-
Previous Article
Homogenization of a stochastic viscous transport equation
- EECT Home
- This Issue
-
Next Article
Stabilization of the transmission wave/plate equation with variable coefficients on $ {\mathbb{R}}^n $
Internal feedback stabilization for parabolic systems coupled in zero or first order terms
1. | Faculty of Mathematics, University "Al. I. Cuza" Iaşi, Romania |
2. | Octav Mayer Institute of Mathematics, Romanian Academy, Iaşi Branch, Romania |
We consider systems of $ n $ parabolic equations coupled in zero or first order terms with $ m $ scalar controls acting through a control matrix $ B $. We are interested in stabilization with a control in feedback form. Our approach relies on the approximate controllability of the linearized system, which in turn is related to unique continuation property for the adjoint system. For the unique continuation we establish algebraic Kalman type conditions.
References:
[1] |
F. Ammar Khodja, A. Benabdallah, C. Dupaix and M. González-Burgos,
A generalization of the Kalman rank condition for time-dependent coupled linear parabolic systems, Differ. Equ. Appl., 1 (2009), 427-457.
doi: 10.7153/dea-01-24. |
[2] |
F. Ammar-Khodja, A. Benabdallah, C. Dupaix and M. González-Burgos,
A Kalman rank condition for the localized distributed controllability of a class of linear parbolic systems, J. Evol. Equ., 9 (2009), 267-291.
doi: 10.1007/s00028-009-0008-8. |
[3] |
V. Barbu and G. Wang,
Internal stabilization of semilinear parabolic systems, J. Math. Anal. Appl., 285 (2003), 387-407.
doi: 10.1016/S0022-247X(03)00405-0. |
[4] |
V. Barbu, Controllability and Stabilization of Parabolic Equations, Progress in Nonlinear Differential Equations and their Applications Vol. 90, Birkhäuser/Springer, Cham, 2018.
doi: 10.1007/978-3-319-76666-9. |
[5] |
V. Barbu, I. Lasiecka and R. Triggiani, Abstract settings for tangential boundary stabilization of Navier-Stokes equations by high- and low-gain feedback controllers, Nonlinear Anal., 64 (2006) 2704–2746.
doi: 10.1016/j.na.2005.09.012. |
[6] |
V. Barbu, I. Lasiecka and R. Triggiani, Tangential boundary stabilization of Navier-Stokes equations, Mem. Amer. Math. Soc., 181 (2006), 128 pp.
doi: 10.1090/memo/0852. |
[7] |
V. Barbu, I. Lasiecka and R. Triggiani, Local exponential stabilization strategies of the Navier-Stokes equations, $d = 2, 3$, via feedback stabilization of its linearization, in Control of Coupled Partial Differential Equations, Internat. Ser. Numer. Math., Vol. 155, Birkhäuser, Basel, 2007.
doi: 10.1007/978-3-7643-7721-2_2. |
[8] |
V. Barbu, S. S. Rodrigues and A. Shirikyan,
Internal exponential stabilization to a nonstationary solution for 3D Navier-Stokes equations, SIAM J. Control Optim., 49 (2011), 1454-1478.
doi: 10.1137/100785739. |
[9] |
V. Barbu and R. Triggiani,
Internal stabilization of Navier-Stokes equations with finite-dimensional controllers, Indiana Univ. Math. J., 53 (2004), 1443-1494.
doi: 10.1512/iumj.2004.53.2445. |
[10] |
V. Barbu and G. Wang,
Feedback stabilization of periodic solutions to nonlinear parabolic-like evolution systems, Indiana Univ. Math. J., 54 (2005), 1521-1546.
doi: 10.1512/iumj.2005.54.2663. |
[11] |
M. Duprez and P. Lissy,
Positive and negative results on the internal controllability of parabolic equations coupled by zero- and first-order terms, J. Evol. Equ., 18 (2018), 659-680.
doi: 10.1007/s00028-017-0415-1. |
[12] |
A. V. Fursikov and O. Yu. Imanuvilov, Controllability of evolution equations, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996. |
[13] |
M. González-Burgos and L. de Teresa.,
Controllability results for cascade systems of $m$ coupled parabolic PDEs by one control force, Port. Math., 67 (2010), 91-113.
