September  2021, 10(3): 431-460. doi: 10.3934/eect.2020074

Decay rates for the Moore-Gibson-Thompson equation with memory

1. 

Ferhat Abbas university, Setif, 19000, Algeria

2. 

Department of Mathematics, College of Sciences, University of Sharjah, P. O. Box: 27272, Sharjah, United Arab Emirates

* Corresponding author: Belkacem Said Houari, bhouari@sharjah.ac.ae

Received  August 2019 Revised  February 2020 Published  September 2021 Early access  June 2020

The main goal of this paper is to investigate the existence and stability of the solutions for the Moore–Gibson–Thompson equation (MGT) with a memory term in the whole spaces $ \mathbb{R}^{N} $. The MGT equation arises from modeling high-frequency ultrasound waves as an alternative model to the well-known Kuznetsov's equation. First, following [8] and [26], we show that the problem is well-posed under an appropriate assumption on the coefficients of the system. Then, we built some Lyapunov functionals by using the energy method in Fourier space. These functionals allows us to get control estimates on the Fourier image of the solution. These estimates of the Fourier image together with some integral inequalities lead to the decay rate of the $ L^{2} $-norm of the solution. We use two types of memory term here: type Ⅰ memory term and type Ⅲ memory term. Decay rates are obtained in both types. More precisely, decay rates of the solution are obtained depending on the exponential or polynomial decay of the memory kernel. More importantly, we show stability of the solution in both cases: a subcritical range of the parameters and a critical range. However for the type Ⅰ memory we show in the critical case that the solution has the regularity-loss property.

Citation: Hizia Bounadja, Belkacem Said Houari. Decay rates for the Moore-Gibson-Thompson equation with memory. Evolution Equations and Control Theory, 2021, 10 (3) : 431-460. doi: 10.3934/eect.2020074
References:
[1]

M. O. Alves, A. H. Caixeta, M. A. Jorge Silva and J. H. Rodrigues, Moore–Gibson–Thompson equation with memory in a history framework: a semigroup approach, Z. Angew. Math. Phys., 69 (2018), Paper No. 106, 19 pp. doi: 10.1007/s00033-018-0999-5.

[2]

M. S. AlvesC. BuriolM. V. FerreiraJ. E. Muñoz RiveraM. Sepúlveda and O. Vera, Asymptotic behaviour for the vibrations modeled by the standard linear solid model with a thermal effect, J. Math. Anal. Appl., 399 (2013), 472-479.  doi: 10.1016/j.jmaa.2012.10.019.

[3]

J. A. ConejeroC. Lizama and F. Ródenas, Chaotic behaviour of the solutions of the Moore-Gibson-Thompson equation, Appl. Math. and Inf. Sciences., 9 (2015), 2233-2238. 

[4]

M. ContiS. Gatti and V. Patta, Decay rates of Volterra equations on $\mathbb{R}^{N}$, Central European Journal of Mathematics, 5 (2007), 720-732.  doi: 10.2478/s11533-007-0024-2.

[5]

F. Coulouvrat, On the equations of nonlinear acoustics, J. Acoustique, 5 (1992), 321-359. 

[6]

C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rtion. Mech. Anal., 37 (1970), 297-308.  doi: 10.1007/BF00251609.

[7]

F. Dell'Oro and V. Pata, On the Moore–Gibson–Thompson equation and its relation to linear viscoelasticity, Appl. Math. Optim., 76 (2017), 641-655.  doi: 10.1007/s00245-016-9365-1.

[8]

F. Dell'OroI. Lasiecka and V. Pata, The Moore–Gibson–Thompson equation with memory in the critical case, J. Differential Equations, 261 (2016), 4188-4222.  doi: 10.1016/j.jde.2016.06.025.

[9]

G. C. Gorain, Stabilization for the vibrations modeled by the 'standard linear model' of viscoelasticity, Proc. Indian Acad. Sci. Math. Sci., 120 (2010), 495-506.  doi: 10.1007/s12044-010-0038-8.

[10]

A. Guessmia and S. A. Messaoudi, A new approach to the stability of an abstract system in the presence of infinite history, J. Math. Anal. Appl., 416 (2014), 212-228.  doi: 10.1016/j.jmaa.2014.02.030.

