• Previous Article
    Solvability in abstract evolution equations with countable time delays in Banach spaces: Global Lipschitz perturbation
  • EECT Home
  • This Issue
  • Next Article
    Global existence for a class of Keller-Segel models with signal-dependent motility and general logistic term
doi: 10.3934/eect.2020072

Well-posedness of infinite-dimensional non-autonomous passive boundary control systems

University of Wuppertal, Work group Functional Analysis, 42097 Wuppertal, Germany

The second author gratefully acknowledges support from Deutsche Forschungsgemeinschaft (Grant LA 4197/1-1)

Received  June 2019 Revised  April 2020 Published  June 2020

We study a class of non-autonomous linear boundary control and observation systems that are governed by non-autonomous multiplicative perturbations. This class is motivated by fundamental partial differential equations, such as controlled wave equations and Timoshenko beams. Our main results give sufficient condition for well-posedness, existence and uniqueness of classical and mild solutions.

Citation: Birgit Jacob, Hafida Laasri. Well-posedness of infinite-dimensional non-autonomous passive boundary control systems. Evolution Equations & Control Theory, doi: 10.3934/eect.2020072
References:
[1]

P. Acquistapace and B. Terreni, Classical solutions of nonautonomous Riccati equations arising in parabolic boundary control problems, Appl Math Optim, 39 (1999), 361-409.  doi: 10.1007/s002459900111.  Google Scholar

[2]

B. Augner, Stability of Infnite-Dimensional Port-Hamiltonian System Via Dissipative Boundary Feedback, PhD thesis, University of Wuppertal, 2016. Google Scholar

[3]

B. Augner and B. Jacob, Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems, Evolution Equations and Control Theory, 3 (2014), 207-229.  doi: 10.3934/eect.2014.3.207.  Google Scholar

[4]

B. AugnerB. Jacob and H. Laasri, On the right multiplicative perturbation of nonautonomous $L^p$-maximal regularity, J. Operator Theory, 74 (2015), 391-415.  doi: 10.7900/jot.2014jul31.2064.  Google Scholar

[5]

C. Beattie, V. Mehrmann, H. Xu and H. Zwart, Linear port-hamiltonian descriptor systems, Math. Control Signals Systems, 30 (2018), Art. 17, 27 pp. doi: 10.1007/s00498-018-0223-3.  Google Scholar

[6]

H. Bounit and A. Idrissi, Time-varying regular bilinear systems, SIAM J. Control and Optim, 47 (2008), 1097-1126.  doi: 10.1137/050632245.  Google Scholar

[7]

J. H. Chen and G. Weiss, Time-varying additive perturbations of well-posed linear systems, Math. Control Signals Systems, 27 (2015), 149-185.  doi: 10.1007/s00498-014-0136-8.  Google Scholar

[8]

R. F. Curtain and A. J. Pritchard, Infinite Dimensional Linear Systems Theory, Springer-Verlag, Berlin, 1978.  Google Scholar

[9]

R. F. Curtain and H. J. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory, Texts in Applied Mathematics, 21. Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4612-4224-6.  Google Scholar

[10]

K. Engel and R. Nagel, One Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, New York, 2000.  Google Scholar

[11]

K. J. Engel and M. Bombieri, A semigroup characterization of well-posed linear control systems, Semigroup Forum, 88 (2014), 366-396.  doi: 10.1007/s00233-013-9545-0.  Google Scholar

[12]

H. O. Fattorini, Boundary control systems, SIAM J. Control, (6) (1968), 349-385.  doi: 10.1137/0306025.  Google Scholar

[13]

B. H. Haak, D. T. Hoang and E. M. Ouhabaz, Controllability and observability for non-autonomous evolution equations: The averaged Hautus test, Systems Control Lett, 133 (2019), 104524. doi: 10.1016/j.sysconle.2019.104524.  Google Scholar

[14]

B. Jacob, Time-Varying Infinite Dimensional State-Space Systems, PhD thesis, Bremen, 1995. Google Scholar

[15]

