doi: 10.3934/eect.2020068

Stabilization of the transmission wave/plate equation with variable coefficients on $ {\mathbb{R}}^n $

1. 

Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China

2. 

School of Sciences, Beijing Forestry University, Beijing, 100083, China

* Corresponding author: Fengyan Yang

Received  December 2019 Revised  February 2020 Published  June 2020

In this article, we consider the transmission wave/plate equation with variable coefficients on $ {\mathbb{R}}^n(n\ge 3) $. By virtue of the Morawetz multipliers in non Euclidean geometries and compactness-uniqueness arguments, we obtain some stability result of the transmission wave/plate system under suitable geometric conditions.

Citation: Bei Gong, Zhen-Hu Ning, Fengyan Yang. Stabilization of the transmission wave/plate equation with variable coefficients on $ {\mathbb{R}}^n $. Evolution Equations & Control Theory, doi: 10.3934/eect.2020068
References:
[1]

K. Ammari and S. Nicaise, Stabilization of a transmission wave/plate equation, J. Differential Equations, 249 (2010), 707-727.  doi: 10.1016/j.jde.2010.03.007.  Google Scholar

[2] V. Barbu, Analysis and control of nonlinear infinite dimensional systems, Academic Press, Inc., Boston, MA, 1993.   Google Scholar
[3]

C. BardosG. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), 1024-1065.   Google Scholar

[4]

C. A. BortotM. M. CavalcantiV. N. Domingos Cavalcanti and P. Piccione, Exponential asymptotic stability for the Klein-Gordon equation on non-compact Riemannian manifolds, Appl. Math. Optim., 78 (2018), 219-265.  doi: 10.1007/s00245-017-9405-5.  Google Scholar

[5]

N. Burq and R. Joly, Exponential decay for the damped wave equation in unbounded domains, Commun. Contemp. Math., 18 (2016), 1650012.  doi: 10.1142/S0219199716500127.  Google Scholar

[6]

J. M. Bouclet and J. Royer, Local energy decay for the damped wave equation, J. Funct. Anal., 266 (2014), 4538-4615.  doi: 10.1016/j.jfa.2014.01.028.  Google Scholar

[7]

V. BarbuI. Lasiecka and A. M. Rammaha, Blow-up of generalized solutions to wave equations with nonlinear degenerate damping and source terms, Indiana Univ. Math. J., 56 (2007), 995-1021.  doi: 10.1512/iumj.2007.56.2990.  Google Scholar

[8]

B. DehmanG. Lebeau and E. Zuazua, Stabilization and control for the subcritical semilinear wave equation, Ann. Sci. École Norm. Sup., 36 (2003), 525-551.  doi: 10.1016/S0012-9593(03)00021-1.  Google Scholar

[9]

S. J. Feng and D. X. Feng, Nonlinear internal damping of wave equations with variable coefficients, Acta Math. Sin. (Engl. Ser.), 20 (2004), 1057-1072.  doi: 10.1007/s10114-004-0394-3.  Google Scholar

[10]

B. GongF. Y. Yang and X. Zhao, Stabilization of the transmission wave/plate equation with variable coefficients, J. Math. Anal. Appl., 455 (2017), 947-962.  doi: 10.1016/j.jmaa.2017.06.014.  Google Scholar

[11]

A. Haraux, Stabilization of trajectories for some weakly damped hyperbolic equations, J. Differential Equations, 59 (1985), 145-154.  doi: 10.1016/0022-0396(85)90151-2.  Google Scholar

[12]

I. Lasiecka and J. Ong, Global solvability and uniform decays of solutions to quasilinear equation with nonlinear boundary dissipation, Comm. Partial Differential Equations, 24 (1999), 2069-2107.  doi: 10.1080/03605309908821495.  Google Scholar

[13]

J. Lagnese, Control of wave processes with distributed controls supported on a subregion, SIAM J. Control Optim., 21 (1983), 68-85.   Google Scholar

[14]

K. S. Liu, Locally distributed control and damping for the conservative system, SIAM J. Control Optim., 35 (1997), 1574-1590.  doi: 10.1137/S0363012995284928.  Google Scholar

[15]

