opuscula Math., 41 (2021), 113-143.
doi: 10.7494/OpMath.2021.41.1.113. |
[19] |
A. Gaudiello and O. Guibé,
Homogenization of an evolution problem with $ L\log L$ data in a domain with oscillating boundary, Ann. Mat. Pura Appl., 197 (2018), 153-169.
doi: 10.1007/s10231-017-0673-0. |
[20] |
A. Ioffe,
On lower semicontinuity of integral functionals. I, SIAM Journ. Control Optim., 15 (1977), 521-538.
doi: 10.1137/0315035. |
[21] |
R. K. Bogning and H. Nnang,
Periodic homogenization of parabolic nonstandard monotone operators, Acta Appl. Math., 125 (2013), 209-229.
doi: 10.1007/s10440-012-9788-x. |
[22] |
P. A. Kozarzewski and E. Zappale,
Orlicz equi-integrability for scaled gradients, J. Elliptic Parabol. Equ., 3 (2017), 1-13.
doi: 10.1007/s41808-017-0001-2. |
[23] |
P. A. Kozarzewski and E. Zappale, A note on optimal design for thin structures in the Orlicz-Sobolev setting, Integral Methods in Science and Engineering, Vol. 1, (2017), Birkhäuser Basel, 161–171. |
[24] |
D. Lukkassen, G. Nguetseng, H. Nnang and P. Wall,
Reiterated homogenization of nonlinear monotone operators in a general deterministic setting, J. Funct. Spaces Appl., 7 (2009), 121-152.
doi: 10.1155/2009/102486. |
[25] |
G. Nguetseng,
A general convergent result for functional related to the theory of homogenization, SIAM J. Math. Anal., 20 (1989), 608-623.
doi: 10.1137/0520043. |
[26] |
G. Nguetseng and H. Nnang, Homogenization of nonlinear monotone operators beyong the periodic setting, Electron. J. Differential Equations (2003), No. 36, 1–24. |
[27] |
H. Nnang, Homogenéisation déterministe d'opérateurs monotones, Fac. Sc. University of Yaoundé 1, Yaoundé, 2004. |
[28] |
H. Nnang,
Deterministic Homogenization of Nonlinear Degenerated Elliptic Operators with Nonstandard Growth, Act. Math. Sin., 30 (2014), 1621-1654.
doi: 10.1007/s10114-014-2131-x. |
[29] |
M. M. Rao and Z. D. Ren, Theory of Orlicz spaces, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 146, Marcel Dekker, Inc., New York, 1991. |
[30] |
E. Zappale,
A note on dimension reduction for unbounded integrals with periodic microstructure via the unfolding method for slender domains, Evol. Equ. Control Theory, 6 (2017), 299-318.
doi: 10.3934/eect.2017016. |
[1] |
Robert E. Miller. Homogenization of time-dependent systems with Kelvin-Voigt damping by two-scale convergence. Discrete and Continuous Dynamical Systems, 1995, 1 (4) : 485-502. doi: 10.3934/dcds.1995.1.485 |
[2] |
Martin Heida, Stefan Neukamm, Mario Varga. Stochastic two-scale convergence and Young measures. Networks and Heterogeneous Media, 2022, 17 (2) : 227-254. doi: 10.3934/nhm.2022004 |
[3] |
Aurore Back, Emmanuel Frénod. Geometric two-scale convergence on manifold and applications to the Vlasov equation. Discrete and Continuous Dynamical Systems - S, 2015, 8 (1) : 223-241. doi: 10.3934/dcdss.2015.8.223 |
[4] |
Jean Louis Woukeng. $\sum $-convergence and reiterated homogenization of nonlinear parabolic operators. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1753-1789. doi: 10.3934/cpaa.2010.9.1753 |
[5] |
Jie Zhao. Convergence rates for elliptic reiterated homogenization problems. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2787-2795. doi: 10.3934/cpaa.2013.12.2787 |
[6] |
Alexander Mielke, Sina Reichelt, Marita Thomas. Two-scale homogenization of nonlinear reaction-diffusion systems with slow diffusion. Networks and Heterogeneous Media, 2014, 9 (2) : 353-382. doi: 10.3934/nhm.2014.9.353 |
