doi: 10.3934/eect.2020075

A remark on the attainable set of the Schrödinger equation

CNRS & Laboratoire interdisciplinaire Carnot de Bourgogne, UMR 6303 Université de Bourgogne Franche-Comté, 9 Av. A. Savary, 21078 Dijon Cedex, France

Received  November 2019 Revised  April 2020 Published  June 2020

We discuss the set of wavefunctions $ \psi_V(t) $ that can be obtained from a given initial condition $ \psi_0 $ by applying the flow of the Schrödinger operator $ -\Delta + V(t,x) $ and varying the potential $ V(t,x) $. We show that this set has empty interior, both as a subset of the sphere in $ L^2( \mathbb{R}^d) $ and as a set of trajectories.

Citation: Jonas Lampart. A remark on the attainable set of the Schrödinger equation. Evolution Equations & Control Theory, doi: 10.3934/eect.2020075
References:
[1]

J. M. BallJ. E. Marsden and M. Slemrod, Controllability for distributed bilinear systems, SIAM J. Control Optim., 20 (1982), 575-597.  doi: 10.1137/0320042.  Google Scholar

[2]

K. Beauchard and J.-M. Coron, Controllability of a quantum particle in a moving potential well, J. Funct. Anal., 232 (2006), 328-389.  doi: 10.1016/j.jfa.2005.03.021.  Google Scholar

[3]

K. Beauchard and C. Laurent, Local controllability of 1D linear and nonlinear Schrödinger equations with bilinear control, J. Math. Pures Appl., 94 (2010), 520-554.  doi: 10.1016/j.matpur.2010.04.001.  Google Scholar

[4]

K. Beauchard and C. Laurent, Local exact controllability of the 2D-Schrödinger-Poisson system, J. École Polytechnique, 4 (2016), 287–336. doi: 10.5802/jep.44.  Google Scholar

[5]

N. Boussaïd, M. Caponigro and T. Chambrion, Regular propagators of bilinear quantum systems, J. Funct. Anal., 278 (2020), 108412, 66 pp, arXiv: 1406.7847. doi: 10.1016/j.jfa.2019.108412.  Google Scholar

[6]

N. Boussaid, M. Caponigro and T. Chambrion, On the Ball–Marsden–Slemrod obstruction in bilinear control systems, 2019 IEEE 58th Conference on Decision and Control (CDC), 2019, arXiv: 1903.05846. doi: 10.1109/CDC40024.2019.9029511.  Google Scholar

[7]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext. Springer, New York, 2011.  Google Scholar

[8]

T. Chambrion, P. Mason, M. Sigalotti and U. Boscain, Controllability of the discrete-spectrum Schrödinger equation driven by an external field, Ann. Inst. H. Poincaré C, 26 (2009), 329–349. doi: 10.1016/j.anihpc.2008.05.001.  Google Scholar

[9]

T. Chambrion and L. Thomann, A topological obstruction to the controllability of nonlinear wave equations with bilinear control term, SIAM J. Control Optim., 57 (2019), 2315-2327.  doi: 10.1137/18M1215207.  Google Scholar

[10]

T. Chambrion and L. Thomann, On the bilinear control of the Gross-Pitaevskii equation, Ann. Inst. H. Poincaré C, 37 (2020), 605–626. doi: 10.1016/j.anihpc.2020.01.001.  Google Scholar

[11]

J. Diestel and J. Uhl, Vector Measures, vol. 15 of Mathematical surveys, American Mathematical Society, 1977.  Google Scholar

[12]

S. Fournais, J. Lampart, M. Lewin and T. Ø. Sørensen, Coulomb potentials and Taylor expansions in time-dependent density-functional theory, Phys. Rev. A, 93 (2016), 062510. doi: 10.1103/PhysRevA.93.062510.  Google Scholar

[13]

R. L. FrankM. LewinE. H. Lieb and R. Seiringer, Strichartz inequality for orthonormal functions, J. Eur. Math. Soc., 16 (2014), 1507-1526.  doi: 10.4171/JEMS/467.  Google Scholar

[14]

S. Lang, Real and Functional Analysis, vol. 142 of Graduate Texts in Mathematics, 3rd edition, Springer, 1993. doi: 10.1007/978-1-4612-0897-6.  Google Scholar

[15]

P. Mason and M. Sigalotti, Generic controllability properties for the bilinear Schrödinger equation, Commun. Partial Diff. Eq., 35 (2010), 685-706.  doi: 10.1080/03605300903540919.  Google Scholar

[16]

V. Nersesyan, Global approximate controllability for Schrödinger equation in higher Sobolev norms and applications, Ann. Inst. H. Poincaré C, 27 (2010), 901–915. doi: 10.1016/j.anihpc.2010.01.004.  Google Scholar

[17]

I. Rodnianski and T. Tao, Effective limiting absorption principles, and applications, Commun. Math. Phys., 333 (2015), 1-95.  doi: 10.1007/s00220-014-2177-8.  Google Scholar

[18]

E. Runge and E. K. Gross, Density-functional theory for time-dependent systems, Phys. Rev. Lett., 52 (1984), 997. doi: 10.1103/PhysRevLett.52.997.  Google Scholar

[19]

