• Previous Article
    Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains
  • EECT Home
  • This Issue
  • Next Article
    $ (\omega,\mathbb{T}) $-periodic solutions of impulsive evolution equations
doi: 10.3934/eect.2020079

Funnel Control for boundary control systems

1. 

University of Hamburg Bundesstraße 55 20146 Hamburg Germany

2. 

University of Twente P.O. Box 217 7500AE Enschede The Netherlands

* Corresponding author: Marc Puche

Received  March 2019 Revised  June 2020 Published  July 2020

We study a nonlinear, non-autonomous feedback controller applied to boundary control systems. Our aim is to track a given reference signal with prescribed performance. Existence and uniqueness of solutions to the resulting closed-loop system is proved by using nonlinear operator theory. We apply our results to both hyperbolic and parabolic equations.

Citation: Marc Puche, Timo Reis, Felix L. Schwenninger. Funnel Control for boundary control systems. Evolution Equations & Control Theory, doi: 10.3934/eect.2020079
References:
[1] R. Adams, Sobolev Spaces, Pure and Applied Mathematics, 65, Academic press, New York, London, 1975.   Google Scholar
[2]

H. Alt, Linear Functional Analysis, Universitext, Springer-Verlag, London, 2016. doi: 10.1007/978-1-4471-7280-2.  Google Scholar

[3]

W. Arendt, R. Chill, C. Seifert, H. Vogt and J. Voigt, Form methods for evolution equations, and applications, 2015, Available at https://www.mat.tuhh.de/veranstaltungen/isem18/pdf/LectureNotes.pdf. Google Scholar

[4]

W. Arendt and A. ert Elst, From forms to semigroups, in Spectral Theory, Mathematical System Theory, Evolution Equations, Differential and Difference Equations (eds. W. Arendt, J. A. Ball, J. Behrndt, K.-H. Förster, V. Mehrmann and C. Trunk), Operator Theory: Advances and Applications, 221, Birkhäuser, Basel, Switzerland, 2012, 47–69. doi: 10.1007/978-3-0348-0297-0_4.  Google Scholar

[5]

B. Augner, Stabilisation of Infinite-Dimensional Port-Hamiltonian Systems via Dissipative Boundary Feedback, Ph.D thesis, Bergische Universität Wuppertal, 2016. Google Scholar

[6]

B. Augner, Well-posedness and stability of infinite-dimensional linear port-Hamiltonian systems with nonlinear boundary feedback, SIAM J. Control Optim., 57 (2019), 1818-1844.  doi: 10.1137/15M1024901.  Google Scholar

[7]

B. Augner and B. Jacob, Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems, Evol. Equ. Control Theory, 3 (2014), 207-229.  doi: 10.3934/eect.2014.3.207.  Google Scholar

[8]

G. Bastin and J.-M. Coron, Stability and Boundary Stabilization of 1-D Hyperbolic Systems, Progress in Nonlinear Differential Equations and Their Applications: Subseries in Control, 88, Birkhäuser, 2016. doi: 10.1007/978-3-319-32062-5.  Google Scholar

[9]

T. BergerL. H. Hoang and T. Reis, Funnel control for nonlinear systems with known strict relative degree, Automatica, 87 (2018), 345-357.  doi: 10.1016/j.automatica.2017.10.017.  Google Scholar

[10]

T. Berger, M. Puche and F. Schwenninger, Funnel control for a moving water tank, 2019, Submitted for publication. Available at arXiv: https://arXiv.org/abs/1902.00586. Google Scholar

[11]

T. Berger, M. Puche and F. L. Schwenninger, Funnel control in the presence of infinite-dimensional internal dynamics, Systems Control Lett., 139 (2020), 104678. doi: 10.1016/j.sysconle.2020.104678.  Google Scholar

[12]

A. Cheng and K. Morris, Well-posedness of boundary control systems, SIAM J. Control Optim., 42 (2003), 1244-1265.  doi: 10.1137/S0363012902384916.  Google Scholar

[13]

J. Diestel and J. Uhl, Vector Measures, Mathematical surveys and monographs, 15, American Mathematical Society, Providence, RI, 1977.  Google Scholar

[14]

K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, 194, Springer, New York, 2000.  Google Scholar

[15]

V. Girault and P.-A. Raviart, Finite Element Approximation of the Navier-Stokes Equations, Lecture Notes in Mathematics, 749, Springer, Berlin Heidelberg, 1979.  Google Scholar

[16]

P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics, 24, Pitman Advanced Publishing Program, Boston, London, Melbourne, 1985.  Google Scholar

[17]

A. IlchmannE. Ryan and P. Townsend, Tracking with prescribed transient behaviour for non-linear systems of known relative degree, SIAM J. Control Optim., 46 (2007), 210-230.  doi: 10.1137/050641946.  Google Scholar

[18]

