June  2021, 10(2): 411-429. doi: 10.3934/eect.2020073

Approximation theorems for controllability problem governed by fractional differential equation

1. 

School of Basic Sciences, Indian Institute of Technology Mandi, Kamand (H.P.) - 175 005, India

2. 

Department of Mathematics, BITS Pilani KK Birla Goa Campus, Zuarinagar, Goa-403 726, India

3. 

Department of Applied Mathematics, Bharathiar University, Coimbatore, Tamilnadu-641 046, India

* Corresponding author: Rathinasamy Sakthivel

Received  July 2019 Revised  March 2020 Published  June 2020

In this manuscript, we discuss the optimal control problem for a nonlinear system governed by the fractional differential equation in a separable Hilbert space $ X $. We utilize the fixed point technique and $ \eta $-resolvent family to present the existence of control for the fractional system. The optimal pair is obtained as the limit of the optimal pair sequence of the unconstrained problem. Further, we derive some approximation results, which guarantee the convergence of the numerical method to optimal pair sequence. Finally, the main results are validated with the aid of an example.

Citation: Rajesh Dhayal, Muslim Malik, Syed Abbas, Anil Kumar, Rathinasamy Sakthivel. Approximation theorems for controllability problem governed by fractional differential equation. Evolution Equations & Control Theory, 2021, 10 (2) : 411-429. doi: 10.3934/eect.2020073
References:
[1]

R. P. AgarwalD. BaleanuJ. J. NietoD. F. M. Torres and Y. Zhou, A survey on fuzzy fractional differential and optimal control nonlocal evolution equations, J. Comput. Appl. Math., 339 (2018), 3-29.  doi: 10.1016/j.cam.2017.09.039.  Google Scholar

[2]

D. AimeneD. Baleanu and D. Seba, Controllability of semilinear impulsive Atangana-Baleanu fractional differential equations with delay, Chaos Solitons Fractals, 128 (2019), 51-57.  doi: 10.1016/j.chaos.2019.07.027.  Google Scholar

[3]

D. Araya and C. Lizama, Almost automorphic mild solutions to fractional differential equations, Nonlinear Anal., 69 (2008), 3692-3705.  doi: 10.1016/j.na.2007.10.004.  Google Scholar

[4]

Y. Cao, Numerical approximations of exact controllability problems by optimal control problems for parabolic differential equations, Appl. Math. Comput., 119 (2001), 127-145.  doi: 10.1016/S0096-3003(99)00251-9.  Google Scholar

[5]

J. Dabas, A. Chauhan and M. Kumar, Existence of the mild solutions for impulsive fractional equations with infinite delay, Int. J. Differ. Equ., 2011 (2011), Art. ID 793023, 20 pp. doi: 10.1155/2011/793023.  Google Scholar

[6]

A. Debbouche and V. Antonov, Approximate controllability of semilinear Hilfer fractional differential inclusions with impulsive control inclusion conditions in Banach spaces, Chaos Solitons Fractals, 102 (2017), 140-148.  doi: 10.1016/j.chaos.2017.03.023.  Google Scholar

[7]

A. DebboucheJ. J. Nieto and D. F. M. Torres, Optimal solutions to relaxation in multiple control problems of Sobolev type with nonlocal nonlinear fractional differential equations, J. Optim. Theory Appl., 174 (2017), 7-31.  doi: 10.1007/s10957-015-0743-7.  Google Scholar

[8]

J. I. Diaz and A. M. Ramos, Numerical experiments regarding the distributed control of semilinear parabolic problems, Comput. Math. Appl., 48 (2004), 1575-1586.  doi: 10.1016/j.camwa.2004.04.033.  Google Scholar

[9]

M. Hasse, The Functional Calculus for Sectorial Operators, operator theory : advance and applications, 169. Birkhauser-Verlag, Basel, 2006. doi: 10.1007/3-7643-7698-8.  Google Scholar

[10]

H. Huang and X. Fu, Approximate controllability of semi-linear neutral integro-differential equations with nonlocal conditions, J. Dyn. Control Syst., 26 (2020), 127-147.  doi: 10.1007/s10883-019-09438-5.  Google Scholar

[11]

M. C. Joshi and R. K. Bose, Some Topics in Nonlinear Functional Analysis, John Wiley and Sons, Inc., New York, 1985.  Google Scholar

[12]

M. C. Joshi and A. Kumar, Approximation of exact controllability problem involving parabolic differential equations, IMA J. Math. Control Inform., 22 (2005), 350-360.  doi: 10.1093/imamci/dni032.  Google Scholar