doi: 10.4171/PM/1859. |
[14] |
C. Lefter,
Feedback stabilization of 2D Navier-Stokes equations with Navier slip boundary conditions, Nonlinear Anal., 70 (2009), 553-562.
doi: 10.1016/j.na.2007.12.026. |
[15] |
C. Lefter,
Feedback stabilization of magnetohydrodynamic equations, SIAM J. Control Optim., 49 (2011), 963-983.
doi: 10.1137/070697124. |
[16] |
C. Lefter,
Internal feedback stabilization of nonstationary solutions to semilinear parabolic systems, J. Optim. Theory Appl., 170 (2016), 960-976.
doi: 10.1007/s10957-016-0964-4. |
[17] |
P. Lissy and E. Zuazua,
Internal observability for coupled systems of linear partial differential equations, SIAM J. Control Optim., 57 (2019), 832-853.
doi: 10.1137/17M1119160. |
[18] |
A. Lunardi, Interpolation theory, third edition, Appunti. Scuola Normale Superiore di Pisa (Nuova Serie), Vol. 16, Edizioni della Normale, Pisa, 2018.
doi: 10.1007/978-88-7642-638-4. |
[19] |
A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, Vol. 44, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[20] |
J.-C. Saut and B. Scheurer,
Unique continuation for some evolution equations, J. Differential Equations, 66 (1987), 118-139.
doi: 10.1016/0022-0396(87)90043-X. |
[21] |
R. Seeley,
Norms and domains of the complex powers $A_{B}z$, Amer. J. Math., 93 (1971), 299-309.
doi: 10.2307/2373377. |
show all references
References:
[1] |
F. Ammar Khodja, A. Benabdallah, C. Dupaix and M. González-Burgos,
A generalization of the Kalman rank condition for time-dependent coupled linear parabolic systems, Differ. Equ. Appl., 1 (2009), 427-457.
doi: 10.7153/dea-01-24. |
[2] |
F. Ammar-Khodja, A. Benabdallah, C. Dupaix and M. González-Burgos,
A Kalman rank condition for the localized distributed controllability of a class of linear parbolic systems, J. Evol. Equ., 9 (2009), 267-291.
doi: 10.1007/s00028-009-0008-8. |
[3] |
V. Barbu and G. Wang,
Internal stabilization of semilinear parabolic systems, J. Math. Anal. Appl., 285 (2003), 387-407.
doi: 10.1016/S0022-247X(03)00405-0. |
[4] |
V. Barbu, Controllability and Stabilization of Parabolic Equations, Progress in Nonlinear Differential Equations and their Applications Vol. 90, Birkhäuser/Springer, Cham, 2018.
doi: 10.1007/978-3-319-76666-9. |
[5] |
V. Barbu, I. Lasiecka and R. Triggiani, Abstract settings for tangential boundary stabilization of Navier-Stokes equations by high- and low-gain feedback controllers, Nonlinear Anal., 64 (2006) 2704–2746.
doi: 10.1016/j.na.2005.09.012. |
[6] |
V. Barbu, I. Lasiecka and R. Triggiani, Tangential boundary stabilization of Navier-Stokes equations, Mem. Amer. Math. Soc., 181 (2006), 128 pp.
doi: 10.1090/memo/0852. |
[7] |
V. Barbu, I. Lasiecka and R. Triggiani, Local exponential stabilization strategies of the Navier-Stokes equations, $d = 2, 3$, via feedback stabilization of its linearization, in Control of Coupled Partial Differential Equations, Internat. Ser. Numer. Math., Vol. 155, Birkhäuser, Basel, 2007.
doi: 10.1007/978-3-7643-7721-2_2. |
[8] |
V. Barbu, S. S. Rodrigues and A. Shirikyan,
Internal exponential stabilization to a nonstationary solution for 3D Navier-Stokes equations, SIAM J. Control Optim., 49 (2011), 1454-1478.
