June  2021, 10(2): 333-351. doi: 10.3934/eect.2020069

Internal feedback stabilization for parabolic systems coupled in zero or first order terms

1. 

Faculty of Mathematics, University "Al. I. Cuza" Iaşi, Romania

2. 

Octav Mayer Institute of Mathematics, Romanian Academy, Iaşi Branch, Romania

Received  January 2020 Revised  March 2020 Published  June 2020

Fund Project: The author was supported by a grant of the Ministry of Research and Innovation, CNCS - UEFISCDI, project number PN-III-P4-ID-PCE-2016-0011

We consider systems of $ n $ parabolic equations coupled in zero or first order terms with $ m $ scalar controls acting through a control matrix $ B $. We are interested in stabilization with a control in feedback form. Our approach relies on the approximate controllability of the linearized system, which in turn is related to unique continuation property for the adjoint system. For the unique continuation we establish algebraic Kalman type conditions.

Citation: Elena-Alexandra Melnig. Internal feedback stabilization for parabolic systems coupled in zero or first order terms. Evolution Equations & Control Theory, 2021, 10 (2) : 333-351. doi: 10.3934/eect.2020069
References:
[1]

F. Ammar KhodjaA. BenabdallahC. Dupaix and M. González-Burgos, A generalization of the Kalman rank condition for time-dependent coupled linear parabolic systems, Differ. Equ. Appl., 1 (2009), 427-457.  doi: 10.7153/dea-01-24.  Google Scholar

[2]

F. Ammar-KhodjaA. BenabdallahC. Dupaix and M. González-Burgos, A Kalman rank condition for the localized distributed controllability of a class of linear parbolic systems, J. Evol. Equ., 9 (2009), 267-291.  doi: 10.1007/s00028-009-0008-8.  Google Scholar

[3]

V. Barbu and G. Wang, Internal stabilization of semilinear parabolic systems, J. Math. Anal. Appl., 285 (2003), 387-407.  doi: 10.1016/S0022-247X(03)00405-0.  Google Scholar

[4]

V. Barbu, Controllability and Stabilization of Parabolic Equations, Progress in Nonlinear Differential Equations and their Applications Vol. 90, Birkhäuser/Springer, Cham, 2018. doi: 10.1007/978-3-319-76666-9.  Google Scholar

[5]

V. Barbu, I. Lasiecka and R. Triggiani, Abstract settings for tangential boundary stabilization of Navier-Stokes equations by high- and low-gain feedback controllers, Nonlinear Anal., 64 (2006) 2704–2746. doi: 10.1016/j.na.2005.09.012.  Google Scholar

[6]

V. Barbu, I. Lasiecka and R. Triggiani, Tangential boundary stabilization of Navier-Stokes equations, Mem. Amer. Math. Soc., 181 (2006), 128 pp. doi: 10.1090/memo/0852.  Google Scholar

[7]

V. Barbu, I. Lasiecka and R. Triggiani, Local exponential stabilization strategies of the Navier-Stokes equations, $d = 2, 3$, via feedback stabilization of its linearization, in Control of Coupled Partial Differential Equations, Internat. Ser. Numer. Math., Vol. 155, Birkhäuser, Basel, 2007. doi: 10.1007/978-3-7643-7721-2_2.  Google Scholar

[8]

V. BarbuS. S. Rodrigues and A. Shirikyan, Internal exponential stabilization to a nonstationary solution for 3D Navier-Stokes equations, SIAM J. Control Optim., 49 (2011), 1454-1478.  doi: 10.1137/100785739.  Google Scholar

[9]

V. Barbu and R. Triggiani, Internal stabilization of Navier-Stokes equations with finite-dimensional controllers, Indiana Univ. Math. J., 53 (2004), 1443-1494.  doi: 10.1512/iumj.2004.53.2445.  Google Scholar

[10]

V. Barbu and G. Wang, Feedback stabilization of periodic solutions to nonlinear parabolic-like evolution systems, Indiana Univ. Math. J., 54 (2005), 1521-1546.  doi: 10.1512/iumj.2005.54.2663.  Google Scholar

[11]

