• Previous Article
    Uniform boundary observability with Legendre-Galerkin formulations of the 1-D wave equation
  • EECT Home
  • This Issue
  • Next Article
    Approximate controllability for Navier–Stokes equations in $ \rm3D $ cylinders under Lions boundary conditions by an explicit saturating set
doi: 10.3934/eect.2020070

Homogenization of a stochastic viscous transport equation

Normandie Univ, INSA de Rouen Normandie, LMI (EA 3226 - FR CNRS 3335), 76000 Rouen, France, 685 Avenue de l'Université, 76801 St Etienne du Rouvray cedex

* Corresponding author: Ioana Ciotir

Received  January 2020 Published  June 2020

Fund Project: This work was partially supported by the European Union with the European regional development fund (ERDF, HN0002137 and 18P03390/18E01750/18P02733) and by the Normandie Regional Council (via the M2NUM and M2SiNum projects). The first author was partially supported by the ANR Project QUTE-HPC Quantum Turbulence Exploration by High-Performance Computing (ANR-18-CE46-0013)

In the present paper we prove an homogenisation result for a locally perturbed transport stochastic equation. The model is similar to the stochastic Burgers' equation and it is inspired by the LWR model. Therefore, the interest in studying this equation comes from it's application for traffic flow modelling. In the first part of paper we study the inhomogeneous equation. More precisely we give an existence and uniqueness result for the solution. The technical difficulties of this part come from the presence of the function $ \varphi $ under assumptions coherent for the model, which is giving the inhomogeneity with respect to the space variable, not present in the classical results. The second part of the paper is the homogenisation result in space.

Citation: Ioana Ciotir, Nicolas Forcadel, Wilfredo Salazar. Homogenization of a stochastic viscous transport equation. Evolution Equations & Control Theory, doi: 10.3934/eect.2020070
References:
[1]

A. Amosov and G. Panasenko, Homogenization of the integro-differential burgers equation, in Integral Methods in Science and Engineering, Vol. 1, Birkhäuser Boston, Boston, MA, 2010, 1–8. doi: 10.1007/978-0-8176-4899-2_1.  Google Scholar

[2]

G. Da Prato and D. Gatarek, Stochastic burgers equation with correlated noise, Stochastics and Stochastic Reports, 52 (1995), 29-41.  doi: 10.1080/17442509508833962.  Google Scholar

[3]

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 2008. https://books.google.fr/books?id=JYiL8zz_nC8C. Google Scholar

[4]

G. Da PratoA. Debussche and R. Temam, Stochastic Burgers' equation, NoDEA Nonlinear Differential Equations Appl., 1 (1994), 389-402.  doi: 10.1007/BF01194987.  Google Scholar

[5]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[6]

M. Garavello and B. Piccoli, Traffic Flow on Networks, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006.  Google Scholar

[7]

I. Gyoengy and D. Nualart, On the stochastic Burgers' equation in the real line, Ann. Probab., 27 (1999), 782-802.  doi: 10.1214/aop/1022677386.  Google Scholar

[8]

I. Hosokawa and K. Yamamoto, Turbulence in the randomly forced, one-dimensional Burgers flow, J. Stat. Phys., 13 (1975), 245-272.  doi: 10.1007/BF01012841.  Google Scholar

[9]

M. J. Lighthill and G. B. Whitham, On kinematic waves Ⅱ. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London Ser. A, 229 (1955), 317-345.  doi: 10.1098/rspa.1955.0089.  Google Scholar

[10]

P. I. Richards, Shock waves on the highway, Operations Res., 4 (1956), 42-51.  doi: 10.1287/opre.4.1.42.  Google Scholar

[11]

F. Rothe, Global Solutions of Reaction-Diffusion Systems, Vol. 1072, Springer-Verlag, Berlin, 1984. doi: 10.1007/BFb0099278.  Google Scholar

show all references

References:
[1]

A. Amosov and G. Panasenko, Homogenization of the integro-differential burgers equation, in Integral Methods in Science and Engineering, Vol. 1, Birkhäuser Boston, Boston, MA, 2010, 1–8. doi: 10.1007/978-0-8176-4899-2_1.  Google Scholar

[2]

G. Da Prato and D. Gatarek, Stochastic burgers equation with correlated noise, Stochastics and Stochastic Reports, 52 (1995), 29-41.  doi: 10.1080/17442509508833962.  Google Scholar

[3]

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 2008. https://books.google.fr/books?id=JYiL8zz_nC8C. Google Scholar

[4]

G. Da PratoA. Debussche and R. Temam, Stochastic Burgers' equation, NoDEA Nonlinear Differential Equations Appl., 1 (1994), 389-402.  doi: 10.1007/BF01194987.  Google Scholar

[5]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[6]

M. Garavello and B. Piccoli, Traffic Flow on Networks, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006.  Google Scholar

[7]

I. Gyoengy and D. Nualart, On the stochastic Burgers' equation in the real line, Ann. Probab., 27 (1999), 782-802.  doi: 10.1214/aop/1022677386.  Google Scholar

[8]

I. Hosokawa and K. Yamamoto, Turbulence in the randomly forced, one-dimensional Burgers flow, J. Stat. Phys., 13 (1975), 245-272.  doi: 10.1007/BF01012841.  Google Scholar

