• Previous Article
    Approximate controllability for Navier–Stokes equations in $ \rm3D $ cylinders under Lions boundary conditions by an explicit saturating set
  • EECT Home
  • This Issue
  • Next Article
    Solvability in abstract evolution equations with countable time delays in Banach spaces: Global Lipschitz perturbation
doi: 10.3934/eect.2020067

Multiscale homogenization of integral convex functionals in Orlicz Sobolev setting

1. 

Higher Teacher, Training College Mathematics department. University of Bamenda, Faculty of Sciences, P.O. Box 39, Bambili, Cameroon

2. 

Universitá degli Studi del Sannio, Dipartimento di Scienze e Tecnologie, Via De Sanctis, Benevento, 82100, Italy

3. 

University of Yaounde I, École Normale Supérieure de Yaoundé, P.O. Box 47 Yaounde, Cameroon

4. 

Universitá di Salerno, Dipartimento di Ingegneria Industriale, Via Giovanni Paolo Ⅱ, 132 (84084) Fisciano, SA, Italy

* Corresponding author: Elvira Zappale

Received  November 2019 Published  June 2020

Fund Project: The first and the last authors thank ICP-INdAM Research in Pairs programme 2018

The $ \Gamma $-limit of a family of functionals $ u\mapsto \int_{\Omega }f\left( \frac{x}{\varepsilon },\frac{x}{\varepsilon ^{2}},D^{s}u\right) dx $ is obtained for $ s = 1,2 $ and when the integrand $ f = f\left( y,z,v\right) $ is a continous function, periodic in $ y $ and $ z $ and convex with respect to $ v $ with nonstandard growth. The reiterated two-scale limits of second order derivatives are characterized in this setting.

Citation: Joel Fotso Tachago, Giuliano Gargiulo, Hubert Nnang, Elvira Zappale. Multiscale homogenization of integral convex functionals in Orlicz Sobolev setting. Evolution Equations & Control Theory, doi: 10.3934/eect.2020067
References:
[1] R. Adams, Sobolev Spaces, Academic Press, New York-London, 1975.   Google Scholar
[2]

R. Adams, On the Orlicz-Sobolev imbedding theorem, J. Functional Analysis, 24 (1977), 241-257.  doi: 10.1016/0022-1236(77)90055-6.  Google Scholar

[3]

G. Allaire, Homogenization and two scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518.  doi: 10.1137/0523084.  Google Scholar

[4]

G. Allaire and M. Briane, Multiscale convergence and reiterated homogenization, Proc. Royal Soc. Edin., 126 (1996), 297-342.  doi: 10.1017/S0308210500022757.  Google Scholar

[5]

M. Baía and I. Fonseca, The limit behavior of a family of variational multiscale problems, Indiana Univ. Math. J., 56 (2007), 1-50.  doi: 10.1512/iumj.2007.56.2869.  Google Scholar

[6]

G. Carita, A. M. Ribeiro and E. Zappale, An homogenization result in $W^{1, p}\times L^q$, J. Convex Anal., 18, n. 4, (2011), 1093–1126.  Google Scholar

[7]

M. Chmara and J. Maksymiuk, Anisotropic Orlicz-Sobolev spaces of vector valued functions and Lagrange equations, J. Math. Anal. Appl., 456 (2017), 457-475.  doi: 10.1016/j.jmaa.2017.07.032.  Google Scholar

[8]

A. Cianchi, Higher-order Sobolev and Poincaré inequalities in Orlicz spaces, Forum Math., 18, (2006), n. 5,745–767. doi: 10.1515/FORUM.2006.037.  Google Scholar

[9]

D. Cioranescu, A. Damlamian and R. De Arcangelis, Homogenization of quasiconvex integrals via the periodic unfolding method, SIAM J. Math. Anal., 37, n. 5. (2006), 1435–1453. doi: 10.1137/040620898.  Google Scholar

[10]

D. Cioranescu, A. Damlamian and G. Griso, The periodic unfolding method in homogenization, SIAM J. Math. Anal., 40, n. 4, (2008), 1585–1620. doi: 10.1137/080713148.  Google Scholar

