September  2021, 10(3): 511-518. doi: 10.3934/eect.2020078

Conditional regularity for the 3D Navier-Stokes equations in terms of the middle eigenvalue of the strain tensor

Key Laboratory of Computing and Stochastic Mathematics (Ministry of Education), School of Mathematics and Statistics, Hunan Normal University, Changsha, Hunan 410081, China

* Corresponding author: Fan Wu

Received  April 2020 Revised  April 2020 Published  September 2021 Early access  June 2020

In this paper, we consider the regularity criteria for the 3D incompressible Navier-Stokes equations involving the middle eigenvalue ($ \lambda_2 $) of the strain tensor. It is proved that if $ \lambda^+_2 $ belongs to Multiplier space or Besov space, then the weak solution remains smooth on $ [0, T] $, where $ \lambda^{+}_2 = \max\{\lambda_2, 0\} $. These regularity conditions allows us to improve the result obtained by Miller [7].

Citation: Fan Wu. Conditional regularity for the 3D Navier-Stokes equations in terms of the middle eigenvalue of the strain tensor. Evolution Equations and Control Theory, 2021, 10 (3) : 511-518. doi: 10.3934/eect.2020078
References:
[1]

D. Chae, On the spectral dynamics of the deformation tensor and new a priori estimates for the 3D Euler equations, Communications in Mathematical Physics, 263 (2005), 789-801.  doi: 10.1007/s00220-005-1465-8.

[2]

H. B. Da Veiga, A new regularity class for the Navier-Stokes equations in $\mathbb{R}^n$, Chinese Ann. Math. Ser. B, 16 (1995), 407-412. 

[3]

B. Q. Dong and Z. M. Chen, Regularity criterion of weak solutions to the 3D Navier-Stokes equations via two velocity components, Journal of Mathematical Analysis and Applications, 338 (2008), 1-10.  doi: 10.1016/j.jmaa.2007.05.003.

[4]

B. Q. DongS. Gala and Z. M. Chen, On the regularity criteria of the 3D Navier-Stokes equations in critical spaces, Acta Mathematica Scientia, 31 (2011), 591-600.  doi: 10.1016/S0252-9602(11)60259-2.

[5]

L. Escauriaza and G. Seregin, $L_{3, \infty}$-solutions of the Navier-Stokes equations and backward uniqueness, Nonlinear Problems in Mathematical Physics & Related Topics Ⅱ, 2 (2002), 353-366. 

[6]

Z. G. GuoP. Kucera and Z. Skalák, Regularity criterion for solutions to the Navier-Stokes equations in the whole 3D space based on two vorticity components, Journal of Mathematical Analysis and Applications, 458 (2018), 755-766.  doi: 10.1016/j.jmaa.2017.09.029.

[7]

E. Miller, A regularity criterion for the Navier-Stokes equation involving only the middle eigenvalue of the strain tensor, Archive for Rational Mechanics and Analysis, 235 (2020), 99-139.  doi: 10.1007/s00205-019-01419-z.

[8]

J. Neustupa and P. Penel, Regularity of a weak solution to the Navier-Stokes equation in dependence on eigenvalues and eigenvectors of the rate of deformation tensor, Trends in Partial Differential Equations of Mathematical Physics. Birkhäuser Basel, 91 (2005), 197-212.  doi: 10.1007/3-7643-7317-2_15.

[9]

J. Neustupa and P. Penel, On regularity of a weak solution to the Navier-Stokes equation with generalized impermeability boundary conditions., Nonlinear Analysis: Theory, Methods & Applications, 66 (2007), 1753-1769.  doi: 10.1016/j.na.2006.02.043.

[10]

J. Neustupa and P. Penel, On regularity of a weak solution to the Navier-Stokes equations with the generalized Navier Slip boundary conditions, Advances in Mathematical Physics, 2018 (2018), Art. ID 4617020, 7 pp. doi: 10.1155/2018/4617020.

[11]

G. Prodi, Un teorema di unicita per le equazioni di Navier-Stokes, Annali di Matematica pura ed Applicata, 48 (1959), 173-182.  doi: 10.1007/BF02410664.

[12]

P. Penel and M. Pokorny, Some new regularity criteria for the Navier-Stokes equations containing gradient of the velocity, Applications of Mathematics, 49 (2004), 483-493.  doi: 10.1023/B:APOM.0000048124.64244.7e.

[13]

J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations, Archive for Rational Mechanics and Analysis, 9 (1962), 187-195.  doi: 10.1007/BF00253344.

[14]

Z. Skalak, On the regularity of the solutions to the Navier-Stokes equations via the gradient of one velocity component., Nonlinear Analysis: Theory, Methods & Applications, 104 (2014), 84-89.  doi: 10.1016/j.na.2014.03.018.

[15]

F. Wu, Blowup criterion via only the middle eigenvalue of the strain tensor in anisotropic Lebesgue spaces to the 3D double-diffusive convection equations, Journal of Mathematical Fluid Mechanics, 22 (2020), Art. 24, 9 pp. doi: 10.1007/s00021-020-0483-9.