Y. X. Liu and P. F. Yao, Energy decay rate of the wave equations on Riemannian manifolds with critical potential, Appl. Math. Optim., 78 (2018), 61-101.  doi: 10.1007/s00245-017-9399-z.  Google Scholar

[16]

C. Morawetz, Time decay for nonlinear Klein-Gordon equations, Proc. Roy. Soc. London Ser. A, 306 (1968), 503-518.  doi: 10.1098/rspa.1968.0151.  Google Scholar

[17]

P. Martinez, A new method to obtain decay rate estimates for dissipative systems with localized damping, Rev. Mat. Complut., 12 (1999), 251-283.  doi: 10.5209/rev_REMA.1999.v12.n1.17227.  Google Scholar

[18]

M. Nakao, Decay of solutions of the wave equation with a local nonlinear dissipation, Math. Ann., 305 (1996), 403-417.  doi: 10.1007/BF01444231.  Google Scholar

[19]

M. Nakao, Energy decay for the linear and semilinear wave equation in exterior domains with some localized dissipations, Math. Z., 238 (2001), 781-797.  doi: 10.1007/s002090100275.  Google Scholar

[20]

M. Nakao, Existence of global solutions for the Kirchhoff-type quasilinear wave equation in exterior domains with a half-linear dissipation, Kyushu J. Math., 58 (2004), 373-391.  doi: 10.2206/kyushujm.58.373.  Google Scholar

[21]

Z. H. Ning, F. Y. Yang and X. P. Zhao, Escape metrics and its applications, preprint, 2018, arXiv: 1811.12668. Google Scholar

[22]

M. A. Rammaha and T. A. Strei, Global existence and nonexistence for nonlinear wave equations with damping and source terms, Trans. Amer. Math. Soc., 354 (2002), 3621-3637.  doi: 10.1090/S0002-9947-02-03034-9.  Google Scholar

[23]

M. Slemrod, Weak asymptotic decay via a related invariance principle for a wave equation with nonlinear, nonmonotone damping, Proc. Roy. Soc. Edinburgh Sect. A, 113 (1989), 87-97.  doi: 10.1017/S0308210500023970.  Google Scholar

[24]

G. Todorova, Cauchy problem for a nonlinear wave equation with nonlinear damping and source terms, Nonlinear Anal., 41 (2000), 891-905.  doi: 10.1016/S0362-546X(98)00317-4.  Google Scholar

[25]

G. Todorova and B. Yordanov, The energy decay problem for wave equations with nonlinear dissipative terms in ${\mathbb{R}}^n$, Indiana Univ. Math. J., 56 (2007), 389-416.  doi: 10.1512/iumj.2007.56.2963.  Google Scholar

[26]

G. Todorova and B. Yordanov, Critical exponent for a nonlinear wave equation with damping, J. Differential Equations, 174 (2001), 464-489.  doi: 10.1006/jdeq.2000.3933.  Google Scholar

[27]

L. R. Tcheugoué Tébou, Stabilization of the wave equation with localized nonlinear damping, J. Differential Equations, 145 (1998), 502-524.  doi: 10.1006/jdeq.1998.3416.  Google Scholar

[28]

P. F. Yao, Energy decay for the cauchy problem of the linear wave equation of variable coefficients with dissipation, Chin. Ann. Math. Ser. B, 31 (2010), 59-70.  doi: 10.1007/s11401-008-0421-2.  Google Scholar

[29]

P. F. Yao, Observability inequalities for the Euler-Bernoulli plate with variable coefficients, in Contemporary Mathematics, Vol. 268, Amer. Math. Soc., Providence, RI, (2000), 383–406. doi: 10.1090/conm/268/04320.  Google Scholar

[30] P. F. Yao, Modeling and Control in Vibrational and Structual Dynamics. A Differential Geometric Approach, CRC Press, Boca Raton, FL, 2011.  doi: 10.1201/b11042.  Google Scholar
[31]

P. F. YaoY. X. Liu and J. Li, Decay rates of the hyperbolic equation in an exterior domain with half-linear and nonlinear boundary dissipations, J. Syst. Sci. Complex, 29 (2016), 657-680.  doi: 10.1007/s11424-015-4233-7.  Google Scholar

[32]