[11]

D. Cioranescu, A. Damlamian and G. Griso, The periodic unfolding method, Series in Contemporary Mathematics, Vol. 3, Springer, Singapore, 2018. doi: 10.1007/978-981-13-3032-2.  Google Scholar

[12]

G. Dal Maso, An Introduction to $\Gamma$-Convergence, Birkhäuser Boston, Inc., Boston, MA, 1993. doi: 10.1007/978-1-4612-0327-8.  Google Scholar

[13]

W. Desch and R. Grimmer, On the wellposedness of constitutive laws involving dissipation potentials, Trans. Amer. Math. Soc., 353 (2001), 5095-5120.  doi: 10.1090/S0002-9947-01-02847-1.  Google Scholar

[14]

I. Fonseca and E. Zappale, Multiscale relaxation of convex functionals, J. Convex Anal., 10 (2003), 325-350.   Google Scholar

[15]

M. Focardi, Semicontinuity of vectorial functionals in Orlicz-Sobolev spaces, Rend. Istit. Mat. Univ. Trieste, 29 (1997), 141-161.   Google Scholar

[16]

J. F. Tachago and H. Nnang, Two-scale convergence of Integral functionals with convex, periodic and Nonstandard Growth Integrands, Acta Appl. Math., 121 (2012), 175-196.  doi: 10.1007/s10440-012-9702-6.  Google Scholar

[17]

J. F. Tachago, H. Nnang and E. Zappale, Relaxation of periodic and nonstandard growth integrands by means of two scale convergence, in Integral Methods in Science and Engineering–Analytic Treatment and Numerical Approximations, Birkhäuser/Springer, Cham, 2019,123–132. doi: 10.1007/978-3-030-16077-7.  Google Scholar

[18]

J. Fotso Tachago, H. Nnang and E. Zappale, Reiterated periodic homogenization of integral functionals with convex and nonstandard growth integrands, preprint, 2019, arXiv: math/1901.07217v1. Google Scholar

[19]

A. Gaudiello and O. Guibé, Homogenization of an evolution problem with $ L\log L$ data in a domain with oscillating boundary, Ann. Mat. Pura Appl., 197 (2018), 153-169.  doi: 10.1007/s10231-017-0673-0.  Google Scholar

[20]

A. Ioffe, On lower semicontinuity of integral functionals. I, SIAM Journ. Control Optim., 15 (1977), 521-538.  doi: 10.1137/0315035.  Google Scholar

[21]

R. K. Bogning and H. Nnang, Periodic homogenization of parabolic nonstandard monotone operators, Acta Appl. Math., 125 (2013), 209-229.  doi: 10.1007/s10440-012-9788-x.  Google Scholar

[22]

P. A. Kozarzewski and E. Zappale, Orlicz equi-integrability for scaled gradients, J. Elliptic Parabol. Equ., 3 (2017), 1-13.  doi: 10.1007/s41808-017-0001-2.  Google Scholar

[23]

P. A. Kozarzewski and E. Zappale, A note on optimal design for thin structures in the Orlicz-Sobolev setting, Integral Methods in Science and Engineering, Vol. 1, (2017), Birkhäuser Basel, 161–171.  Google Scholar

[24]

D. LukkassenG. NguetsengH. Nnang and P. Wall, Reiterated homogenization of nonlinear monotone operators in a general deterministic setting, J. Funct. Spaces Appl., 7 (2009), 121-152.  doi: 10.1155/2009/102486.  Google Scholar

[25]

G. Nguetseng, A general convergent result for functional related to the theory of homogenization, SIAM J. Math. Anal., 20 (1989), 608-623.  doi: 10.1137/0520043.  Google Scholar

[26]

G. Nguetseng and H. Nnang, Homogenization of nonlinear monotone operators beyong the periodic setting, Electron. J. Differential Equations (2003), No. 36, 1–24.  Google Scholar

[27]