[11]

P. M. Jordan, Second-sound phenomena in inviscid, thermally relaxing gases, Discrete and Continuous Dynamical Systems B, 19 (2014), 2189-2205.  doi: 10.3934/dcdsb.2014.19.2189.

[12]

B. KaltenbacherI. Lasiecka and R. Marchand, Wellposedness and exponential decay rates for the Moore–Gibson–Thompson equation arising in high intensity ultrasound, Control and Cybernetics., 40 (2011), 971-988. 

[13]

B. Kaltenbacher, I. Lasiecka and M. K. Pospieszalska, Well-posedness and exponential decay of the energy in the nonlinear Jordan-Moore-Gibson-Thompson equation arising in high intensity ultrasound, Math. Models Methods Appl. Sci., 22 (2012), 1250035(1-34). doi: 10.1142/S0218202512500352.

[14]

B. Kaltenbacher, Mathematics of non linear acoustics, Evol Equ Control Theory., 4 (2015), 447-491.  doi: 10.3934/eect.2015.4.447.

[15]

V. P. Kuznetsov, Equations of nonlinear acoustics, Sov. Phys. Acoust., 16 (1971), 467.

[16]

I. Lasiecka, Global solvability of Moore–Gibson–Thompson equation with memory arising in nonlinear acoustics, J. Evol. Equ., 17 (2017), 411-441.  doi: 10.1007/s00028-016-0353-3.

[17]

I. Lasiecka and X. Wang, Moore–Gibson–Thompson equation with memory, part Ⅰ: exponential decay of energy, Z. Angew. Math. Phys., 67 (2016), Art. 17, 23 pp. doi: 10.1007/s00033-015-0597-8.

[18]

I. Lasiecka and X. Wang, Moore–Gibson–Thompson equation with memory, part Ⅱ: General decay of energy, J. Differerential Equations., 259 (2015), 7610-7635.  doi: 10.1016/j.jde.2015.08.052.

[19]

W. Liu, Z. Chen and D. Chen, New general decay results for a Moore–Gibson–Thompson equation with memory, Applicable Analysis, 2019, 1–20. doi: 10.1080/00036811.2019.1577390.

[20]

E. Mainini and G. Mola, Exponential and polynomial decay for first order linear volterra evolution equations, Postdoctoral Fellowship of the Japan Society for the promotion of Sciences, 67 (2009), 93-111.  doi: 10.1090/S0033-569X-09-01145-X.

[21]

R. MarchandT. McDevitt and R. Triggiani, An abstract semigroup approach to the third-order Moore–Gibson–Thompson partial differential equation arising in high-intensity ultrasound: structural decomposition, spectral analysis, exponential stability, Math. Methods. Appl. Sci., 35 (2012), 1896-1929.  doi: 10.1002/mma.1576.

[22]

S. A. Messaoudi and W. Al-Khulaifi, General and optimal decay for a quasilinear viscoelastic equation, Applied Mathematics Letters (ELSEVIER), 66 (2017), 16-22.  doi: 10.1016/j.aml.2016.11.002.

[23]

V. Pata, Stability and exponential stability in linear viscoelasticity, Milan J. Math., 77 (2009), 333-360.  doi: 10.1007/s00032-009-0098-3.

[24]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[25]

M. Pellicer and J. Solà-Morales, Optimal scalar products in the Moore–Gibson–Thompson equation, Evol. Eqs. and Control Theory, 8 (2019), 203-220.  doi: 10.3934/eect.2019011.

[26]

M. Pellicer and B. Said-Houari, Wellposedness and decay rates for the Cauchy problem of the Moore–Gibson–Thompson equation arising in high intensity ultrasound, Appl. Math. Optim., 80 (2019), 2017,447–478, https://arXiv.org/abs/1603.04270. doi: 10.1007/s00245-017-9471-8.

[27]

M. Pellicer and B. Said-Houari, On the Cauchy problem for the standard linear solid model with heat conduction: Fourier versus Cattaneo, math. Appl., 2019, 1–39, https://arXiv.org/abs/1903.10181.

[28]

R. Racke and B. Said-Houari, Decay Rates for semilinear viscoelastic system in weighted spaces, Journal of Hyperbolic Differential Equations, 9 (2012), 67-103.  doi: 10.1142/S0219891612500026.