[13]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.  Google Scholar

[14]

J. Klamka, Controllability of dynamical systems. A survey, Bulletin of the Polish Academy of Sciences: Tech. Sci., 61 (2013), 335-342.   Google Scholar

[15]

G. Knowles, Finite element approximation of parabolic time optimal control problems, SIAM J. Control Optim., 20 (1982), 414-427.  doi: 10.1137/0320032.  Google Scholar

[16]

A. KumarM. C. Joshi and A. K. Pani, On approximation theorems for controllability of nonlinear parabolic problems, IMA J. Math. Control Inform., 24 (2007), 115-136.  doi: 10.1093/imamci/dnl012.  Google Scholar

[17]

M. Malik and R. Agarwal, Exact controllability of an integro-differential equation with deviated argument, Funct. Differ. Equ., 21 (2004), 31-45.   Google Scholar

[18]

M. MalikR. Dhayal and S. Abbas, Exact controllability of a retarded fractional differential equation with non-instantaneous impulses, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 26 (2019), 53-69.   Google Scholar

[19]

M. MalikR. DhayalS. Abbas and A. Kumar, Controllability of non-autonomous nonlinear differential system with non-instantaneous impulses, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM, 113 (2019), 103-118.  doi: 10.1007/s13398-017-0454-z.  Google Scholar

[20]

M. Malik and R. K. George, Trajectory controllability of the nonlinear systems governed by fractional differential equations, Differ. Equ. Dyn. Syst., 27 (2019), 529-537.  doi: 10.1007/s12591-016-0292-z.  Google Scholar

[21]

K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, A Wiley-Interscience Publication, John Wiley & Sons, New York, 1993.  Google Scholar

[22]

D. A. Murio, Implicit finite difference approximation for time fractional diffusion equations, Comput. Math. Appl., 56 (2008), 1138-1145.  doi: 10.1016/j.camwa.2008.02.015.  Google Scholar

[23]

K. B. Oldham and J. Spanier, The Fractional Calculus, Mathematics in Science and Engineering, 111. Academic Press, New York-London, 1974.  Google Scholar

[24]

I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, 198. Academic Press, Inc., San Diego, CA, 1999.  Google Scholar

[25]

C. RavichandranN. Valliammal and J. J. Nieto, New results on exact controllability of a class of fractional neutral integro-differential systems with state-dependent delay in Banach spaces, J. Franklin Inst., 356 (2019), 1535-1565.  doi: 10.1016/j.jfranklin.2018.12.001.  Google Scholar

[26]

R. SakthivelN. I. Mahmudov and J. J. Nieto, Controllability for a class of fractional-order neutral evolution control systems, Appl. Math. Comput., 218 (2012), 10334-10340.  doi: 10.1016/j.amc.2012.03.093.  Google Scholar

[27]

S. SuganyaM. M. Arjunan and J. J. Trujillo, Existence results for an impulsive fractional integro-differential equation with state-dependent delay, Appl. Math. Comput., 266 (2015), 54-69.  doi: 10.1016/j.amc.2015.05.031.  Google Scholar

[28]

N. H. SweilamM. M. Khader and A. M. S. Mahdy, Crank-Nicolson finite difference method for solving time-fractional diffusion equation, J. Fraction. Calculus Appl., 2 (2012), 1-9.   Google Scholar

[29]

J. WangA. G. IbrahimD. O'Regan and Y. Zhou, Controllability for noninstantaneous impulsive semilinear functional differential inclusions without compactness, Indag. Math., 29 (2018), 1362-1392.  doi: 10.1016/j.indag.2018.07.002.  Google Scholar

[30]

J. Wang and Y. Zhou, A class of fractional evolution equations and optimal controls, Nonlinear Anal. Real World Appl., 12 (2011), 262-272.  doi: 10.1016/j.nonrwa.2010.06.013.  Google Scholar

[31]

J. Wang and Y. Zhou, Complete controllability of fractional evolution systems, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 4346-4355.  doi: 10.1016/j.cnsns.2012.02.029.  Google Scholar

[32]

H. YeJ. Gao and Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075-1081.  doi: 10.1016/j.jmaa.2006.05.061.  Google Scholar

[33]

D. Zhang and Y. Liang, Existence and controllability of fractional evolution equation with sectorial operator and impulse, Adv. Differ. Equ., 2018, Paper No. 219, 12 pp. doi: 10.1186/s13662-018-1664-1.  Google Scholar

show all references

References:
[1]