W. Zhang and Z. F. Zhang, Stabilization of transmission coupled wave and Euler-Bernoulli equations on Riemannian manifolds by nonlinear feedbacks, J. Math. Anal. Appl., 422 (2015), 1504-1526.  doi: 10.1016/j.jmaa.2014.09.044.  Google Scholar

show all references

References:
[1]

K. Ammari and S. Nicaise, Stabilization of a transmission wave/plate equation, J. Differential Equations, 249 (2010), 707-727.  doi: 10.1016/j.jde.2010.03.007.  Google Scholar

[2] V. Barbu, Analysis and control of nonlinear infinite dimensional systems, Academic Press, Inc., Boston, MA, 1993.   Google Scholar
[3]

C. BardosG. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), 1024-1065.   Google Scholar

[4]

C. A. BortotM. M. CavalcantiV. N. Domingos Cavalcanti and P. Piccione, Exponential asymptotic stability for the Klein-Gordon equation on non-compact Riemannian manifolds, Appl. Math. Optim., 78 (2018), 219-265.  doi: 10.1007/s00245-017-9405-5.  Google Scholar

[5]

N. Burq and R. Joly, Exponential decay for the damped wave equation in unbounded domains, Commun. Contemp. Math., 18 (2016), 1650012.  doi: 10.1142/S0219199716500127.  Google Scholar

[6]

J. M. Bouclet and J. Royer, Local energy decay for the damped wave equation, J. Funct. Anal., 266 (2014), 4538-4615.  doi: 10.1016/j.jfa.2014.01.028.  Google Scholar

[7]

V. BarbuI. Lasiecka and A. M. Rammaha, Blow-up of generalized solutions to wave equations with nonlinear degenerate damping and source terms, Indiana Univ. Math. J., 56 (2007), 995-1021.  doi: 10.1512/iumj.2007.56.2990.  Google Scholar

[8]

B. DehmanG. Lebeau and E. Zuazua, Stabilization and control for the subcritical semilinear wave equation, Ann. Sci. École Norm. Sup., 36 (2003), 525-551.  doi: 10.1016/S0012-9593(03)00021-1.  Google Scholar

[9]

S. J. Feng and D. X. Feng, Nonlinear internal damping of wave equations with variable coefficients, Acta Math. Sin. (Engl. Ser.), 20 (2004), 1057-1072.  doi: 10.1007/s10114-004-0394-3.  Google Scholar

[10]

B. GongF. Y. Yang and X. Zhao, Stabilization of the transmission wave/plate equation with variable coefficients, J. Math. Anal. Appl., 455 (2017), 947-962.  doi: 10.1016/j.jmaa.2017.06.014.  Google Scholar

[11]

A. Haraux, Stabilization of trajectories for some weakly damped hyperbolic equations, J. Differential Equations, 59 (1985), 145-154.  doi: 10.1016/0022-0396(85)90151-2.  Google Scholar

[12]

I. Lasiecka and J. Ong, Global solvability and uniform decays of solutions to quasilinear equation with nonlinear boundary dissipation, Comm. Partial Differential Equations, 24 (1999), 2069-2107.  doi: 10.1080/03605309908821495.  Google Scholar

[13]

J. Lagnese, Control of wave processes with distributed controls supported on a subregion, SIAM J. Control Optim., 21 (1983), 68-85.   Google Scholar

[14]

K. S. Liu, Locally distributed control and damping for the conservative system, SIAM J. Control Optim., 35 (1997), 1574-1590.  doi: 10.1137/S0363012995284928.  Google Scholar

[15]

Y. X. Liu and P. F. Yao, Energy decay rate of the wave equations on Riemannian manifolds with critical potential, Appl. Math. Optim., 78 (2018), 61-101.  doi: 10.1007/s00245-017-9399-z.  Google Scholar

[16]

C. Morawetz, Time decay for nonlinear Klein-Gordon equations, Proc. Roy. Soc. London Ser. A, 306 (1968), 503-518.  doi: 10.1098/rspa.1968.0151.  Google Scholar

[17]

P. Martinez, A new method to obtain decay rate estimates for dissipative systems with localized damping, Rev. Mat. Complut., 12 (1999), 251-283.  doi: 10.5209/rev_REMA.1999.v12.n1.17227.  Google Scholar

[18]