H. Nnang, Homogenéisation déterministe d'opérateurs monotones, Fac. Sc. University of Yaoundé 1, Yaoundé, 2004. Google Scholar

[28]

H. Nnang, Deterministic Homogenization of Nonlinear Degenerated Elliptic Operators with Nonstandard Growth, Act. Math. Sin., 30 (2014), 1621-1654.  doi: 10.1007/s10114-014-2131-x.  Google Scholar

[29]

M. M. Rao and Z. D. Ren, Theory of Orlicz spaces, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 146, Marcel Dekker, Inc., New York, 1991.  Google Scholar

[30]

E. Zappale, A note on dimension reduction for unbounded integrals with periodic microstructure via the unfolding method for slender domains, Evol. Equ. Control Theory, 6 (2017), 299-318.  doi: 10.3934/eect.2017016.  Google Scholar

show all references

References:
[1] R. Adams, Sobolev Spaces, Academic Press, New York-London, 1975.   Google Scholar
[2]

R. Adams, On the Orlicz-Sobolev imbedding theorem, J. Functional Analysis, 24 (1977), 241-257.  doi: 10.1016/0022-1236(77)90055-6.  Google Scholar

[3]

G. Allaire, Homogenization and two scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518.  doi: 10.1137/0523084.  Google Scholar

[4]

G. Allaire and M. Briane, Multiscale convergence and reiterated homogenization, Proc. Royal Soc. Edin., 126 (1996), 297-342.  doi: 10.1017/S0308210500022757.  Google Scholar

[5]

M. Baía and I. Fonseca, The limit behavior of a family of variational multiscale problems, Indiana Univ. Math. J., 56 (2007), 1-50.  doi: 10.1512/iumj.2007.56.2869.  Google Scholar

[6]

G. Carita, A. M. Ribeiro and E. Zappale, An homogenization result in $W^{1, p}\times L^q$, J. Convex Anal., 18, n. 4, (2011), 1093–1126.  Google Scholar

[7]

M. Chmara and J. Maksymiuk, Anisotropic Orlicz-Sobolev spaces of vector valued functions and Lagrange equations, J. Math. Anal. Appl., 456 (2017), 457-475.  doi: 10.1016/j.jmaa.2017.07.032.  Google Scholar

[8]

A. Cianchi, Higher-order Sobolev and Poincaré inequalities in Orlicz spaces, Forum Math., 18, (2006), n. 5,745–767. doi: 10.1515/FORUM.2006.037.  Google Scholar

[9]

D. Cioranescu, A. Damlamian and R. De Arcangelis, Homogenization of quasiconvex integrals via the periodic unfolding method, SIAM J. Math. Anal., 37, n. 5. (2006), 1435–1453. doi: 10.1137/040620898.  Google Scholar

[10]

D. Cioranescu, A. Damlamian and G. Griso, The periodic unfolding method in homogenization, SIAM J. Math. Anal., 40, n. 4, (2008), 1585–1620. doi: 10.1137/080713148.  Google Scholar

[11]

D. Cioranescu, A. Damlamian and G. Griso, The periodic unfolding method, Series in Contemporary Mathematics, Vol. 3, Springer, Singapore, 2018. doi: 10.1007/978-981-13-3032-2.  Google Scholar

[12]

G. Dal Maso, An Introduction to $\Gamma$-Convergence, Birkhäuser Boston, Inc., Boston, MA, 1993. doi: 10.1007/978-1-4612-0327-8.  Google Scholar

[13]

W. Desch and R. Grimmer, On the wellposedness of constitutive laws involving dissipation potentials, Trans. Amer. Math. Soc., 353 (2001), 5095-5120.  doi: 10.1090/S0002-9947-01-02847-1.  Google Scholar

[14]

I. Fonseca and E. Zappale, Multiscale relaxation of convex functionals, J. Convex Anal., 10 (2003), 325-350.   Google Scholar

[15]

M. Focardi, Semicontinuity of vectorial functionals in Orlicz-Sobolev spaces, Rend. Istit. Mat. Univ. Trieste, 29 (1997), 141-161.   Google Scholar