B. Jacob and J. Kaiser, Well-posedness of systems of 1-D hyperbolic partial differential equations, J. Evol. Equ., 19 (2019), 91-109.  doi: 10.1007/s00028-018-0470-2.  Google Scholar

[16]

B. JacobK. Morris and H. Zwart, $C_0$-semigroups for hyperbolic partial differential equations on a one-dimensional spatial domain, J. Evol. Equ., 15 (2015), 493-502.  doi: 10.1007/s00028-014-0271-1.  Google Scholar

[17]

B. Jacob and H. Zwart, Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces, Operator Theory: Advances and Applications, 223. Linear Operators and Linear Systems. Birkhäuser/Springer Basel AG, Basel, 2012. doi: 10.1007/978-3-0348-0399-1.  Google Scholar

[18]

S. Hadd, An evolution equation approach to non-autonomous linear systems with state, input and output delays, SIAM J. Control Optim, 45 (2006), 246-272.  doi: 10.1137/040612178.  Google Scholar

[19]

S. HaddA. Rhandi and R. Schnaubelt, Feedback theory for non-autonomous linear systems with input delays, IMA J. Math. Control Inform., 25 (2008), 85-110.  doi: 10.1093/imamci/dnm011.  Google Scholar

[20]

T. Kato, Linear evolution equations of "hyperbolic" type, J. Fac. Sci. Univ. Tokyo, 17 (1970), 241-258.   Google Scholar

[21]

J. Kisynski, Sur les operateurs de green des problemes de Cauchy abstraits, Studia Mathematica, 23 (1964), 285-328.  doi: 10.4064/sm-23-3-285-328.  Google Scholar

[22]

M. Kurula, Well-posedness of time-varying linear systems, IEEE Transactions on Automatic Control (Early Access), 2019, 1–1, available from: https://arXiv.org/abs/1904.12367. doi: 10.1109/TAC.2019.2954794.  Google Scholar

[23]

Y. Le GorrecH. Zwart and B. Maschke, Dirac structures and boundary control systems associated with skew-symmetric differential operators, SIAM J. Control Optim., 44 (2005), 1864-1892.  doi: 10.1137/040611677.  Google Scholar

[24]

J. MalinenO. Staffans and G. Weiss, When is a linear system conservative?, Quart. Appl. Math., 64 (2006), 61-91.  doi: 10.1090/S0033-569X-06-00994-7.  Google Scholar

[25]

G. Nickel, On evolution semigroups and wellposedness of nonautonomous cauchy problems, Diss. Summ. Math., 1 (1996), 195-202.   Google Scholar

[26]

L. Paunonen and S. Pohjolainen, Periodic output regulation for distributed parameter systems, Math Control Signals Syst, 24 (2012), 403-441.  doi: 10.1007/s00498-012-0087-x.  Google Scholar

[27]

L. Paunonen, Robust output regulation for continuous-time periodic systems, IEEE Trans. Automat. Control, 62 (2017), 4363-4375.  doi: 10.1109/TAC.2017.2654968.  Google Scholar

[28]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, Berlin, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[29]

R. Schnaubelt, Well-Posedness and asymptotic behaviour of nonautonomous evolution equation, Evolution Equations, Semigroups and Functional Analysis (Milano, 2000), Progr. Nonlinear Differential Equations Appl., Birkhäuser, Basel, 50 (2002), 311–338.  Google Scholar

[30]

R. Schnaubelt, Feedbacks for nonautonomous regular linear systems, SIAM J. Control Optim., 41 (2002), 1141-1165.  doi: 10.1137/S036301290139169X.  Google Scholar

[31]

R. Schnaubelt and G. Weiss, Two classes of passive time-varying well-posed linear systems, Math. Control Signals Systems, 21 (2010), 265-301.  doi: 10.1007/s00498-010-0049-0.  Google Scholar