M. Duprez and P. Lissy, Positive and negative results on the internal controllability of parabolic equations coupled by zero- and first-order terms, J. Evol. Equ., 18 (2018), 659-680.  doi: 10.1007/s00028-017-0415-1.  Google Scholar

[12]

A. V. Fursikov and O. Yu. Imanuvilov, Controllability of evolution equations, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996.  Google Scholar

[13]

M. González-Burgos and L. de Teresa., Controllability results for cascade systems of $m$ coupled parabolic PDEs by one control force, Port. Math., 67 (2010), 91-113.  doi: 10.4171/PM/1859.  Google Scholar

[14]

C. Lefter, Feedback stabilization of 2D Navier-Stokes equations with Navier slip boundary conditions, Nonlinear Anal., 70 (2009), 553-562.  doi: 10.1016/j.na.2007.12.026.  Google Scholar

[15]

C. Lefter, Feedback stabilization of magnetohydrodynamic equations, SIAM J. Control Optim., 49 (2011), 963-983.  doi: 10.1137/070697124.  Google Scholar

[16]

C. Lefter, Internal feedback stabilization of nonstationary solutions to semilinear parabolic systems, J. Optim. Theory Appl., 170 (2016), 960-976.  doi: 10.1007/s10957-016-0964-4.  Google Scholar

[17]

P. Lissy and E. Zuazua, Internal observability for coupled systems of linear partial differential equations, SIAM J. Control Optim., 57 (2019), 832-853.  doi: 10.1137/17M1119160.  Google Scholar

[18]

A. Lunardi, Interpolation theory, third edition, Appunti. Scuola Normale Superiore di Pisa (Nuova Serie), Vol. 16, Edizioni della Normale, Pisa, 2018. doi: 10.1007/978-88-7642-638-4.  Google Scholar

[19]

A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, Vol. 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[20]

J.-C. Saut and B. Scheurer, Unique continuation for some evolution equations, J. Differential Equations, 66 (1987), 118-139.  doi: 10.1016/0022-0396(87)90043-X.  Google Scholar

[21]

R. Seeley, Norms and domains of the complex powers $A_{B}z$, Amer. J. Math., 93 (1971), 299-309.  doi: 10.2307/2373377.  Google Scholar

show all references

References:
[1]

F. Ammar KhodjaA. BenabdallahC. Dupaix and M. González-Burgos, A generalization of the Kalman rank condition for time-dependent coupled linear parabolic systems, Differ. Equ. Appl., 1 (2009), 427-457.  doi: 10.7153/dea-01-24.  Google Scholar

[2]

F. Ammar-KhodjaA. BenabdallahC. Dupaix and M. González-Burgos, A Kalman rank condition for the localized distributed controllability of a class of linear parbolic systems, J. Evol. Equ., 9 (2009), 267-291.  doi: 10.1007/s00028-009-0008-8.  Google Scholar

[3]

V. Barbu and G. Wang, Internal stabilization of semilinear parabolic systems, J. Math. Anal. Appl., 285 (2003), 387-407.  doi: 10.1016/S0022-247X(03)00405-0.  Google Scholar

[4]

V. Barbu, Controllability and Stabilization of Parabolic Equations, Progress in Nonlinear Differential Equations and their Applications Vol. 90, Birkhäuser/Springer, Cham, 2018. doi: 10.1007/978-3-319-76666-9.  Google Scholar

[5]

V. Barbu, I. Lasiecka and R. Triggiani, Abstract settings for tangential boundary stabilization of Navier-Stokes equations by high- and low-gain feedback controllers, Nonlinear Anal., 64 (2006) 2704–2746. doi: 10.1016/j.na.2005.09.012.  Google Scholar

[6]

V. Barbu, I. Lasiecka and R. Triggiani, Tangential boundary stabilization of Navier-Stokes equations, Mem. Amer. Math. Soc., 181 (2006), 128 pp. doi: 10.1090/memo/0852.  Google Scholar

[7]

V. Barbu, I. Lasiecka and R. Triggiani, Local exponential stabilization strategies of the Navier-Stokes equations, $d = 2, 3$, via feedback stabilization of its linearization, in Control of Coupled Partial Differential Equations, Internat. Ser. Numer. Math., Vol. 155, Birkhäuser, Basel, 2007. doi: 10.1007/978-3-7643-7721-2_2.  Google Scholar