R. P. AgarwalD. BaleanuJ. J. NietoD. F. M. Torres and Y. Zhou, A survey on fuzzy fractional differential and optimal control nonlocal evolution equations, J. Comput. Appl. Math., 339 (2018), 3-29.  doi: 10.1016/j.cam.2017.09.039.  Google Scholar

[2]

D. AimeneD. Baleanu and D. Seba, Controllability of semilinear impulsive Atangana-Baleanu fractional differential equations with delay, Chaos Solitons Fractals, 128 (2019), 51-57.  doi: 10.1016/j.chaos.2019.07.027.  Google Scholar

[3]

D. Araya and C. Lizama, Almost automorphic mild solutions to fractional differential equations, Nonlinear Anal., 69 (2008), 3692-3705.  doi: 10.1016/j.na.2007.10.004.  Google Scholar

[4]

Y. Cao, Numerical approximations of exact controllability problems by optimal control problems for parabolic differential equations, Appl. Math. Comput., 119 (2001), 127-145.  doi: 10.1016/S0096-3003(99)00251-9.  Google Scholar

[5]

J. Dabas, A. Chauhan and M. Kumar, Existence of the mild solutions for impulsive fractional equations with infinite delay, Int. J. Differ. Equ., 2011 (2011), Art. ID 793023, 20 pp. doi: 10.1155/2011/793023.  Google Scholar

[6]

A. Debbouche and V. Antonov, Approximate controllability of semilinear Hilfer fractional differential inclusions with impulsive control inclusion conditions in Banach spaces, Chaos Solitons Fractals, 102 (2017), 140-148.  doi: 10.1016/j.chaos.2017.03.023.  Google Scholar

[7]

A. DebboucheJ. J. Nieto and D. F. M. Torres, Optimal solutions to relaxation in multiple control problems of Sobolev type with nonlocal nonlinear fractional differential equations, J. Optim. Theory Appl., 174 (2017), 7-31.  doi: 10.1007/s10957-015-0743-7.  Google Scholar

[8]

J. I. Diaz and A. M. Ramos, Numerical experiments regarding the distributed control of semilinear parabolic problems, Comput. Math. Appl., 48 (2004), 1575-1586.  doi: 10.1016/j.camwa.2004.04.033.  Google Scholar

[9]

M. Hasse, The Functional Calculus for Sectorial Operators, operator theory : advance and applications, 169. Birkhauser-Verlag, Basel, 2006. doi: 10.1007/3-7643-7698-8.  Google Scholar

[10]

H. Huang and X. Fu, Approximate controllability of semi-linear neutral integro-differential equations with nonlocal conditions, J. Dyn. Control Syst., 26 (2020), 127-147.  doi: 10.1007/s10883-019-09438-5.  Google Scholar

[11]

M. C. Joshi and R. K. Bose, Some Topics in Nonlinear Functional Analysis, John Wiley and Sons, Inc., New York, 1985.  Google Scholar

[12]

M. C. Joshi and A. Kumar, Approximation of exact controllability problem involving parabolic differential equations, IMA J. Math. Control Inform., 22 (2005), 350-360.  doi: 10.1093/imamci/dni032.  Google Scholar

[13]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.  Google Scholar

[14]

J. Klamka, Controllability of dynamical systems. A survey, Bulletin of the Polish Academy of Sciences: Tech. Sci., 61 (2013), 335-342.   Google Scholar

[15]

G. Knowles, Finite element approximation of parabolic time optimal control problems, SIAM J. Control Optim., 20 (1982), 414-427.  doi: 10.1137/0320032.  Google Scholar

[16]

A. KumarM. C. Joshi and A. K. Pani, On approximation theorems for controllability of nonlinear parabolic problems, IMA J. Math. Control Inform., 24 (2007), 115-136.  doi: 10.1093/imamci/dnl012.  Google Scholar

[17]

M. Malik and R. Agarwal, Exact controllability of an integro-differential equation with deviated argument, Funct. Differ. Equ., 21 (2004), 31-45.   Google Scholar

[18]

M. MalikR. Dhayal and S. Abbas, Exact controllability of a retarded fractional differential equation with non-instantaneous impulses, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 26 (2019), 53-69.   Google Scholar

[19]

M. MalikR. DhayalS. Abbas and A. Kumar, Controllability of non-autonomous nonlinear differential system with non-instantaneous impulses, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM, 113 (2019), 103-118.  doi: 10.1007/s13398-017-0454-z.  Google Scholar