[9]

M. J. Lighthill and G. B. Whitham, On kinematic waves Ⅱ. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London Ser. A, 229 (1955), 317-345.  doi: 10.1098/rspa.1955.0089.  Google Scholar

[10]

P. I. Richards, Shock waves on the highway, Operations Res., 4 (1956), 42-51.  doi: 10.1287/opre.4.1.42.  Google Scholar

[11]

F. Rothe, Global Solutions of Reaction-Diffusion Systems, Vol. 1072, Springer-Verlag, Berlin, 1984. doi: 10.1007/BFb0099278.  Google Scholar

Figure 1.  Schematic representation of the function $ \varphi $
[1]

Hyun-Jung Kim. Stochastic parabolic Anderson model with time-homogeneous generalized potential: Mild formulation of solution. Communications on Pure & Applied Analysis, 2019, 18 (2) : 795-807. doi: 10.3934/cpaa.2019038

[2]

Grégoire Allaire, Harsha Hutridurga. On the homogenization of multicomponent transport. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2527-2551. doi: 10.3934/dcdsb.2015.20.2527

[3]

Taposh Kumar Das, Óscar López Pouso. New insights into the numerical solution of the Boltzmann transport equation for photons. Kinetic & Related Models, 2014, 7 (3) : 433-461. doi: 10.3934/krm.2014.7.433

[4]

Hakima Bessaih, Yalchin Efendiev, Florin Maris. Homogenization of the evolution Stokes equation in a perforated domain with a stochastic Fourier boundary condition. Networks & Heterogeneous Media, 2015, 10 (2) : 343-367. doi: 10.3934/nhm.2015.10.343

[5]

Boling Guo, Fangfang Li. Global smooth solution for the Sipn-Polarized transport equation with Landau-Lifshitz-Bloch equation. Discrete & Continuous Dynamical Systems - B, 2020, 25 (7) : 2825-2840. doi: 10.3934/dcdsb.2020034

[6]

Radjesvarane Alexandre, Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, Tong Yang. Local existence with mild regularity for the Boltzmann equation. Kinetic & Related Models, 2013, 6 (4) : 1011-1041. doi: 10.3934/krm.2013.6.1011

[7]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[8]

Yalçin Sarol, Frederi Viens. Time regularity of the evolution solution to fractional stochastic heat equation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 895-910. doi: 10.3934/dcdsb.2006.6.895

[9]

Dimitra Antonopoulou, Georgia Karali. Existence of solution for a generalized stochastic Cahn-Hilliard equation on convex domains. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 31-55. doi: 10.3934/dcdsb.2011.16.31

[10]

Defei Zhang, Ping He. Functional solution about stochastic differential equation driven by $G$-Brownian motion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 281-293. doi: 10.3934/dcdsb.2015.20.281

[11]

Nils Svanstedt. Multiscale stochastic homogenization of monotone operators. Networks & Heterogeneous Media, 2007, 2 (1) : 181-192. doi: 10.3934/nhm.2007.2.181

[12]

Luca Lussardi, Stefano Marini, Marco Veneroni. Stochastic homogenization of maximal monotone relations and applications. Networks & Heterogeneous Media, 2018, 13 (1) : 27-45. doi: 10.3934/nhm.2018002

[13]

Hakima Bessaih, Yalchin Efendiev, Razvan Florian Maris. Stochastic homogenization for a diffusion-reaction model. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5403-5429. doi: 10.3934/dcds.2019221

[14]

John A. D. Appleby, John A. Daniels. Exponential growth in the solution of an affine stochastic differential equation with an average functional and financial market bubbles. Conference Publications, 2011, 2011 (Special) : 91-101. doi: 10.3934/proc.2011.2011.91

[15]

Proscovia Namayanja. Chaotic dynamics in a transport equation on a network. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3415-3426. doi: 10.3934/dcdsb.2018283

[16]

Keisuke Takasao. Existence of weak solution for mean curvature flow with transport term and forcing term. Communications on Pure & Applied Analysis, 2020, 19 (5) : 2655-2677. doi: 10.3934/cpaa.2020116

[17]

Michael Eden, Michael Böhm. Homogenization of a poro-elasticity model coupled with diffusive transport and a first order reaction for concrete. Networks & Heterogeneous Media, 2014, 9 (4) : 599-615. doi: 10.3934/nhm.2014.9.599

[18]

Jiann-Sheng Jiang, Kung-Hwang Kuo, Chi-Kun Lin. Homogenization of second order equation with spatial dependent coefficient. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 303-313. doi: 10.3934/dcds.2005.12.303

[19]

Grégoire Allaire, M. Vanninathan. Homogenization of the Schrödinger equation with a time oscillating potential. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 1-16. doi: 10.3934/dcdsb.2006.6.1

[20]

Iryna Pankratova, Andrey Piatnitski. Homogenization of convection-diffusion equation in infinite cylinder. Networks & Heterogeneous Media, 2011, 6 (1) : 111-126. doi: 10.3934/nhm.2011.6.111

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (12)
  • HTML views (19)
  • Cited by (0)

[Back to Top]