B. Jacob and H. Zwart, Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces, Operator Theory: Advances and Applications, 223, Birkhäuser, Basel, 2012. doi: 10.1007/978-3-0348-0399-1.  Google Scholar

[19]

T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan, 19 (1967), 508-520.  doi: 10.2969/jmsj/01940508.  Google Scholar

[20]

T. Kato, Perturbation Theory for Linear Operators, 2$^nd$ edition, Springer, Berlin Heidelberg, Germany, 1980.  Google Scholar

[21]

I. Miyadera, Nonlinear Semigroups, Translations of Mathematical Monographs, 109, American Mathematical Society, Providence, RI, 1992.  Google Scholar

[22]

T. Reis and T. Selig, Funnel control for the boundary controlled heat equation, SIAM J. Control Optim., 53 (2015), 547-574.  doi: 10.1137/140971567.  Google Scholar

[23]

E. P. RyanA. Ilchmann and C. J. Sangwin, Tracking with prescribed transient behaviour, ESAIM: Control, Optimisation and Calculus of Variations, 7 (2002), 471-493.  doi: 10.1051/cocv:2002064.  Google Scholar

[24]

T. SeligA. Ilchmann and C. Trunk, The Byrnes–Isidori form for infinite-dimensional systems, SIAM J. Control Optim., 54 (2016), 1504-1534.  doi: 10.1137/130942413.  Google Scholar

[25]

R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, American Mathematical Society, Providence, RI, 1996.  Google Scholar

[26] O. J. Staffans, Well-Posed Linear Systems, 103, Cambridge University Press, 2005.  doi: 10.1017/CBO9780511543197.  Google Scholar
[27]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts Basler Lehrbücher, Birkhäuser, Basel, 2009. doi: 10.1007/978-3-7643-8994-9.  Google Scholar

show all references

References:
[1] R. Adams, Sobolev Spaces, Pure and Applied Mathematics, 65, Academic press, New York, London, 1975.   Google Scholar
[2]

H. Alt, Linear Functional Analysis, Universitext, Springer-Verlag, London, 2016. doi: 10.1007/978-1-4471-7280-2.  Google Scholar

[3]

W. Arendt, R. Chill, C. Seifert, H. Vogt and J. Voigt, Form methods for evolution equations, and applications, 2015, Available at https://www.mat.tuhh.de/veranstaltungen/isem18/pdf/LectureNotes.pdf. Google Scholar

[4]

W. Arendt and A. ert Elst, From forms to semigroups, in Spectral Theory, Mathematical System Theory, Evolution Equations, Differential and Difference Equations (eds. W. Arendt, J. A. Ball, J. Behrndt, K.-H. Förster, V. Mehrmann and C. Trunk), Operator Theory: Advances and Applications, 221, Birkhäuser, Basel, Switzerland, 2012, 47–69. doi: 10.1007/978-3-0348-0297-0_4.  Google Scholar

[5]

B. Augner, Stabilisation of Infinite-Dimensional Port-Hamiltonian Systems via Dissipative Boundary Feedback, Ph.D thesis, Bergische Universität Wuppertal, 2016. Google Scholar

[6]

B. Augner, Well-posedness and stability of infinite-dimensional linear port-Hamiltonian systems with nonlinear boundary feedback, SIAM J. Control Optim., 57 (2019), 1818-1844.  doi: 10.1137/15M1024901.  Google Scholar

[7]

B. Augner and B. Jacob, Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems, Evol. Equ. Control Theory, 3 (2014), 207-229.  doi: 10.3934/eect.2014.3.207.  Google Scholar

[8]

G. Bastin and J.-M. Coron, Stability and Boundary Stabilization of 1-D Hyperbolic Systems, Progress in Nonlinear Differential Equations and Their Applications: Subseries in Control, 88, Birkhäuser, 2016. doi: 10.1007/978-3-319-32062-5.  Google Scholar

[9]

T. BergerL. H. Hoang and T. Reis, Funnel control for nonlinear systems with known strict relative degree, Automatica, 87 (2018), 345-357.  doi: 10.1016/j.automatica.2017.10.017.  Google Scholar

[10]

T. Berger, M. Puche and F. Schwenninger, Funnel control for a moving water tank, 2019, Submitted for publication. Available at arXiv: https://arXiv.org/abs/1902.00586. Google Scholar

[11]

T. Berger, M. Puche and F. L. Schwenninger, Funnel control in the presence of infinite-dimensional internal dynamics, Systems Control Lett., 139 (2020), 104678. doi: 10.1016/j.sysconle.2020.104678.  Google Scholar

[12]

A. Cheng and K. Morris, Well-posedness of boundary control systems, SIAM J. Control Optim., 42 (2003), 1244-1265.  doi: 10.1137/S0363012902384916.  Google Scholar

[13]

J. Diestel and J. Uhl, Vector Measures, Mathematical surveys and monographs, 15, American Mathematical Society, Providence, RI, 1977.  Google Scholar