[20]

M. Malik and R. K. George, Trajectory controllability of the nonlinear systems governed by fractional differential equations, Differ. Equ. Dyn. Syst., 27 (2019), 529-537.  doi: 10.1007/s12591-016-0292-z.  Google Scholar

[21]

K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, A Wiley-Interscience Publication, John Wiley & Sons, New York, 1993.  Google Scholar

[22]

D. A. Murio, Implicit finite difference approximation for time fractional diffusion equations, Comput. Math. Appl., 56 (2008), 1138-1145.  doi: 10.1016/j.camwa.2008.02.015.  Google Scholar

[23]

K. B. Oldham and J. Spanier, The Fractional Calculus, Mathematics in Science and Engineering, 111. Academic Press, New York-London, 1974.  Google Scholar

[24]

I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, 198. Academic Press, Inc., San Diego, CA, 1999.  Google Scholar

[25]

C. RavichandranN. Valliammal and J. J. Nieto, New results on exact controllability of a class of fractional neutral integro-differential systems with state-dependent delay in Banach spaces, J. Franklin Inst., 356 (2019), 1535-1565.  doi: 10.1016/j.jfranklin.2018.12.001.  Google Scholar

[26]

R. SakthivelN. I. Mahmudov and J. J. Nieto, Controllability for a class of fractional-order neutral evolution control systems, Appl. Math. Comput., 218 (2012), 10334-10340.  doi: 10.1016/j.amc.2012.03.093.  Google Scholar

[27]

S. SuganyaM. M. Arjunan and J. J. Trujillo, Existence results for an impulsive fractional integro-differential equation with state-dependent delay, Appl. Math. Comput., 266 (2015), 54-69.  doi: 10.1016/j.amc.2015.05.031.  Google Scholar

[28]

N. H. SweilamM. M. Khader and A. M. S. Mahdy, Crank-Nicolson finite difference method for solving time-fractional diffusion equation, J. Fraction. Calculus Appl., 2 (2012), 1-9.   Google Scholar

[29]

J. WangA. G. IbrahimD. O'Regan and Y. Zhou, Controllability for noninstantaneous impulsive semilinear functional differential inclusions without compactness, Indag. Math., 29 (2018), 1362-1392.  doi: 10.1016/j.indag.2018.07.002.  Google Scholar

[30]

J. Wang and Y. Zhou, A class of fractional evolution equations and optimal controls, Nonlinear Anal. Real World Appl., 12 (2011), 262-272.  doi: 10.1016/j.nonrwa.2010.06.013.  Google Scholar

[31]

J. Wang and Y. Zhou, Complete controllability of fractional evolution systems, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 4346-4355.  doi: 10.1016/j.cnsns.2012.02.029.  Google Scholar

[32]

H. YeJ. Gao and Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075-1081.  doi: 10.1016/j.jmaa.2006.05.061.  Google Scholar

[33]

D. Zhang and Y. Liang, Existence and controllability of fractional evolution equation with sectorial operator and impulse, Adv. Differ. Equ., 2018, Paper No. 219, 12 pp. doi: 10.1186/s13662-018-1664-1.  Google Scholar

Figure 1.  Comparison between $ z_{b} $ and $ \overline{z}(b) $
Figure 2.  Approximated optimal control $ \overline{u} $
Figure 3.  Numerical solution $ \overline{z} $ corresponding to optimal control $ \overline{u} $ with $ \eta = 0.75 $
[1]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[2]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[3]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[4]

Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192

[5]

Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021012

[6]

Lorenzo Freddi. Optimal control of the transmission rate in compartmental epidemics. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021007

[7]

V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066

[8]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[9]

Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021040

[10]

John T. Betts, Stephen Campbell, Claire Digirolamo. Examination of solving optimal control problems with delays using GPOPS-Ⅱ. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 283-305. doi: 10.3934/naco.2020026

[11]

Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021009

[12]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[13]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[14]

Horst R. Thieme. Remarks on resolvent positive operators and their perturbation. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 73-90. doi: 10.3934/dcds.1998.4.73

[15]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[16]

Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021019

[17]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[18]

Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021008

[19]

Jon Aaronson, Dalia Terhesiu. Local limit theorems for suspended semiflows. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6575-6609. doi: 10.3934/dcds.2020294

[20]

Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (161)
  • HTML views (366)
  • Cited by (0)

[Back to Top]