[16]

X. C. Zhang, A regularity criterion for the solutions of 3D Navier-Stokes equations, Journal of Mathematical Analysis and Applications, 346 (2008), 336-339.  doi: 10.1016/j.jmaa.2008.05.027.

[17]

Z. J. ZhangZ. A. YaoP. LiC. C. Guo and M. Lu, Two new regularity criteria for the 3D Navier-Stokes equations via two entries of the velocity gradient tensor, Acta Applicandae Mathematicae, 123 (2013), 43-52.  doi: 10.1007/s10440-012-9712-4.

[18]

Z. J. Zhang, A Serrin-type regularity criterion for the Navier-Stokes equations via one velocity component, Communications on Pure & Applied Analysis, 12 (2013), 117-124.  doi: 10.3934/cpaa.2013.12.117.

[19]

Z. F. Zhang and Q. L. Chen, Regularity criterion via two components of vorticity on weak solutions to the Navier-Stokes equations in $\mathbb{R}^3$, Journal of Differential Equations, 216 (2015), 470-481. 

show all references

References:
[1]

D. Chae, On the spectral dynamics of the deformation tensor and new a priori estimates for the 3D Euler equations, Communications in Mathematical Physics, 263 (2005), 789-801.  doi: 10.1007/s00220-005-1465-8.

[2]

H. B. Da Veiga, A new regularity class for the Navier-Stokes equations in $\mathbb{R}^n$, Chinese Ann. Math. Ser. B, 16 (1995), 407-412. 

[3]

B. Q. Dong and Z. M. Chen, Regularity criterion of weak solutions to the 3D Navier-Stokes equations via two velocity components, Journal of Mathematical Analysis and Applications, 338 (2008), 1-10.  doi: 10.1016/j.jmaa.2007.05.003.

[4]

B. Q. DongS. Gala and Z. M. Chen, On the regularity criteria of the 3D Navier-Stokes equations in critical spaces, Acta Mathematica Scientia, 31 (2011), 591-600.  doi: 10.1016/S0252-9602(11)60259-2.

[5]

L. Escauriaza and G. Seregin, $L_{3, \infty}$-solutions of the Navier-Stokes equations and backward uniqueness, Nonlinear Problems in Mathematical Physics & Related Topics Ⅱ, 2 (2002), 353-366. 

[6]

Z. G. GuoP. Kucera and Z. Skalák, Regularity criterion for solutions to the Navier-Stokes equations in the whole 3D space based on two vorticity components, Journal of Mathematical Analysis and Applications, 458 (2018), 755-766.  doi: 10.1016/j.jmaa.2017.09.029.

[7]

E. Miller, A regularity criterion for the Navier-Stokes equation involving only the middle eigenvalue of the strain tensor, Archive for Rational Mechanics and Analysis, 235 (2020), 99-139.  doi: 10.1007/s00205-019-01419-z.

[8]

J. Neustupa and P. Penel, Regularity of a weak solution to the Navier-Stokes equation in dependence on eigenvalues and eigenvectors of the rate of deformation tensor, Trends in Partial Differential Equations of Mathematical Physics. Birkhäuser Basel, 91 (2005), 197-212.  doi: 10.1007/3-7643-7317-2_15.

[9]

J. Neustupa and P. Penel, On regularity of a weak solution to the Navier-Stokes equation with generalized impermeability boundary conditions., Nonlinear Analysis: Theory, Methods & Applications, 66 (2007), 1753-1769.  doi: 10.1016/j.na.2006.02.043.

[10]

J. Neustupa and P. Penel, On regularity of a weak solution to the Navier-Stokes equations with the generalized Navier Slip boundary conditions, Advances in Mathematical Physics, 2018 (2018), Art. ID 4617020, 7 pp. doi: 10.1155/2018/4617020.

[11]

G. Prodi, Un teorema di unicita per le equazioni di Navier-Stokes, Annali di Matematica pura ed Applicata, 48 (1959), 173-182.  doi: 10.1007/BF02410664.

[12]

P. Penel and M. Pokorny, Some new regularity criteria for the Navier-Stokes equations containing gradient of the velocity, Applications of Mathematics, 49 (2004), 483-493.  doi: 10.1023/B:APOM.0000048124.64244.7e.

[13]

J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations, Archive for Rational Mechanics and Analysis, 9 (1962), 187-195.  doi: 10.1007/BF00253344.

[14]

Z. Skalak, On the regularity of the solutions to the Navier-Stokes equations via the gradient of one velocity component., Nonlinear Analysis: Theory, Methods & Applications, 104 (2014), 84-89.  doi: 10.1016/j.na.2014.03.018.

[15]

F. Wu, Blowup criterion via only the middle eigenvalue of the strain tensor in anisotropic Lebesgue spaces to the 3D double-diffusive convection equations, Journal of Mathematical Fluid Mechanics, 22 (2020), Art. 24, 9 pp. doi: 10.1007/s00021-020-0483-9.

