
- Previous Article
- EECT Home
- This Issue
-
Next Article
Well-posedness of infinite-dimensional non-autonomous passive boundary control systems
Approximation theorems for controllability problem governed by fractional differential equation
1. | School of Basic Sciences, Indian Institute of Technology Mandi, Kamand (H.P.) - 175 005, India |
2. | Department of Mathematics, BITS Pilani KK Birla Goa Campus, Zuarinagar, Goa-403 726, India |
3. | Department of Applied Mathematics, Bharathiar University, Coimbatore, Tamilnadu-641 046, India |
In this manuscript, we discuss the optimal control problem for a nonlinear system governed by the fractional differential equation in a separable Hilbert space $ X $. We utilize the fixed point technique and $ \eta $-resolvent family to present the existence of control for the fractional system. The optimal pair is obtained as the limit of the optimal pair sequence of the unconstrained problem. Further, we derive some approximation results, which guarantee the convergence of the numerical method to optimal pair sequence. Finally, the main results are validated with the aid of an example.
References:
[1] |
R. P. Agarwal, D. Baleanu, J. J. Nieto, D. F. M. Torres and Y. Zhou,
A survey on fuzzy fractional differential and optimal control nonlocal evolution equations, J. Comput. Appl. Math., 339 (2018), 3-29.
doi: 10.1016/j.cam.2017.09.039. |
[2] |
D. Aimene, D. Baleanu and D. Seba,
Controllability of semilinear impulsive Atangana-Baleanu fractional differential equations with delay, Chaos Solitons Fractals, 128 (2019), 51-57.
doi: 10.1016/j.chaos.2019.07.027. |
[3] |
D. Araya and C. Lizama,
Almost automorphic mild solutions to fractional differential equations, Nonlinear Anal., 69 (2008), 3692-3705.
doi: 10.1016/j.na.2007.10.004. |
[4] |
Y. Cao,
Numerical approximations of exact controllability problems by optimal control problems for parabolic differential equations, Appl. Math. Comput., 119 (2001), 127-145.
doi: 10.1016/S0096-3003(99)00251-9. |
[5] |
J. Dabas, A. Chauhan and M. Kumar, Existence of the mild solutions for impulsive fractional equations with infinite delay, Int. J. Differ. Equ., 2011 (2011), Art. ID 793023, 20 pp.
doi: 10.1155/2011/793023. |
[6] |
A. Debbouche and V. Antonov,
Approximate controllability of semilinear Hilfer fractional differential inclusions with impulsive control inclusion conditions in Banach spaces, Chaos Solitons Fractals, 102 (2017), 140-148.
doi: 10.1016/j.chaos.2017.03.023. |
[7] |
A. Debbouche, J. J. Nieto and D. F. M. Torres,
Optimal solutions to relaxation in multiple control problems of Sobolev type with nonlocal nonlinear fractional differential equations, J. Optim. Theory Appl., 174 (2017), 7-31.
doi: 10.1007/s10957-015-0743-7. |
[8] |
J. I. Diaz and A. M. Ramos,
Numerical experiments regarding the distributed control of semilinear parabolic problems, Comput. Math. Appl., 48 (2004), 1575-1586.
doi: 10.1016/j.camwa.2004.04.033. |
[9] |
M. Hasse, The Functional Calculus for Sectorial Operators, operator theory : advance and applications, 169. Birkhauser-Verlag, Basel, 2006.
doi: 10.1007/3-7643-7698-8. |
[10] |
H. Huang and X. Fu,
Approximate controllability of semi-linear neutral integro-differential equations with nonlocal conditions, J. Dyn. Control Syst., 26 (2020), 127-147.
doi: 10.1007/s10883-019-09438-5. |
[11] |
M. C. Joshi and R. K. Bose, Some Topics in Nonlinear Functional Analysis, John Wiley and Sons, Inc., New York, 1985. |
[12] |
M. C. Joshi and A. Kumar,
Approximation of exact controllability problem involving parabolic differential equations, IMA J. Math. Control Inform., 22 (2005), 350-360.
doi: 10.1093/imamci/dni032. |
[13] |
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006. |
[14] |
J. Klamka,
Controllability of dynamical systems. A survey, Bulletin of the Polish Academy of
Sciences: Tech. Sci., 61 (2013), 335-342.