[14]

K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, 194, Springer, New York, 2000.  Google Scholar

[15]

V. Girault and P.-A. Raviart, Finite Element Approximation of the Navier-Stokes Equations, Lecture Notes in Mathematics, 749, Springer, Berlin Heidelberg, 1979.  Google Scholar

[16]

P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics, 24, Pitman Advanced Publishing Program, Boston, London, Melbourne, 1985.  Google Scholar

[17]

A. IlchmannE. Ryan and P. Townsend, Tracking with prescribed transient behaviour for non-linear systems of known relative degree, SIAM J. Control Optim., 46 (2007), 210-230.  doi: 10.1137/050641946.  Google Scholar

[18]

B. Jacob and H. Zwart, Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces, Operator Theory: Advances and Applications, 223, Birkhäuser, Basel, 2012. doi: 10.1007/978-3-0348-0399-1.  Google Scholar

[19]

T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan, 19 (1967), 508-520.  doi: 10.2969/jmsj/01940508.  Google Scholar

[20]

T. Kato, Perturbation Theory for Linear Operators, 2$^nd$ edition, Springer, Berlin Heidelberg, Germany, 1980.  Google Scholar

[21]

I. Miyadera, Nonlinear Semigroups, Translations of Mathematical Monographs, 109, American Mathematical Society, Providence, RI, 1992.  Google Scholar

[22]

T. Reis and T. Selig, Funnel control for the boundary controlled heat equation, SIAM J. Control Optim., 53 (2015), 547-574.  doi: 10.1137/140971567.  Google Scholar

[23]

E. P. RyanA. Ilchmann and C. J. Sangwin, Tracking with prescribed transient behaviour, ESAIM: Control, Optimisation and Calculus of Variations, 7 (2002), 471-493.  doi: 10.1051/cocv:2002064.  Google Scholar

[24]

T. SeligA. Ilchmann and C. Trunk, The Byrnes–Isidori form for infinite-dimensional systems, SIAM J. Control Optim., 54 (2016), 1504-1534.  doi: 10.1137/130942413.  Google Scholar

[25]

R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, American Mathematical Society, Providence, RI, 1996.  Google Scholar

[26] O. J. Staffans, Well-Posed Linear Systems, 103, Cambridge University Press, 2005.  doi: 10.1017/CBO9780511543197.  Google Scholar
[27]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts Basler Lehrbücher, Birkhäuser, Basel, 2009. doi: 10.1007/978-3-7643-8994-9.  Google Scholar

Figure 1.  Error evolution in a funnel $ \mathcal{F}_{\varphi} $ with boundary $ \varphi(t)^{-1} $
Figure 2.  Left: Norm of the error within the funnel boundary followed by the two reference signals and the respective outputs. Right: Inputs obtained from the feedback law
Figure 3.  Performance funnel with the error, reference signal with the output of the closed-loop system and input of the closed-loop
Figure 4.  From left to right, top to bottom, the temperature of the plate for different increasing times
[1]

Miguel R. Nuñez-Chávez. Controllability under positive constraints for quasilinear parabolic PDEs. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021024

[2]

Imene Aicha Djebour, Takéo Takahashi, Julie Valein. Feedback stabilization of parabolic systems with input delay. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021027

[3]

Sergey E. Mikhailov, Carlos F. Portillo. Boundary-Domain Integral Equations equivalent to an exterior mixed BVP for the variable-viscosity compressible Stokes PDEs. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1103-1133. doi: 10.3934/cpaa.2021009

[4]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[5]

Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021009

[6]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[7]

Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3021-3029. doi: 10.3934/dcds.2020395

[8]

Filippo Giuliani. Transfers of energy through fast diffusion channels in some resonant PDEs on the circle. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021068

[9]

Wensheng Yin, Jinde Cao, Guoqiang Zheng. Further results on stabilization of stochastic differential equations with delayed feedback control under $ G $-expectation framework. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021072

[10]

Jamal Mrazgua, El Houssaine Tissir, Mohamed Ouahi. Frequency domain $ H_{\infty} $ control design for active suspension systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021036

[11]

Hao Li, Honglin Chen, Matt Haberland, Andrea L. Bertozzi, P. Jeffrey Brantingham. PDEs on graphs for semi-supervised learning applied to first-person activity recognition in body-worn video. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021039

[12]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[13]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

[14]

Masashi Wakaiki, Hideki Sano. Stability analysis of infinite-dimensional event-triggered and self-triggered control systems with Lipschitz perturbations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021021

[15]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[16]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[17]

Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021012

[18]

Françoise Demengel. Ergodic pairs for degenerate pseudo Pucci's fully nonlinear operators. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3465-3488. doi: 10.3934/dcds.2021004

[19]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2601-2617. doi: 10.3934/dcds.2020376

[20]

Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513

2019 Impact Factor: 0.953

Article outline

Figures and Tables

[Back to Top]