G. Turinici, On the controllability of bilinear quantum systems, in Mathematical Models and Methods for ab Initio Quantum Chemistry (eds. M. Defrancesci and C. Le Bris), vol. 74 of Lecture Notes in Chemistry, Springer, 2000, 75–92. doi: 10.1007/978-3-642-57237-1_4.  Google Scholar

show all references

References:
[1]

J. M. BallJ. E. Marsden and M. Slemrod, Controllability for distributed bilinear systems, SIAM J. Control Optim., 20 (1982), 575-597.  doi: 10.1137/0320042.  Google Scholar

[2]

K. Beauchard and J.-M. Coron, Controllability of a quantum particle in a moving potential well, J. Funct. Anal., 232 (2006), 328-389.  doi: 10.1016/j.jfa.2005.03.021.  Google Scholar

[3]

K. Beauchard and C. Laurent, Local controllability of 1D linear and nonlinear Schrödinger equations with bilinear control, J. Math. Pures Appl., 94 (2010), 520-554.  doi: 10.1016/j.matpur.2010.04.001.  Google Scholar

[4]

K. Beauchard and C. Laurent, Local exact controllability of the 2D-Schrödinger-Poisson system, J. École Polytechnique, 4 (2016), 287–336. doi: 10.5802/jep.44.  Google Scholar

[5]

N. Boussaïd, M. Caponigro and T. Chambrion, Regular propagators of bilinear quantum systems, J. Funct. Anal., 278 (2020), 108412, 66 pp, arXiv: 1406.7847. doi: 10.1016/j.jfa.2019.108412.  Google Scholar

[6]

N. Boussaid, M. Caponigro and T. Chambrion, On the Ball–Marsden–Slemrod obstruction in bilinear control systems, 2019 IEEE 58th Conference on Decision and Control (CDC), 2019, arXiv: 1903.05846. doi: 10.1109/CDC40024.2019.9029511.  Google Scholar

[7]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext. Springer, New York, 2011.  Google Scholar

[8]

T. Chambrion, P. Mason, M. Sigalotti and U. Boscain, Controllability of the discrete-spectrum Schrödinger equation driven by an external field, Ann. Inst. H. Poincaré C, 26 (2009), 329–349. doi: 10.1016/j.anihpc.2008.05.001.  Google Scholar

[9]

T. Chambrion and L. Thomann, A topological obstruction to the controllability of nonlinear wave equations with bilinear control term, SIAM J. Control Optim., 57 (2019), 2315-2327.  doi: 10.1137/18M1215207.  Google Scholar

[10]

T. Chambrion and L. Thomann, On the bilinear control of the Gross-Pitaevskii equation, Ann. Inst. H. Poincaré C, 37 (2020), 605–626. doi: 10.1016/j.anihpc.2020.01.001.  Google Scholar

[11]

J. Diestel and J. Uhl, Vector Measures, vol. 15 of Mathematical surveys, American Mathematical Society, 1977.  Google Scholar

[12]

S. Fournais, J. Lampart, M. Lewin and T. Ø. Sørensen, Coulomb potentials and Taylor expansions in time-dependent density-functional theory, Phys. Rev. A, 93 (2016), 062510. doi: 10.1103/PhysRevA.93.062510.  Google Scholar

[13]

R. L. FrankM. LewinE. H. Lieb and R. Seiringer, Strichartz inequality for orthonormal functions, J. Eur. Math. Soc., 16 (2014), 1507-1526.  doi: 10.4171/JEMS/467.  Google Scholar

[14]

S. Lang, Real and Functional Analysis, vol. 142 of Graduate Texts in Mathematics, 3rd edition, Springer, 1993. doi: 10.1007/978-1-4612-0897-6.  Google Scholar

[15]

P. Mason and M. Sigalotti, Generic controllability properties for the bilinear Schrödinger equation, Commun. Partial Diff. Eq., 35 (2010), 685-706.  doi: 10.1080/03605300903540919.  Google Scholar

[16]

V. Nersesyan, Global approximate controllability for Schrödinger equation in higher Sobolev norms and applications, Ann. Inst. H. Poincaré C, 27 (2010), 901–915. doi: 10.1016/j.anihpc.2010.01.004.  Google Scholar

[17]

I. Rodnianski and T. Tao, Effective limiting absorption principles, and applications, Commun. Math. Phys., 333 (2015), 1-95.  doi: 10.1007/s00220-014-2177-8.  Google Scholar

[18]

E. Runge and E. K. Gross, Density-functional theory for time-dependent systems, Phys. Rev. Lett., 52 (1984), 997. doi: 10.1103/PhysRevLett.52.997.  Google Scholar

[19]

G. Turinici, On the controllability of bilinear quantum systems, in Mathematical Models and Methods for ab Initio Quantum Chemistry (eds. M. Defrancesci and C. Le Bris), vol. 74 of Lecture Notes in Chemistry, Springer, 2000, 75–92. doi: 10.1007/978-3-642-57237-1_4.  Google Scholar

[1]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[2]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[3]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[4]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[5]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[6]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[7]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[8]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[9]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[10]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[11]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[12]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[13]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

[14]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[15]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[16]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[17]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[18]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[19]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[20]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (27)
  • HTML views (174)
  • Cited by (0)

Other articles
by authors

[Back to Top]