M. Nakao, Decay of solutions of the wave equation with a local nonlinear dissipation, Math. Ann., 305 (1996), 403-417.  doi: 10.1007/BF01444231.  Google Scholar

[19]

M. Nakao, Energy decay for the linear and semilinear wave equation in exterior domains with some localized dissipations, Math. Z., 238 (2001), 781-797.  doi: 10.1007/s002090100275.  Google Scholar

[20]

M. Nakao, Existence of global solutions for the Kirchhoff-type quasilinear wave equation in exterior domains with a half-linear dissipation, Kyushu J. Math., 58 (2004), 373-391.  doi: 10.2206/kyushujm.58.373.  Google Scholar

[21]

Z. H. Ning, F. Y. Yang and X. P. Zhao, Escape metrics and its applications, preprint, 2018, arXiv: 1811.12668. Google Scholar

[22]

M. A. Rammaha and T. A. Strei, Global existence and nonexistence for nonlinear wave equations with damping and source terms, Trans. Amer. Math. Soc., 354 (2002), 3621-3637.  doi: 10.1090/S0002-9947-02-03034-9.  Google Scholar

[23]

M. Slemrod, Weak asymptotic decay via a related invariance principle for a wave equation with nonlinear, nonmonotone damping, Proc. Roy. Soc. Edinburgh Sect. A, 113 (1989), 87-97.  doi: 10.1017/S0308210500023970.  Google Scholar

[24]

G. Todorova, Cauchy problem for a nonlinear wave equation with nonlinear damping and source terms, Nonlinear Anal., 41 (2000), 891-905.  doi: 10.1016/S0362-546X(98)00317-4.  Google Scholar

[25]

G. Todorova and B. Yordanov, The energy decay problem for wave equations with nonlinear dissipative terms in ${\mathbb{R}}^n$, Indiana Univ. Math. J., 56 (2007), 389-416.  doi: 10.1512/iumj.2007.56.2963.  Google Scholar

[26]

G. Todorova and B. Yordanov, Critical exponent for a nonlinear wave equation with damping, J. Differential Equations, 174 (2001), 464-489.  doi: 10.1006/jdeq.2000.3933.  Google Scholar

[27]

L. R. Tcheugoué Tébou, Stabilization of the wave equation with localized nonlinear damping, J. Differential Equations, 145 (1998), 502-524.  doi: 10.1006/jdeq.1998.3416.  Google Scholar

[28]

P. F. Yao, Energy decay for the cauchy problem of the linear wave equation of variable coefficients with dissipation, Chin. Ann. Math. Ser. B, 31 (2010), 59-70.  doi: 10.1007/s11401-008-0421-2.  Google Scholar

[29]

P. F. Yao, Observability inequalities for the Euler-Bernoulli plate with variable coefficients, in Contemporary Mathematics, Vol. 268, Amer. Math. Soc., Providence, RI, (2000), 383–406. doi: 10.1090/conm/268/04320.  Google Scholar

[30] P. F. Yao, Modeling and Control in Vibrational and Structual Dynamics. A Differential Geometric Approach, CRC Press, Boca Raton, FL, 2011.  doi: 10.1201/b11042.  Google Scholar
[31]

P. F. YaoY. X. Liu and J. Li, Decay rates of the hyperbolic equation in an exterior domain with half-linear and nonlinear boundary dissipations, J. Syst. Sci. Complex, 29 (2016), 657-680.  doi: 10.1007/s11424-015-4233-7.  Google Scholar

[32]

W. Zhang and Z. F. Zhang, Stabilization of transmission coupled wave and Euler-Bernoulli equations on Riemannian manifolds by nonlinear feedbacks, J. Math. Anal. Appl., 422 (2015), 1504-1526.  doi: 10.1016/j.jmaa.2014.09.044.  Google Scholar

[1]

Shikuan Mao, Yongqin Liu. Decay property for solutions to plate type equations with variable coefficients. Kinetic & Related Models, 2017, 10 (3) : 785-797. doi: 10.3934/krm.2017031

[2]

Q-Heung Choi, Changbum Chun, Tacksun Jung. The multiplicity of solutions and geometry in a wave equation. Communications on Pure & Applied Analysis, 2003, 2 (2) : 159-170. doi: 10.3934/cpaa.2003.2.159

[3]