|
[15] |
G. Knowles,
Finite element approximation of parabolic time optimal control problems, SIAM J. Control Optim., 20 (1982), 414-427.
doi: 10.1137/0320032. |
[16] |
A. Kumar, M. C. Joshi and A. K. Pani,
On approximation theorems for controllability of nonlinear parabolic problems, IMA J. Math. Control Inform., 24 (2007), 115-136.
doi: 10.1093/imamci/dnl012. |
[17] |
M. Malik and R. Agarwal,
Exact controllability of an integro-differential equation with deviated argument, Funct. Differ. Equ., 21 (2004), 31-45.
|
[18] |
M. Malik, R. Dhayal and S. Abbas,
Exact controllability of a retarded fractional differential equation with non-instantaneous impulses, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 26 (2019), 53-69.
|
[19] |
M. Malik, R. Dhayal, S. Abbas and A. Kumar,
Controllability of non-autonomous nonlinear differential system with non-instantaneous impulses, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM, 113 (2019), 103-118.
doi: 10.1007/s13398-017-0454-z. |
[20] |
M. Malik and R. K. George,
Trajectory controllability of the nonlinear systems governed by fractional differential equations, Differ. Equ. Dyn. Syst., 27 (2019), 529-537.
doi: 10.1007/s12591-016-0292-z. |
[21] |
K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, A Wiley-Interscience Publication, John Wiley & Sons, New York, 1993. |
[22] |
D. A. Murio,
Implicit finite difference approximation for time fractional diffusion equations, Comput. Math. Appl., 56 (2008), 1138-1145.
doi: 10.1016/j.camwa.2008.02.015. |
[23] |
K. B. Oldham and J. Spanier, The Fractional Calculus, Mathematics in Science and Engineering, 111. Academic Press, New York-London, 1974. |
[24] |
I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, 198. Academic Press, Inc., San Diego, CA, 1999. |
[25] |
C. Ravichandran, N. Valliammal and J. J. Nieto,
New results on exact controllability of a class of fractional neutral integro-differential systems with state-dependent delay in Banach spaces, J. Franklin Inst., 356 (2019), 1535-1565.
doi: 10.1016/j.jfranklin.2018.12.001. |
[26] |
R. Sakthivel, N. I. Mahmudov and J. J. Nieto,
Controllability for a class of fractional-order neutral evolution control systems, Appl. Math. Comput., 218 (2012), 10334-10340.
doi: 10.1016/j.amc.2012.03.093. |
[27] |
S. Suganya, M. M. Arjunan and J. J. Trujillo,
Existence results for an impulsive fractional integro-differential equation with state-dependent delay, Appl. Math. Comput., 266 (2015), 54-69.
doi: 10.1016/j.amc.2015.05.031. |
[28] |
N. H. Sweilam, M. M. Khader and A. M. S. Mahdy, Crank-Nicolson finite difference method for solving time-fractional diffusion equation, J. Fraction. Calculus Appl., 2 (2012), 1-9. Google Scholar |
[29] |
J. Wang, A. G. Ibrahim, D. O'Regan and Y. Zhou,
Controllability for noninstantaneous impulsive semilinear functional differential inclusions without compactness, Indag. Math., 29 (2018), 1362-1392.
doi: 10.1016/j.indag.2018.07.002. |
[30] |
J. Wang and Y. Zhou,
A class of fractional evolution equations and optimal controls, Nonlinear Anal. Real World Appl., 12 (2011), 262-272.
doi: 10.1016/j.nonrwa.2010.06.013. |
[31] |
J. Wang and Y. Zhou,
Complete controllability of fractional evolution systems, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 4346-4355.
doi: 10.1016/j.cnsns.2012.02.029. |
[32] |
H. Ye, J. Gao and Y. Ding,
A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075-1081.
doi: 10.1016/j.jmaa.2006.05.061. |
[33] |
D. Zhang and Y. Liang, Existence and controllability of fractional evolution equation with sectorial operator and impulse, Adv. Differ. Equ., 2018, Paper No. 219, 12 pp.