[16]

X. C. Zhang, A regularity criterion for the solutions of 3D Navier-Stokes equations, Journal of Mathematical Analysis and Applications, 346 (2008), 336-339.  doi: 10.1016/j.jmaa.2008.05.027.

[17]

Z. J. ZhangZ. A. YaoP. LiC. C. Guo and M. Lu, Two new regularity criteria for the 3D Navier-Stokes equations via two entries of the velocity gradient tensor, Acta Applicandae Mathematicae, 123 (2013), 43-52.  doi: 10.1007/s10440-012-9712-4.

[18]

Z. J. Zhang, A Serrin-type regularity criterion for the Navier-Stokes equations via one velocity component, Communications on Pure & Applied Analysis, 12 (2013), 117-124.  doi: 10.3934/cpaa.2013.12.117.

[19]

Z. F. Zhang and Q. L. Chen, Regularity criterion via two components of vorticity on weak solutions to the Navier-Stokes equations in $\mathbb{R}^3$, Journal of Differential Equations, 216 (2015), 470-481. 

[1]

Jishan Fan, Yasuhide Fukumoto, Yong Zhou. Logarithmically improved regularity criteria for the generalized Navier-Stokes and related equations. Kinetic and Related Models, 2013, 6 (3) : 545-556. doi: 10.3934/krm.2013.6.545

[2]

Zijin Li, Xinghong Pan. Some Remarks on regularity criteria of Axially symmetric Navier-Stokes equations. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1333-1350. doi: 10.3934/cpaa.2019064

[3]

Linglong Du, Haitao Wang. Pointwise wave behavior of the Navier-Stokes equations in half space. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1349-1363. doi: 10.3934/dcds.2018055

[4]

Daoyuan Fang, Chenyin Qian. Regularity criterion for 3D Navier-Stokes equations in Besov spaces. Communications on Pure and Applied Analysis, 2014, 13 (2) : 585-603. doi: 10.3934/cpaa.2014.13.585

[5]

Wendong Wang, Liqun Zhang, Zhifei Zhang. On the interior regularity criteria of the 3-D navier-stokes equations involving two velocity components. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2609-2627. doi: 10.3934/dcds.2018110

[6]

Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure and Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747

[7]

Igor Kukavica. On regularity for the Navier-Stokes equations in Morrey spaces. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1319-1328. doi: 10.3934/dcds.2010.26.1319

[8]

Igor Kukavica. On partial regularity for the Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 717-728. doi: 10.3934/dcds.2008.21.717

[9]

Ling-Bing He, Li Xu. On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3489-3530. doi: 10.3934/dcds.2021005

[10]

Yi Zhou, Zhen Lei. Logarithmically improved criteria for Euler and Navier-Stokes equations. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2715-2719. doi: 10.3934/cpaa.2013.12.2715

[11]

Patrick Penel, Milan Pokorný. Improvement of some anisotropic regularity criteria for the Navier--Stokes equations. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1401-1407. doi: 10.3934/dcdss.2013.6.1401

[12]

Baoquan Yuan, Xiao Li. Blow-up criteria of smooth solutions to the three-dimensional micropolar fluid equations in Besov space. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 2167-2179. doi: 10.3934/dcdss.2016090

[13]

Teng Wang, Yi Wang. Large-time behaviors of the solution to 3D compressible Navier-Stokes equations in half space with Navier boundary conditions. Communications on Pure and Applied Analysis, 2021, 20 (7&8) : 2811-2838. doi: 10.3934/cpaa.2021080

[14]

Reinhard Farwig, Paul Felix Riechwald. Regularity criteria for weak solutions of the Navier-Stokes system in general unbounded domains. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 157-172. doi: 10.3934/dcdss.2016.9.157

[15]

Hi Jun Choe, Bataa Lkhagvasuren, Minsuk Yang. Wellposedness of the Keller-Segel Navier-Stokes equations in the critical Besov spaces. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2453-2464. doi: 10.3934/cpaa.2015.14.2453

[16]

Chongsheng Cao. Sufficient conditions for the regularity to the 3D Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1141-1151. doi: 10.3934/dcds.2010.26.1141

[17]

Hongjie Dong, Kunrui Wang. Interior and boundary regularity for the Navier-Stokes equations in the critical Lebesgue spaces. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5289-5323. doi: 10.3934/dcds.2020228

[18]

Xuanji Jia, Zaihong Jiang. An anisotropic regularity criterion for the 3D Navier-Stokes equations. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1299-1306. doi: 10.3934/cpaa.2013.12.1299

[19]

Keyan Wang. On global regularity of incompressible Navier-Stokes equations in $\mathbf R^3$. Communications on Pure and Applied Analysis, 2009, 8 (3) : 1067-1072. doi: 10.3934/cpaa.2009.8.1067

[20]

Hui Chen, Daoyuan Fang, Ting Zhang. Regularity of 3D axisymmetric Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 1923-1939. doi: 10.3934/dcds.2017081

2020 Impact Factor: 1.081

Metrics

  • PDF downloads (335)
  • HTML views (475)
  • Cited by (1)

Other articles
by authors

[Back to Top]