[32] O. Staffans, Well-posed Linear Systems, Cambridge University Press, Cambridge, 2005.  doi: 10.1017/CBO9780511543197.  Google Scholar
[33]

O. Staffans and G. Weiss, Transfer functions of regular linear systems. II. the system operator and the lax-phillips semigroup, Trans. Amer. Math. Soc., 354 (2002), 3229-3262.  doi: 10.1090/S0002-9947-02-02976-8.  Google Scholar

[34]

H. Tanabe, Equation of Evolution, Pitman, London, 1979.  Google Scholar

[35]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser, 2009. doi: 10.1007/978-3-7643-8994-9.  Google Scholar

[36]

M. Tucsnak and G. Weiss, Well-posed systems-the LTI case and beyond, Automatica J. IFAC, 50 (2014), 1757-1779.  doi: 10.1016/j.automatica.2014.04.016.  Google Scholar

[37]

J. A. Villegas, A Port-Hamiltonian Approach to Distributed Parameter Systems, Ph.D thesis, Universiteit Twente, 2007, Available from: http://doc.utwente.nl/57842/1/thesis_Villegas.pdf. Google Scholar

[38]

J. A. Villegas, H. Zwart, Y. Le Gorrec and A. van der Schaft, Boundary control systems and the system node, IFAC World Congress, 38 2005,308–313. doi: 10.3182/20050703-6-CZ-1902.00622.  Google Scholar

[39]

G. Weiss, Transfer functions of regular linear systems, part I: Characterizations of regularity, Trans. Amer. Math. Soc., 342 (1994), 827-854.  doi: 10.2307/2154655.  Google Scholar

[40]

G. Weiss, Admissible observation operators for linear semigroups, Israel J. Math., 65 (1989), 17-43.  doi: 10.1007/BF02788172.  Google Scholar

[41]

G. Weiss, The representation of regular linear systems on Hrt spaces, Control and Estimation of Distributed Parameter Systems (Vorau, 1988), Internat. Ser. Numer. Math., Birkhäuser, Basel, 91 (1989), 401–416.  Google Scholar

[42]

H. ZwartY. Le GorrecB. Maschke and J. A. Villegas, Well-posedness and regularity of hyperbolic boundary control systems on a one-dimensional spatial domain, ESAIM Contr. Optim. Calc. Var., 16 (2010), 1077-1093.  doi: 10.1051/cocv/2009036.  Google Scholar

show all references

References:
[1]

P. Acquistapace and B. Terreni, Classical solutions of nonautonomous Riccati equations arising in parabolic boundary control problems, Appl Math Optim, 39 (1999), 361-409.  doi: 10.1007/s002459900111.  Google Scholar

[2]

B. Augner, Stability of Infnite-Dimensional Port-Hamiltonian System Via Dissipative Boundary Feedback, PhD thesis, University of Wuppertal, 2016. Google Scholar

[3]

B. Augner and B. Jacob, Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems, Evolution Equations and Control Theory, 3 (2014), 207-229.  doi: 10.3934/eect.2014.3.207.  Google Scholar

[4]

B. AugnerB. Jacob and H. Laasri, On the right multiplicative perturbation of nonautonomous $L^p$-maximal regularity, J. Operator Theory, 74 (2015), 391-415.  doi: 10.7900/jot.2014jul31.2064.  Google Scholar

[5]

C. Beattie, V. Mehrmann, H. Xu and H. Zwart, Linear port-hamiltonian descriptor systems, Math. Control Signals Systems, 30 (2018), Art. 17, 27 pp. doi: 10.1007/s00498-018-0223-3.  Google Scholar

[6]

H. Bounit and A. Idrissi, Time-varying regular bilinear systems, SIAM J. Control and Optim, 47 (2008), 1097-1126.  doi: 10.1137/050632245.  Google Scholar

[7]

J. H. Chen and G. Weiss, Time-varying additive perturbations of well-posed linear systems, Math. Control Signals Systems, 27 (2015), 149-185.  doi: 10.1007/s00498-014-0136-8.  Google Scholar