Jamel Ben Amara, Hedi Bouzidi. Exact boundary controllability for the Boussinesq equation with variable coefficients. Evolution Equations & Control Theory, 2018, 7 (3) : 403-415. doi: 10.3934/eect.2018020

[4]

Philip Trautmann, Boris Vexler, Alexander Zlotnik. Finite element error analysis for measure-valued optimal control problems governed by a 1D wave equation with variable coefficients. Mathematical Control & Related Fields, 2018, 8 (2) : 411-449. doi: 10.3934/mcrf.2018017

[5]

Petronela Radu, Grozdena Todorova, Borislav Yordanov. Higher order energy decay rates for damped wave equations with variable coefficients. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 609-629. doi: 10.3934/dcdss.2009.2.609

[6]

Kim Dang Phung. Boundary stabilization for the wave equation in a bounded cylindrical domain. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 1057-1093. doi: 10.3934/dcds.2008.20.1057

[7]

Behzad Azmi, Karl Kunisch. Receding horizon control for the stabilization of the wave equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 449-484. doi: 10.3934/dcds.2018021

[8]

Larissa V. Fardigola. Transformation operators in controllability problems for the wave equations with variable coefficients on a half-axis controlled by the Dirichlet boundary condition. Mathematical Control & Related Fields, 2015, 5 (1) : 31-53. doi: 10.3934/mcrf.2015.5.31

[9]

Xiaorui Wang, Genqi Xu. Uniform stabilization of a wave equation with partial Dirichlet delayed control. Evolution Equations & Control Theory, 2020, 9 (2) : 509-533. doi: 10.3934/eect.2020022

[10]

Louis Tebou. Simultaneous stabilization of a system of interacting plate and membrane. Evolution Equations & Control Theory, 2013, 2 (1) : 153-172. doi: 10.3934/eect.2013.2.153

[11]

Fathi Hassine. Asymptotic behavior of the transmission Euler-Bernoulli plate and wave equation with a localized Kelvin-Voigt damping. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1757-1774. doi: 10.3934/dcdsb.2016021

[12]

Joachim Escher, Boris Kolev, Marcus Wunsch. The geometry of a vorticity model equation. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1407-1419. doi: 10.3934/cpaa.2012.11.1407

[13]

Hai Huyen Dam, Kok Lay Teo. Variable fractional delay filter design with discrete coefficients. Journal of Industrial & Management Optimization, 2016, 12 (3) : 819-831. doi: 10.3934/jimo.2016.12.819

[14]

Fágner D. Araruna, Flank D. M. Bezerra, Milton L. Oliveira. Rate of attraction for a semilinear thermoelastic system with variable coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3211-3226. doi: 10.3934/dcdsb.2018316

[15]

Jamel Ben Amara, Emna Beldi. Simultaneous controllability of two vibrating strings with variable coefficients. Evolution Equations & Control Theory, 2019, 8 (4) : 687-694. doi: 10.3934/eect.2019032

[16]

Yanni Guo, Genqi Xu, Yansha Guo. Stabilization of the wave equation with interior input delay and mixed Neumann-Dirichlet boundary. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2491-2507. doi: 10.3934/dcdsb.2016057

[17]

Martin Gugat, Günter Leugering, Ke Wang. Neumann boundary feedback stabilization for a nonlinear wave equation: A strict $H^2$-lyapunov function. Mathematical Control & Related Fields, 2017, 7 (3) : 419-448. doi: 10.3934/mcrf.2017015

[18]

Serge Nicaise, Julie Valein. Stabilization of the wave equation on 1-d networks with a delay term in the nodal feedbacks. Networks & Heterogeneous Media, 2007, 2 (3) : 425-479. doi: 10.3934/nhm.2007.2.425

[19]

Mohammad Akil, Ali Wehbe. Stabilization of multidimensional wave equation with locally boundary fractional dissipation law under geometric conditions. Mathematical Control & Related Fields, 2019, 9 (1) : 97-116. doi: 10.3934/mcrf.2019005

[20]

Muhammad I. Mustafa. Viscoelastic plate equation with boundary feedback. Evolution Equations & Control Theory, 2017, 6 (2) : 261-276. doi: 10.3934/eect.2017014

2019 Impact Factor: 0.953

Article outline

[Back to Top]