[29]

R. Racke and B. Said-Houari, Global well-posedness of the Cauchy problem for the Jordan–Moore–Gibson–Thompson equation, Konstanzer Schriften in Mathematik, 382 (2019), 127.

[30]

B. E. TreebyJ. JiriB. T. R. Alistair and P. Cox, Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method, The Journal of the Acoustical Society of America, 131 (2012), 4324-4336.  doi: 10.1121/1.4712021.

show all references

References:
[1]

M. O. Alves, A. H. Caixeta, M. A. Jorge Silva and J. H. Rodrigues, Moore–Gibson–Thompson equation with memory in a history framework: a semigroup approach, Z. Angew. Math. Phys., 69 (2018), Paper No. 106, 19 pp. doi: 10.1007/s00033-018-0999-5.

[2]

M. S. AlvesC. BuriolM. V. FerreiraJ. E. Muñoz RiveraM. Sepúlveda and O. Vera, Asymptotic behaviour for the vibrations modeled by the standard linear solid model with a thermal effect, J. Math. Anal. Appl., 399 (2013), 472-479.  doi: 10.1016/j.jmaa.2012.10.019.

[3]

J. A. ConejeroC. Lizama and F. Ródenas, Chaotic behaviour of the solutions of the Moore-Gibson-Thompson equation, Appl. Math. and Inf. Sciences., 9 (2015), 2233-2238. 

[4]

M. ContiS. Gatti and V. Patta, Decay rates of Volterra equations on $\mathbb{R}^{N}$, Central European Journal of Mathematics, 5 (2007), 720-732.  doi: 10.2478/s11533-007-0024-2.

[5]

F. Coulouvrat, On the equations of nonlinear acoustics, J. Acoustique, 5 (1992), 321-359. 

[6]

C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rtion. Mech. Anal., 37 (1970), 297-308.  doi: 10.1007/BF00251609.

[7]

F. Dell'Oro and V. Pata, On the Moore–Gibson–Thompson equation and its relation to linear viscoelasticity, Appl. Math. Optim., 76 (2017), 641-655.  doi: 10.1007/s00245-016-9365-1.

[8]

F. Dell'OroI. Lasiecka and V. Pata, The Moore–Gibson–Thompson equation with memory in the critical case, J. Differential Equations, 261 (2016), 4188-4222.  doi: 10.1016/j.jde.2016.06.025.

[9]

G. C. Gorain, Stabilization for the vibrations modeled by the 'standard linear model' of viscoelasticity, Proc. Indian Acad. Sci. Math. Sci., 120 (2010), 495-506.  doi: 10.1007/s12044-010-0038-8.

[10]

A. Guessmia and S. A. Messaoudi, A new approach to the stability of an abstract system in the presence of infinite history, J. Math. Anal. Appl., 416 (2014), 212-228.  doi: 10.1016/j.jmaa.2014.02.030.

[11]

P. M. Jordan, Second-sound phenomena in inviscid, thermally relaxing gases, Discrete and Continuous Dynamical Systems B, 19 (2014), 2189-2205.  doi: 10.3934/dcdsb.2014.19.2189.

[12]

B. KaltenbacherI. Lasiecka and R. Marchand, Wellposedness and exponential decay rates for the Moore–Gibson–Thompson equation arising in high intensity ultrasound, Control and Cybernetics., 40 (2011), 971-988. 

[13]

B. Kaltenbacher, I. Lasiecka and M. K. Pospieszalska, Well-posedness and exponential decay of the energy in the nonlinear Jordan-Moore-Gibson-Thompson equation arising in high intensity ultrasound, Math. Models Methods Appl. Sci., 22 (2012), 1250035(1-34). doi: 10.1142/S0218202512500352.

[14]

B. Kaltenbacher, Mathematics of non linear acoustics, Evol Equ Control Theory., 4 (2015), 447-491.  doi: 10.3934/eect.2015.4.447.

[15]

V. P. Kuznetsov, Equations of nonlinear acoustics, Sov. Phys. Acoust., 16 (1971), 467.

[16]

I. Lasiecka, Global solvability of Moore–Gibson–Thompson equation with memory arising in nonlinear acoustics, J. Evol. Equ., 17 (2017), 411-441.  doi: 10.1007/s00028-016-0353-3.