[8]

R. F. Curtain and A. J. Pritchard, Infinite Dimensional Linear Systems Theory, Springer-Verlag, Berlin, 1978.  Google Scholar

[9]

R. F. Curtain and H. J. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory, Texts in Applied Mathematics, 21. Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4612-4224-6.  Google Scholar

[10]

K. Engel and R. Nagel, One Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, New York, 2000.  Google Scholar

[11]

K. J. Engel and M. Bombieri, A semigroup characterization of well-posed linear control systems, Semigroup Forum, 88 (2014), 366-396.  doi: 10.1007/s00233-013-9545-0.  Google Scholar

[12]

H. O. Fattorini, Boundary control systems, SIAM J. Control, (6) (1968), 349-385.  doi: 10.1137/0306025.  Google Scholar

[13]

B. H. Haak, D. T. Hoang and E. M. Ouhabaz, Controllability and observability for non-autonomous evolution equations: The averaged Hautus test, Systems Control Lett, 133 (2019), 104524. doi: 10.1016/j.sysconle.2019.104524.  Google Scholar

[14]

B. Jacob, Time-Varying Infinite Dimensional State-Space Systems, PhD thesis, Bremen, 1995. Google Scholar

[15]

B. Jacob and J. Kaiser, Well-posedness of systems of 1-D hyperbolic partial differential equations, J. Evol. Equ., 19 (2019), 91-109.  doi: 10.1007/s00028-018-0470-2.  Google Scholar

[16]

B. JacobK. Morris and H. Zwart, $C_0$-semigroups for hyperbolic partial differential equations on a one-dimensional spatial domain, J. Evol. Equ., 15 (2015), 493-502.  doi: 10.1007/s00028-014-0271-1.  Google Scholar

[17]

B. Jacob and H. Zwart, Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces, Operator Theory: Advances and Applications, 223. Linear Operators and Linear Systems. Birkhäuser/Springer Basel AG, Basel, 2012. doi: 10.1007/978-3-0348-0399-1.  Google Scholar

[18]

S. Hadd, An evolution equation approach to non-autonomous linear systems with state, input and output delays, SIAM J. Control Optim, 45 (2006), 246-272.  doi: 10.1137/040612178.  Google Scholar

[19]

S. HaddA. Rhandi and R. Schnaubelt, Feedback theory for non-autonomous linear systems with input delays, IMA J. Math. Control Inform., 25 (2008), 85-110.  doi: 10.1093/imamci/dnm011.  Google Scholar

[20]

T. Kato, Linear evolution equations of "hyperbolic" type, J. Fac. Sci. Univ. Tokyo, 17 (1970), 241-258.   Google Scholar

[21]

J. Kisynski, Sur les operateurs de green des problemes de Cauchy abstraits, Studia Mathematica, 23 (1964), 285-328.  doi: 10.4064/sm-23-3-285-328.  Google Scholar

[22]

M. Kurula, Well-posedness of time-varying linear systems, IEEE Transactions on Automatic Control (Early Access), 2019, 1–1, available from: https://arXiv.org/abs/1904.12367. doi: 10.1109/TAC.2019.2954794.  Google Scholar

[23]

Y. Le GorrecH. Zwart and B. Maschke, Dirac structures and boundary control systems associated with skew-symmetric differential operators, SIAM J. Control Optim., 44 (2005), 1864-1892.  doi: 10.1137/040611677.  Google Scholar

[24]

J. MalinenO. Staffans and G. Weiss, When is a linear system conservative?, Quart. Appl. Math., 64 (2006), 61-91.  doi: 10.1090/S0033-569X-06-00994-7.  Google Scholar

[25]

G. Nickel, On evolution semigroups and wellposedness of nonautonomous cauchy problems, Diss. Summ. Math., 1 (1996), 195-202.   Google Scholar

[26]