doi: 10.1186/s13662-018-1664-1. |
show all references
References:
[1] |
R. P. Agarwal, D. Baleanu, J. J. Nieto, D. F. M. Torres and Y. Zhou,
A survey on fuzzy fractional differential and optimal control nonlocal evolution equations, J. Comput. Appl. Math., 339 (2018), 3-29.
doi: 10.1016/j.cam.2017.09.039. |
[2] |
D. Aimene, D. Baleanu and D. Seba,
Controllability of semilinear impulsive Atangana-Baleanu fractional differential equations with delay, Chaos Solitons Fractals, 128 (2019), 51-57.
doi: 10.1016/j.chaos.2019.07.027. |
[3] |
D. Araya and C. Lizama,
Almost automorphic mild solutions to fractional differential equations, Nonlinear Anal., 69 (2008), 3692-3705.
doi: 10.1016/j.na.2007.10.004. |
[4] |
Y. Cao,
Numerical approximations of exact controllability problems by optimal control problems for parabolic differential equations, Appl. Math. Comput., 119 (2001), 127-145.
doi: 10.1016/S0096-3003(99)00251-9. |
[5] |
J. Dabas, A. Chauhan and M. Kumar, Existence of the mild solutions for impulsive fractional equations with infinite delay, Int. J. Differ. Equ., 2011 (2011), Art. ID 793023, 20 pp.
doi: 10.1155/2011/793023. |
[6] |
A. Debbouche and V. Antonov,
Approximate controllability of semilinear Hilfer fractional differential inclusions with impulsive control inclusion conditions in Banach spaces, Chaos Solitons Fractals, 102 (2017), 140-148.
doi: 10.1016/j.chaos.2017.03.023. |
[7] |
A. Debbouche, J. J. Nieto and D. F. M. Torres,
Optimal solutions to relaxation in multiple control problems of Sobolev type with nonlocal nonlinear fractional differential equations, J. Optim. Theory Appl., 174 (2017), 7-31.
doi: 10.1007/s10957-015-0743-7. |
[8] |
J. I. Diaz and A. M. Ramos,
Numerical experiments regarding the distributed control of semilinear parabolic problems, Comput. Math. Appl., 48 (2004), 1575-1586.
doi: 10.1016/j.camwa.2004.04.033. |
[9] |
M. Hasse, The Functional Calculus for Sectorial Operators, operator theory : advance and applications, 169. Birkhauser-Verlag, Basel, 2006.
doi: 10.1007/3-7643-7698-8. |
[10] |
H. Huang and X. Fu,
Approximate controllability of semi-linear neutral integro-differential equations with nonlocal conditions, J. Dyn. Control Syst., 26 (2020), 127-147.
doi: 10.1007/s10883-019-09438-5. |
[11] |
M. C. Joshi and R. K. Bose, Some Topics in Nonlinear Functional Analysis, John Wiley and Sons, Inc., New York, 1985. |
[12] |
M. C. Joshi and A. Kumar,
Approximation of exact controllability problem involving parabolic differential equations, IMA J. Math. Control Inform., 22 (2005), 350-360.
doi: 10.1093/imamci/dni032. |
[13] |
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006. |
[14] |
J. Klamka,
Controllability of dynamical systems. A survey, Bulletin of the Polish Academy of
Sciences: Tech. Sci., 61 (2013), 335-342.
|
[15] |
G. Knowles,
Finite element approximation of parabolic time optimal control problems, SIAM J. Control Optim., 20 (1982), 414-427.
doi: 10.1137/0320032. |
[16] |
A. Kumar, M. C. Joshi and A. K. Pani,
On approximation theorems for controllability of nonlinear parabolic problems, IMA J. Math. Control Inform., 24 (2007), 115-136.
doi: 10.1093/imamci/dnl012. |
[17] |
M. Malik and R. Agarwal,
Exact controllability of an integro-differential equation with deviated argument, Funct. Differ. Equ., 21 (2004), 31-45.
|
[18] |
M. Malik, R. Dhayal and S. Abbas,
Exact controllability of a retarded fractional differential equation with non-instantaneous impulses, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 26 (2019), 53-69.
|
[19] |
M. Malik, R. Dhayal, S. Abbas and A. Kumar,
Controllability of non-autonomous nonlinear differential system with non-instantaneous impulses, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM, 113 (2019), 103-118.