[17]

I. Lasiecka and X. Wang, Moore–Gibson–Thompson equation with memory, part Ⅰ: exponential decay of energy, Z. Angew. Math. Phys., 67 (2016), Art. 17, 23 pp. doi: 10.1007/s00033-015-0597-8.

[18]

I. Lasiecka and X. Wang, Moore–Gibson–Thompson equation with memory, part Ⅱ: General decay of energy, J. Differerential Equations., 259 (2015), 7610-7635.  doi: 10.1016/j.jde.2015.08.052.

[19]

W. Liu, Z. Chen and D. Chen, New general decay results for a Moore–Gibson–Thompson equation with memory, Applicable Analysis, 2019, 1–20. doi: 10.1080/00036811.2019.1577390.

[20]

E. Mainini and G. Mola, Exponential and polynomial decay for first order linear volterra evolution equations, Postdoctoral Fellowship of the Japan Society for the promotion of Sciences, 67 (2009), 93-111.  doi: 10.1090/S0033-569X-09-01145-X.

[21]

R. MarchandT. McDevitt and R. Triggiani, An abstract semigroup approach to the third-order Moore–Gibson–Thompson partial differential equation arising in high-intensity ultrasound: structural decomposition, spectral analysis, exponential stability, Math. Methods. Appl. Sci., 35 (2012), 1896-1929.  doi: 10.1002/mma.1576.

[22]

S. A. Messaoudi and W. Al-Khulaifi, General and optimal decay for a quasilinear viscoelastic equation, Applied Mathematics Letters (ELSEVIER), 66 (2017), 16-22.  doi: 10.1016/j.aml.2016.11.002.

[23]

V. Pata, Stability and exponential stability in linear viscoelasticity, Milan J. Math., 77 (2009), 333-360.  doi: 10.1007/s00032-009-0098-3.

[24]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[25]

M. Pellicer and J. Solà-Morales, Optimal scalar products in the Moore–Gibson–Thompson equation, Evol. Eqs. and Control Theory, 8 (2019), 203-220.  doi: 10.3934/eect.2019011.

[26]

M. Pellicer and B. Said-Houari, Wellposedness and decay rates for the Cauchy problem of the Moore–Gibson–Thompson equation arising in high intensity ultrasound, Appl. Math. Optim., 80 (2019), 2017,447–478, https://arXiv.org/abs/1603.04270. doi: 10.1007/s00245-017-9471-8.

[27]

M. Pellicer and B. Said-Houari, On the Cauchy problem for the standard linear solid model with heat conduction: Fourier versus Cattaneo, math. Appl., 2019, 1–39, https://arXiv.org/abs/1903.10181.

[28]

R. Racke and B. Said-Houari, Decay Rates for semilinear viscoelastic system in weighted spaces, Journal of Hyperbolic Differential Equations, 9 (2012), 67-103.  doi: 10.1142/S0219891612500026.

[29]

R. Racke and B. Said-Houari, Global well-posedness of the Cauchy problem for the Jordan–Moore–Gibson–Thompson equation, Konstanzer Schriften in Mathematik, 382 (2019), 127.

[30]

B. E. TreebyJ. JiriB. T. R. Alistair and P. Cox, Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method, The Journal of the Acoustical Society of America, 131 (2012), 4324-4336.  doi: 10.1121/1.4712021.

[1]

Wenjun Liu, Zhijing Chen, Zhiyu Tu. New general decay result for a fourth-order Moore-Gibson-Thompson equation with memory. Electronic Research Archive, 2020, 28 (1) : 433-457. doi: 10.3934/era.2020025

[2]

Luciano Abadías, Carlos Lizama, Marina Murillo-Arcila. Hölder regularity for the Moore-Gibson-Thompson equation with infinite delay. Communications on Pure and Applied Analysis, 2018, 17 (1) : 243-265. doi: 10.3934/cpaa.2018015

[3]

Arthur Henrique Caixeta, Irena Lasiecka, Valéria Neves Domingos Cavalcanti. On long time behavior of Moore-Gibson-Thompson equation with molecular relaxation. Evolution Equations and Control Theory, 2016, 5 (4) : 661-676. doi: 10.3934/eect.2016024