[16]

J. F. Tachago and H. Nnang, Two-scale convergence of Integral functionals with convex, periodic and Nonstandard Growth Integrands, Acta Appl. Math., 121 (2012), 175-196.  doi: 10.1007/s10440-012-9702-6.  Google Scholar

[17]

J. F. Tachago, H. Nnang and E. Zappale, Relaxation of periodic and nonstandard growth integrands by means of two scale convergence, in Integral Methods in Science and Engineering–Analytic Treatment and Numerical Approximations, Birkhäuser/Springer, Cham, 2019,123–132. doi: 10.1007/978-3-030-16077-7.  Google Scholar

[18]

J. Fotso Tachago, H. Nnang and E. Zappale, Reiterated periodic homogenization of integral functionals with convex and nonstandard growth integrands, preprint, 2019, arXiv: math/1901.07217v1. Google Scholar

[19]

A. Gaudiello and O. Guibé, Homogenization of an evolution problem with $ L\log L$ data in a domain with oscillating boundary, Ann. Mat. Pura Appl., 197 (2018), 153-169.  doi: 10.1007/s10231-017-0673-0.  Google Scholar

[20]

A. Ioffe, On lower semicontinuity of integral functionals. I, SIAM Journ. Control Optim., 15 (1977), 521-538.  doi: 10.1137/0315035.  Google Scholar

[21]

R. K. Bogning and H. Nnang, Periodic homogenization of parabolic nonstandard monotone operators, Acta Appl. Math., 125 (2013), 209-229.  doi: 10.1007/s10440-012-9788-x.  Google Scholar

[22]

P. A. Kozarzewski and E. Zappale, Orlicz equi-integrability for scaled gradients, J. Elliptic Parabol. Equ., 3 (2017), 1-13.  doi: 10.1007/s41808-017-0001-2.  Google Scholar

[23]

P. A. Kozarzewski and E. Zappale, A note on optimal design for thin structures in the Orlicz-Sobolev setting, Integral Methods in Science and Engineering, Vol. 1, (2017), Birkhäuser Basel, 161–171.  Google Scholar

[24]

D. LukkassenG. NguetsengH. Nnang and P. Wall, Reiterated homogenization of nonlinear monotone operators in a general deterministic setting, J. Funct. Spaces Appl., 7 (2009), 121-152.  doi: 10.1155/2009/102486.  Google Scholar

[25]

G. Nguetseng, A general convergent result for functional related to the theory of homogenization, SIAM J. Math. Anal., 20 (1989), 608-623.  doi: 10.1137/0520043.  Google Scholar

[26]

G. Nguetseng and H. Nnang, Homogenization of nonlinear monotone operators beyong the periodic setting, Electron. J. Differential Equations (2003), No. 36, 1–24.  Google Scholar

[27]

H. Nnang, Homogenéisation déterministe d'opérateurs monotones, Fac. Sc. University of Yaoundé 1, Yaoundé, 2004. Google Scholar

[28]

H. Nnang, Deterministic Homogenization of Nonlinear Degenerated Elliptic Operators with Nonstandard Growth, Act. Math. Sin., 30 (2014), 1621-1654.  doi: 10.1007/s10114-014-2131-x.  Google Scholar

[29]

M. M. Rao and Z. D. Ren, Theory of Orlicz spaces, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 146, Marcel Dekker, Inc., New York, 1991.  Google Scholar

[30]

E. Zappale, A note on dimension reduction for unbounded integrals with periodic microstructure via the unfolding method for slender domains, Evol. Equ. Control Theory, 6 (2017), 299-318.  doi: 10.3934/eect.2017016.  Google Scholar

[1]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[2]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[3]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[4]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[5]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[6]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[7]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[8]

Nicolas Rougerie. On two properties of the Fisher information. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020049

[9]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[10]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[11]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[12]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[13]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[14]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[15]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[16]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[17]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[18]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[19]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[20]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (36)
  • HTML views (193)
  • Cited by (0)

[Back to Top]