doi: 10.1007/s13398-017-0454-z. |
[20] |
M. Malik and R. K. George,
Trajectory controllability of the nonlinear systems governed by fractional differential equations, Differ. Equ. Dyn. Syst., 27 (2019), 529-537.
doi: 10.1007/s12591-016-0292-z. |
[21] |
K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, A Wiley-Interscience Publication, John Wiley & Sons, New York, 1993. |
[22] |
D. A. Murio,
Implicit finite difference approximation for time fractional diffusion equations, Comput. Math. Appl., 56 (2008), 1138-1145.
doi: 10.1016/j.camwa.2008.02.015. |
[23] |
K. B. Oldham and J. Spanier, The Fractional Calculus, Mathematics in Science and Engineering, 111. Academic Press, New York-London, 1974. |
[24] |
I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, 198. Academic Press, Inc., San Diego, CA, 1999. |
[25] |
C. Ravichandran, N. Valliammal and J. J. Nieto,
New results on exact controllability of a class of fractional neutral integro-differential systems with state-dependent delay in Banach spaces, J. Franklin Inst., 356 (2019), 1535-1565.
doi: 10.1016/j.jfranklin.2018.12.001. |
[26] |
R. Sakthivel, N. I. Mahmudov and J. J. Nieto,
Controllability for a class of fractional-order neutral evolution control systems, Appl. Math. Comput., 218 (2012), 10334-10340.
doi: 10.1016/j.amc.2012.03.093. |
[27] |
S. Suganya, M. M. Arjunan and J. J. Trujillo,
Existence results for an impulsive fractional integro-differential equation with state-dependent delay, Appl. Math. Comput., 266 (2015), 54-69.
doi: 10.1016/j.amc.2015.05.031. |
[28] |
N. H. Sweilam, M. M. Khader and A. M. S. Mahdy, Crank-Nicolson finite difference method for solving time-fractional diffusion equation, J. Fraction. Calculus Appl., 2 (2012), 1-9. Google Scholar |
[29] |
J. Wang, A. G. Ibrahim, D. O'Regan and Y. Zhou,
Controllability for noninstantaneous impulsive semilinear functional differential inclusions without compactness, Indag. Math., 29 (2018), 1362-1392.
doi: 10.1016/j.indag.2018.07.002. |
[30] |
J. Wang and Y. Zhou,
A class of fractional evolution equations and optimal controls, Nonlinear Anal. Real World Appl., 12 (2011), 262-272.
doi: 10.1016/j.nonrwa.2010.06.013. |
[31] |
J. Wang and Y. Zhou,
Complete controllability of fractional evolution systems, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 4346-4355.
doi: 10.1016/j.cnsns.2012.02.029. |
[32] |
H. Ye, J. Gao and Y. Ding,
A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075-1081.
doi: 10.1016/j.jmaa.2006.05.061. |
[33] |
D. Zhang and Y. Liang, Existence and controllability of fractional evolution equation with sectorial operator and impulse, Adv. Differ. Equ., 2018, Paper No. 219, 12 pp.
doi: 10.1186/s13662-018-1664-1. |


[1] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[2] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[3] |
Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021023 |
[4] |
Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192 |
[5] |
Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021012 |
[6] |
Lorenzo Freddi. Optimal control of the transmission rate in compartmental epidemics. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021007 |
[7] |
V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066 |
[8] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[9] |
Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021040 |
[10] |
John T. Betts, Stephen Campbell, Claire Digirolamo. Examination of solving optimal control problems with delays using GPOPS-Ⅱ. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 283-305. doi: 10.3934/naco.2020026 |
[11] |
Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021009 |
[12] |
Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021021 |
[13] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[14] |
Horst R. Thieme. Remarks on resolvent positive operators and their perturbation. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 73-90. doi: 10.3934/dcds.1998.4.73 |
[15] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[16] |
Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021019 |
[17] |
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 |
[18] |
Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2021008 |
[19] |
Jon Aaronson, Dalia Terhesiu. Local limit theorems for suspended semiflows. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6575-6609. doi: 10.3934/dcds.2020294 |
[20] |
Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281 |
2019 Impact Factor: 0.953
Tools
Metrics
Other articles
by authors
[Back to Top]