L. Paunonen and S. Pohjolainen, Periodic output regulation for distributed parameter systems, Math Control Signals Syst, 24 (2012), 403-441.  doi: 10.1007/s00498-012-0087-x.  Google Scholar

[27]

L. Paunonen, Robust output regulation for continuous-time periodic systems, IEEE Trans. Automat. Control, 62 (2017), 4363-4375.  doi: 10.1109/TAC.2017.2654968.  Google Scholar

[28]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, Berlin, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[29]

R. Schnaubelt, Well-Posedness and asymptotic behaviour of nonautonomous evolution equation, Evolution Equations, Semigroups and Functional Analysis (Milano, 2000), Progr. Nonlinear Differential Equations Appl., Birkhäuser, Basel, 50 (2002), 311–338.  Google Scholar

[30]

R. Schnaubelt, Feedbacks for nonautonomous regular linear systems, SIAM J. Control Optim., 41 (2002), 1141-1165.  doi: 10.1137/S036301290139169X.  Google Scholar

[31]

R. Schnaubelt and G. Weiss, Two classes of passive time-varying well-posed linear systems, Math. Control Signals Systems, 21 (2010), 265-301.  doi: 10.1007/s00498-010-0049-0.  Google Scholar

[32] O. Staffans, Well-posed Linear Systems, Cambridge University Press, Cambridge, 2005.  doi: 10.1017/CBO9780511543197.  Google Scholar
[33]

O. Staffans and G. Weiss, Transfer functions of regular linear systems. II. the system operator and the lax-phillips semigroup, Trans. Amer. Math. Soc., 354 (2002), 3229-3262.  doi: 10.1090/S0002-9947-02-02976-8.  Google Scholar

[34]

H. Tanabe, Equation of Evolution, Pitman, London, 1979.  Google Scholar

[35]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser, 2009. doi: 10.1007/978-3-7643-8994-9.  Google Scholar

[36]

M. Tucsnak and G. Weiss, Well-posed systems-the LTI case and beyond, Automatica J. IFAC, 50 (2014), 1757-1779.  doi: 10.1016/j.automatica.2014.04.016.  Google Scholar

[37]

J. A. Villegas, A Port-Hamiltonian Approach to Distributed Parameter Systems, Ph.D thesis, Universiteit Twente, 2007, Available from: http://doc.utwente.nl/57842/1/thesis_Villegas.pdf. Google Scholar

[38]

J. A. Villegas, H. Zwart, Y. Le Gorrec and A. van der Schaft, Boundary control systems and the system node, IFAC World Congress, 38 2005,308–313. doi: 10.3182/20050703-6-CZ-1902.00622.  Google Scholar

[39]

G. Weiss, Transfer functions of regular linear systems, part I: Characterizations of regularity, Trans. Amer. Math. Soc., 342 (1994), 827-854.  doi: 10.2307/2154655.  Google Scholar

[40]

G. Weiss, Admissible observation operators for linear semigroups, Israel J. Math., 65 (1989), 17-43.  doi: 10.1007/BF02788172.  Google Scholar

[41]

G. Weiss, The representation of regular linear systems on Hrt spaces, Control and Estimation of Distributed Parameter Systems (Vorau, 1988), Internat. Ser. Numer. Math., Birkhäuser, Basel, 91 (1989), 401–416.  Google Scholar

[42]

H. ZwartY. Le GorrecB. Maschke and J. A. Villegas, Well-posedness and regularity of hyperbolic boundary control systems on a one-dimensional spatial domain, ESAIM Contr. Optim. Calc. Var., 16 (2010), 1077-1093.  doi: 10.1051/cocv/2009036.  Google Scholar

[1]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[2]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[3]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[4]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[5]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[6]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[7]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[8]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[9]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[10]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[11]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[12]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[13]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[14]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[15]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[16]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[17]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[18]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[19]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[20]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020274

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (38)
  • HTML views (188)
  • Cited by (0)

Other articles
by authors

[Back to Top]