doi: 10.1137/100785739. |
[9] |
V. Barbu and R. Triggiani,
Internal stabilization of Navier-Stokes equations with finite-dimensional controllers, Indiana Univ. Math. J., 53 (2004), 1443-1494.
doi: 10.1512/iumj.2004.53.2445. |
[10] |
V. Barbu and G. Wang,
Feedback stabilization of periodic solutions to nonlinear parabolic-like evolution systems, Indiana Univ. Math. J., 54 (2005), 1521-1546.
doi: 10.1512/iumj.2005.54.2663. |
[11] |
M. Duprez and P. Lissy,
Positive and negative results on the internal controllability of parabolic equations coupled by zero- and first-order terms, J. Evol. Equ., 18 (2018), 659-680.
doi: 10.1007/s00028-017-0415-1. |
[12] |
A. V. Fursikov and O. Yu. Imanuvilov, Controllability of evolution equations, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996. |
[13] |
M. González-Burgos and L. de Teresa.,
Controllability results for cascade systems of $m$ coupled parabolic PDEs by one control force, Port. Math., 67 (2010), 91-113.
doi: 10.4171/PM/1859. |
[14] |
C. Lefter,
Feedback stabilization of 2D Navier-Stokes equations with Navier slip boundary conditions, Nonlinear Anal., 70 (2009), 553-562.
doi: 10.1016/j.na.2007.12.026. |
[15] |
C. Lefter,
Feedback stabilization of magnetohydrodynamic equations, SIAM J. Control Optim., 49 (2011), 963-983.
doi: 10.1137/070697124. |
[16] |
C. Lefter,
Internal feedback stabilization of nonstationary solutions to semilinear parabolic systems, J. Optim. Theory Appl., 170 (2016), 960-976.
doi: 10.1007/s10957-016-0964-4. |
[17] |
P. Lissy and E. Zuazua,
Internal observability for coupled systems of linear partial differential equations, SIAM J. Control Optim., 57 (2019), 832-853.
doi: 10.1137/17M1119160. |
[18] |
A. Lunardi, Interpolation theory, third edition, Appunti. Scuola Normale Superiore di Pisa (Nuova Serie), Vol. 16, Edizioni della Normale, Pisa, 2018.
doi: 10.1007/978-88-7642-638-4. |
[19] |
A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, Vol. 44, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[20] |
J.-C. Saut and B. Scheurer,
Unique continuation for some evolution equations, J. Differential Equations, 66 (1987), 118-139.
doi: 10.1016/0022-0396(87)90043-X. |
[21] |
R. Seeley,
Norms and domains of the complex powers $A_{B}z$, Amer. J. Math., 93 (1971), 299-309.
doi: 10.2307/2373377. |
[1] |
Christophe Zhang. Internal rapid stabilization of a 1-D linear transport equation with a scalar feedback. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021006 |
[2] |
Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017 |
[3] |
Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233 |
[4] |
Nikolaos Roidos. Expanding solutions of quasilinear parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021026 |
[5] |
Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301 |
[6] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[7] |
Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327 |
[8] |
Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006 |
[9] |
Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511 |
[10] |
Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397 |
[11] |
Mansour Shrahili, Ravi Shanker Dubey, Ahmed Shafay. Inclusion of fading memory to Banister model of changes in physical condition. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 881-888. doi: 10.3934/dcdss.2020051 |
[12] |
Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617 |
[13] |
Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223 |
[14] |
Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83 |
[15] |
Mao Okada. Local rigidity of certain actions of solvable groups on the boundaries of rank-one symmetric spaces. Journal of Modern Dynamics, 2021, 17: 111-143. doi: 10.3934/jmd.2021004 |
[16] |
Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185 |
[17] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[18] |
Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810 |
[19] |
Tuvi Etzion, Alexander Vardy. On $q$-analogs of Steiner systems and covering designs. Advances in Mathematics of Communications, 2011, 5 (2) : 161-176. doi: 10.3934/amc.2011.5.161 |
[20] |
Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329 |
2019 Impact Factor: 0.953
Tools
Article outline
[Back to Top]