• Previous Article
    Uniform boundary observability with Legendre-Galerkin formulations of the 1-D wave equation
  • EECT Home
  • This Issue
  • Next Article
    Controllability of neutral stochastic functional integro-differential equations driven by fractional brownian motion with Hurst parameter lesser than $ 1/2 $
doi: 10.3934/eect.2020070

Homogenization of a stochastic viscous transport equation

Normandie Univ, INSA de Rouen Normandie, LMI (EA 3226 - FR CNRS 3335), 76000 Rouen, France, 685 Avenue de l'Université, 76801 St Etienne du Rouvray cedex

* Corresponding author: Ioana Ciotir

Received  January 2020 Published  June 2020

Fund Project: This work was partially supported by the European Union with the European regional development fund (ERDF, HN0002137 and 18P03390/18E01750/18P02733) and by the Normandie Regional Council (via the M2NUM and M2SiNum projects). The first author was partially supported by the ANR Project QUTE-HPC Quantum Turbulence Exploration by High-Performance Computing (ANR-18-CE46-0013)

In the present paper we prove an homogenisation result for a locally perturbed transport stochastic equation. The model is similar to the stochastic Burgers' equation and it is inspired by the LWR model. Therefore, the interest in studying this equation comes from it's application for traffic flow modelling. In the first part of paper we study the inhomogeneous equation. More precisely we give an existence and uniqueness result for the solution. The technical difficulties of this part come from the presence of the function $ \varphi $ under assumptions coherent for the model, which is giving the inhomogeneity with respect to the space variable, not present in the classical results. The second part of the paper is the homogenisation result in space.

Citation: Ioana Ciotir, Nicolas Forcadel, Wilfredo Salazar. Homogenization of a stochastic viscous transport equation. Evolution Equations & Control Theory, doi: 10.3934/eect.2020070
References:
[1]

A. Amosov and G. Panasenko, Homogenization of the integro-differential burgers equation, in Integral Methods in Science and Engineering, Vol. 1, Birkhäuser Boston, Boston, MA, 2010, 1–8. doi: 10.1007/978-0-8176-4899-2_1.  Google Scholar

[2]

G. Da Prato and D. Gatarek, Stochastic burgers equation with correlated noise, Stochastics and Stochastic Reports, 52 (1995), 29-41.  doi: 10.1080/17442509508833962.  Google Scholar

[3]

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 2008. https://books.google.fr/books?id=JYiL8zz_nC8C. Google Scholar

[4]

G. Da PratoA. Debussche and R. Temam, Stochastic Burgers' equation, NoDEA Nonlinear Differential Equations Appl., 1 (1994), 389-402.  doi: 10.1007/BF01194987.  Google Scholar

[5]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[6]

M. Garavello and B. Piccoli, Traffic Flow on Networks, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006.  Google Scholar

[7]

I. Gyoengy and D. Nualart, On the stochastic Burgers' equation in the real line, Ann. Probab., 27 (1999), 782-802.  doi: 10.1214/aop/1022677386.  Google Scholar

[8]

I. Hosokawa and K. Yamamoto, Turbulence in the randomly forced, one-dimensional Burgers flow, J. Stat. Phys., 13 (1975), 245-272.  doi: 10.1007/BF01012841.  Google Scholar

[9]

M. J. Lighthill and G. B. Whitham, On kinematic waves Ⅱ. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London Ser. A, 229 (1955), 317-345.  doi: 10.1098/rspa.1955.0089.  Google Scholar

[10]

P. I. Richards, Shock waves on the highway, Operations Res., 4 (1956), 42-51.  doi: 10.1287/opre.4.1.42.  Google Scholar

[11]

F. Rothe, Global Solutions of Reaction-Diffusion Systems, Vol. 1072, Springer-Verlag, Berlin, 1984. doi: 10.1007/BFb0099278.  Google Scholar

show all references

References:
[1]

A. Amosov and G. Panasenko, Homogenization of the integro-differential burgers equation, in Integral Methods in Science and Engineering, Vol. 1, Birkhäuser Boston, Boston, MA, 2010, 1–8. doi: 10.1007/978-0-8176-4899-2_1.  Google Scholar

[2]

G. Da Prato and D. Gatarek, Stochastic burgers equation with correlated noise, Stochastics and Stochastic Reports, 52 (1995), 29-41.  doi: 10.1080/17442509508833962.  Google Scholar

[3]

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 2008. https://books.google.fr/books?id=JYiL8zz_nC8C. Google Scholar

[4]

G. Da PratoA. Debussche and R. Temam, Stochastic Burgers' equation, NoDEA Nonlinear Differential Equations Appl., 1 (1994), 389-402.  doi: 10.1007/BF01194987.  Google Scholar

[5]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[6]

M. Garavello and B. Piccoli, Traffic Flow on Networks, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006.  Google Scholar

[7]

I. Gyoengy and D. Nualart, On the stochastic Burgers' equation in the real line, Ann. Probab., 27 (1999), 782-802.  doi: 10.1214/aop/1022677386.  Google Scholar

[8]

I. Hosokawa and K. Yamamoto, Turbulence in the randomly forced, one-dimensional Burgers flow, J. Stat. Phys., 13 (1975), 245-272.  doi: 10.1007/BF01012841.  Google Scholar

[9]

M. J. Lighthill and G. B. Whitham, On kinematic waves Ⅱ. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London Ser. A, 229 (1955), 317-345.  doi: 10.1098/rspa.1955.0089.  Google Scholar

[10]

P. I. Richards, Shock waves on the highway, Operations Res., 4 (1956), 42-51.  doi: 10.1287/opre.4.1.42.  Google Scholar

[11]

F. Rothe, Global Solutions of Reaction-Diffusion Systems, Vol. 1072, Springer-Verlag, Berlin, 1984. doi: 10.1007/BFb0099278.  Google Scholar

Figure 1.  Schematic representation of the function $ \varphi $
[1]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[2]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[3]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[4]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[5]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[6]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[7]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[8]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[9]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[10]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[11]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[12]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[13]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[14]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[15]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[16]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[17]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[18]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[19]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[20]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (26)
  • HTML views (169)
  • Cited by (0)

[Back to Top]