[4]

Wenhui Chen, Alessandro Palmieri. Nonexistence of global solutions for the semilinear Moore – Gibson – Thompson equation in the conservative case. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5513-5540. doi: 10.3934/dcds.2020236

[5]

Marta Pellicer, Joan Solà-Morales. Optimal scalar products in the Moore-Gibson-Thompson equation. Evolution Equations and Control Theory, 2019, 8 (1) : 203-220. doi: 10.3934/eect.2019011

[6]

Wenhui Chen, Alessandro Palmieri. A blow – up result for the semilinear Moore – Gibson – Thompson equation with nonlinearity of derivative type in the conservative case. Evolution Equations and Control Theory, 2021, 10 (4) : 673-687. doi: 10.3934/eect.2020085

[7]

Belkacem Said-Houari. Global well-posedness of the Cauchy problem for the Jordan–Moore–Gibson–Thompson equation with arbitrarily large higher-order Sobolev norms. Discrete and Continuous Dynamical Systems, 2022, 42 (9) : 4615-4635. doi: 10.3934/dcds.2022066

[8]

Sandra Carillo. Materials with memory: Free energies & solution exponential decay. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1235-1248. doi: 10.3934/cpaa.2010.9.1235

[9]

Gustavo Alberto Perla Menzala, Julian Moises Sejje Suárez. A thermo piezoelectric model: Exponential decay of the total energy. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5273-5292. doi: 10.3934/dcds.2013.33.5273

[10]

Sen Ming, Han Yang, Xiongmei Fan. Formation of singularities of solutions to the Cauchy problem for semilinear Moore-Gibson-Thompson equations. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1773-1792. doi: 10.3934/cpaa.2022046

[11]

Barbara Kaltenbacher, Irena Lasiecka. Global existence and exponential decay rates for the Westervelt equation. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 503-523. doi: 10.3934/dcdss.2009.2.503

[12]

Stéphane Gerbi, Belkacem Said-Houari. Exponential decay for solutions to semilinear damped wave equation. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 559-566. doi: 10.3934/dcdss.2012.5.559

[13]

Rachid Assel, Mohamed Ghazel. Energy decay for the damped wave equation on an unbounded network. Evolution Equations and Control Theory, 2018, 7 (3) : 335-351. doi: 10.3934/eect.2018017

[14]

Priyanjana M. N. Dharmawardane. Decay property of regularity-loss type for quasi-linear hyperbolic systems of viscoelasticity. Conference Publications, 2013, 2013 (special) : 197-206. doi: 10.3934/proc.2013.2013.197

[15]

Peng Sun. Exponential decay of Lebesgue numbers. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3773-3785. doi: 10.3934/dcds.2012.32.3773

[16]

Yongqin Liu, Shuichi Kawashima. Decay property for a plate equation with memory-type dissipation. Kinetic and Related Models, 2011, 4 (2) : 531-547. doi: 10.3934/krm.2011.4.531

[17]

Le Thi Phuong Ngoc, Nguyen Thanh Long. Existence and exponential decay for a nonlinear wave equation with nonlocal boundary conditions. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2001-2029. doi: 10.3934/cpaa.2013.12.2001

[18]

Moez Daoulatli. Energy decay rates for solutions of the wave equation with linear damping in exterior domain. Evolution Equations and Control Theory, 2016, 5 (1) : 37-59. doi: 10.3934/eect.2016.5.37

[19]

Mohammad A. Rammaha, Daniel Toundykov, Zahava Wilstein. Global existence and decay of energy for a nonlinear wave equation with $p$-Laplacian damping. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4361-4390. doi: 10.3934/dcds.2012.32.4361

[20]

Romain Aimino, Huyi Hu, Matthew Nicol, Andrei Török, Sandro Vaienti. Polynomial loss of memory for maps of the interval with a neutral fixed point. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 793-806. doi: 10.3934/dcds.2015.35.793

2021 Impact Factor: 1.169

Metrics

  • PDF downloads (502)
  • HTML views (523)
  • Cited by (4)

Other articles
by authors

[Back to Top]