[7] |
Erik Kropat, Silja Meyer-Nieberg, Gerhard-Wilhelm Weber. Bridging the gap between variational homogenization results and two-scale asymptotic averaging techniques on periodic network structures. Numerical Algebra, Control and Optimization, 2017, 7 (3) : 223-250. doi: 10.3934/naco.2017016 |
[8] |
Fang Liu, Aihui Zhou. Localizations and parallelizations for two-scale finite element discretizations. Communications on Pure and Applied Analysis, 2007, 6 (3) : 757-773. doi: 10.3934/cpaa.2007.6.757 |
[9] |
Alexandre Mouton. Expansion of a singularly perturbed equation with a two-scale converging convection term. Discrete and Continuous Dynamical Systems - S, 2016, 9 (5) : 1447-1473. doi: 10.3934/dcdss.2016058 |
[10] |
Ibrahima Faye, Emmanuel Frénod, Diaraf Seck. Two-Scale numerical simulation of sand transport problems. Discrete and Continuous Dynamical Systems - S, 2015, 8 (1) : 151-168. doi: 10.3934/dcdss.2015.8.151 |
[11] |
Vy Khoi Le. On the existence of nontrivial solutions of inequalities in Orlicz-Sobolev spaces. Discrete and Continuous Dynamical Systems - S, 2012, 5 (4) : 809-818. doi: 10.3934/dcdss.2012.5.809 |
[12] |
Duchao Liu, Beibei Wang, Peihao Zhao. On the trace regularity results of Musielak-Orlicz-Sobolev spaces in a bounded domain. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1643-1659. doi: 10.3934/cpaa.2016018 |
[13] |
Jingwei Hu, Shi Jin, Li Wang. An asymptotic-preserving scheme for the semiconductor Boltzmann equation with two-scale collisions: A splitting approach. Kinetic and Related Models, 2015, 8 (4) : 707-723. doi: 10.3934/krm.2015.8.707 |
[14] |
Alexandre Mouton. Two-scale semi-Lagrangian simulation of a charged particle beam in a periodic focusing channel. Kinetic and Related Models, 2009, 2 (2) : 251-274. doi: 10.3934/krm.2009.2.251 |
[15] |
Xu Yang, François Golse, Zhongyi Huang, Shi Jin. Numerical study of a domain decomposition method for a two-scale linear transport equation. Networks and Heterogeneous Media, 2006, 1 (1) : 143-166. doi: 10.3934/nhm.2006.1.143 |
[16] |
Shi Jin, Xu Yang, Guangwei Yuan. A domain decomposition method for a two-scale transport equation with energy flux conserved at the interface. Kinetic and Related Models, 2008, 1 (1) : 65-84. doi: 10.3934/krm.2008.1.65 |
[17] |
Abdelaaziz Sbai, Youssef El Hadfi, Mohammed Srati, Noureddine Aboutabit. Existence of solution for Kirchhoff type problem in Orlicz-Sobolev spaces Via Leray-Schauder's nonlinear alternative. Discrete and Continuous Dynamical Systems - S, 2022, 15 (1) : 213-227. doi: 10.3934/dcdss.2021015 |
[18] |
Zhiqiang Yang, Junzhi Cui, Qiang Ma. The second-order two-scale computation for integrated heat transfer problem with conduction, convection and radiation in periodic porous materials. Discrete and Continuous Dynamical Systems - B, 2014, 19 (3) : 827-848. doi: 10.3934/dcdsb.2014.19.827 |
[19] |
Wen-ming He, Jun-zhi Cui. The estimate of the multi-scale homogenization method for Green's function on Sobolev space $W^{1,q}(\Omega)$. Communications on Pure and Applied Analysis, 2012, 11 (2) : 501-516. doi: 10.3934/cpaa.2012.11.501 |
[20] |
Piotr Gwiazda, Agnieszka Świerczewska-Gwiazda, Aneta Wróblewska. Generalized Stokes system in Orlicz spaces. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2125-2146. doi: 10.3934/dcds.2012.32.2125 |
2021 Impact Factor: 1.169
Tools
Metrics
Other articles
by authors
[Back to Top]