[8]

V. BarbuS. S. Rodrigues and A. Shirikyan, Internal exponential stabilization to a nonstationary solution for 3D Navier-Stokes equations, SIAM J. Control Optim., 49 (2011), 1454-1478.  doi: 10.1137/100785739.  Google Scholar

[9]

V. Barbu and R. Triggiani, Internal stabilization of Navier-Stokes equations with finite-dimensional controllers, Indiana Univ. Math. J., 53 (2004), 1443-1494.  doi: 10.1512/iumj.2004.53.2445.  Google Scholar

[10]

V. Barbu and G. Wang, Feedback stabilization of periodic solutions to nonlinear parabolic-like evolution systems, Indiana Univ. Math. J., 54 (2005), 1521-1546.  doi: 10.1512/iumj.2005.54.2663.  Google Scholar

[11]

M. Duprez and P. Lissy, Positive and negative results on the internal controllability of parabolic equations coupled by zero- and first-order terms, J. Evol. Equ., 18 (2018), 659-680.  doi: 10.1007/s00028-017-0415-1.  Google Scholar

[12]

A. V. Fursikov and O. Yu. Imanuvilov, Controllability of evolution equations, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996.  Google Scholar

[13]

M. González-Burgos and L. de Teresa., Controllability results for cascade systems of $m$ coupled parabolic PDEs by one control force, Port. Math., 67 (2010), 91-113.  doi: 10.4171/PM/1859.  Google Scholar

[14]

C. Lefter, Feedback stabilization of 2D Navier-Stokes equations with Navier slip boundary conditions, Nonlinear Anal., 70 (2009), 553-562.  doi: 10.1016/j.na.2007.12.026.  Google Scholar

[15]

C. Lefter, Feedback stabilization of magnetohydrodynamic equations, SIAM J. Control Optim., 49 (2011), 963-983.  doi: 10.1137/070697124.  Google Scholar

[16]

C. Lefter, Internal feedback stabilization of nonstationary solutions to semilinear parabolic systems, J. Optim. Theory Appl., 170 (2016), 960-976.  doi: 10.1007/s10957-016-0964-4.  Google Scholar

[17]

P. Lissy and E. Zuazua, Internal observability for coupled systems of linear partial differential equations, SIAM J. Control Optim., 57 (2019), 832-853.  doi: 10.1137/17M1119160.  Google Scholar

[18]

A. Lunardi, Interpolation theory, third edition, Appunti. Scuola Normale Superiore di Pisa (Nuova Serie), Vol. 16, Edizioni della Normale, Pisa, 2018. doi: 10.1007/978-88-7642-638-4.  Google Scholar

[19]

A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, Vol. 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[20]

J.-C. Saut and B. Scheurer, Unique continuation for some evolution equations, J. Differential Equations, 66 (1987), 118-139.  doi: 10.1016/0022-0396(87)90043-X.  Google Scholar

[21]

R. Seeley, Norms and domains of the complex powers $A_{B}z$, Amer. J. Math., 93 (1971), 299-309.  doi: 10.2307/2373377.  Google Scholar

[1]

Christophe Zhang. Internal rapid stabilization of a 1-D linear transport equation with a scalar feedback. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021006

[2]

Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017

[3]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[4]

Nikolaos Roidos. Expanding solutions of quasilinear parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021026

[5]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[6]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[7]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[8]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[9]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

[10]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[11]

Mansour Shrahili, Ravi Shanker Dubey, Ahmed Shafay. Inclusion of fading memory to Banister model of changes in physical condition. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 881-888. doi: 10.3934/dcdss.2020051

[12]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[13]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[14]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[15]

Mao Okada. Local rigidity of certain actions of solvable groups on the boundaries of rank-one symmetric spaces. Journal of Modern Dynamics, 2021, 17: 111-143. doi: 10.3934/jmd.2021004

[16]

Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185

[17]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[18]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[19]

Tuvi Etzion, Alexander Vardy. On $q$-analogs of Steiner systems and covering designs. Advances in Mathematics of Communications, 2011, 5 (2) : 161-176. doi: 10.3934/amc.2011.5.161

[20]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

2019 Impact Factor: 0.953

Article outline

[Back to Top]