• Previous Article
    Bounds for lifespan of solutions to strongly damped semilinear wave equations with logarithmic sources and arbitrary initial energy
  • EECT Home
  • This Issue
  • Next Article
    Stabilization of higher order Schrödinger equations on a finite interval: Part I
doi: 10.3934/eect.2020079

Funnel Control for boundary control systems

1. 

University of Hamburg Bundesstraße 55 20146 Hamburg Germany

2. 

University of Twente P.O. Box 217 7500AE Enschede The Netherlands

* Corresponding author: Marc Puche

Received  March 2019 Revised  June 2020 Published  July 2020

We study a nonlinear, non-autonomous feedback controller applied to boundary control systems. Our aim is to track a given reference signal with prescribed performance. Existence and uniqueness of solutions to the resulting closed-loop system is proved by using nonlinear operator theory. We apply our results to both hyperbolic and parabolic equations.

Citation: Marc Puche, Timo Reis, Felix L. Schwenninger. Funnel Control for boundary control systems. Evolution Equations & Control Theory, doi: 10.3934/eect.2020079
References:
[1] R. Adams, Sobolev Spaces, Pure and Applied Mathematics, 65, Academic press, New York, London, 1975.   Google Scholar
[2]

H. Alt, Linear Functional Analysis, Universitext, Springer-Verlag, London, 2016. doi: 10.1007/978-1-4471-7280-2.  Google Scholar

[3]

W. Arendt, R. Chill, C. Seifert, H. Vogt and J. Voigt, Form methods for evolution equations, and applications, 2015, Available at https://www.mat.tuhh.de/veranstaltungen/isem18/pdf/LectureNotes.pdf. Google Scholar

[4]

W. Arendt and A. ert Elst, From forms to semigroups, in Spectral Theory, Mathematical System Theory, Evolution Equations, Differential and Difference Equations (eds. W. Arendt, J. A. Ball, J. Behrndt, K.-H. Förster, V. Mehrmann and C. Trunk), Operator Theory: Advances and Applications, 221, Birkhäuser, Basel, Switzerland, 2012, 47–69. doi: 10.1007/978-3-0348-0297-0_4.  Google Scholar

[5]

B. Augner, Stabilisation of Infinite-Dimensional Port-Hamiltonian Systems via Dissipative Boundary Feedback, Ph.D thesis, Bergische Universität Wuppertal, 2016. Google Scholar

[6]

B. Augner, Well-posedness and stability of infinite-dimensional linear port-Hamiltonian systems with nonlinear boundary feedback, SIAM J. Control Optim., 57 (2019), 1818-1844.  doi: 10.1137/15M1024901.  Google Scholar

[7]

B. Augner and B. Jacob, Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems, Evol. Equ. Control Theory, 3 (2014), 207-229.  doi: 10.3934/eect.2014.3.207.  Google Scholar

[8]

G. Bastin and J.-M. Coron, Stability and Boundary Stabilization of 1-D Hyperbolic Systems, Progress in Nonlinear Differential Equations and Their Applications: Subseries in Control, 88, Birkhäuser, 2016. doi: 10.1007/978-3-319-32062-5.  Google Scholar

[9]

T. BergerL. H. Hoang and T. Reis, Funnel control for nonlinear systems with known strict relative degree, Automatica, 87 (2018), 345-357.  doi: 10.1016/j.automatica.2017.10.017.  Google Scholar

[10]

T. Berger, M. Puche and F. Schwenninger, Funnel control for a moving water tank, 2019, Submitted for publication. Available at arXiv: https://arXiv.org/abs/1902.00586. Google Scholar

[11]

T. Berger, M. Puche and F. L. Schwenninger, Funnel control in the presence of infinite-dimensional internal dynamics, Systems Control Lett., 139 (2020), 104678. doi: 10.1016/j.sysconle.2020.104678.  Google Scholar

[12]

A. Cheng and K. Morris, Well-posedness of boundary control systems, SIAM J. Control Optim., 42 (2003), 1244-1265.  doi: 10.1137/S0363012902384916.  Google Scholar

[13]

J. Diestel and J. Uhl, Vector Measures, Mathematical surveys and monographs, 15, American Mathematical Society, Providence, RI, 1977.  Google Scholar

[14]

K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, 194, Springer, New York, 2000.  Google Scholar

[15]

V. Girault and P.-A. Raviart, Finite Element Approximation of the Navier-Stokes Equations, Lecture Notes in Mathematics, 749, Springer, Berlin Heidelberg, 1979.  Google Scholar

[16]

P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics, 24, Pitman Advanced Publishing Program, Boston, London, Melbourne, 1985.  Google Scholar

[17]

A. IlchmannE. Ryan and P. Townsend, Tracking with prescribed transient behaviour for non-linear systems of known relative degree, SIAM J. Control Optim., 46 (2007), 210-230.  doi: 10.1137/050641946.  Google Scholar

[18]

B. Jacob and H. Zwart, Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces, Operator Theory: Advances and Applications, 223, Birkhäuser, Basel, 2012. doi: 10.1007/978-3-0348-0399-1.  Google Scholar

[19]

T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan, 19 (1967), 508-520.  doi: 10.2969/jmsj/01940508.  Google Scholar

[20]

T. Kato, Perturbation Theory for Linear Operators, 2$^nd$ edition, Springer, Berlin Heidelberg, Germany, 1980.  Google Scholar

[21]

I. Miyadera, Nonlinear Semigroups, Translations of Mathematical Monographs, 109, American Mathematical Society, Providence, RI, 1992.  Google Scholar

[22]

T. Reis and T. Selig, Funnel control for the boundary controlled heat equation, SIAM J. Control Optim., 53 (2015), 547-574.  doi: 10.1137/140971567.  Google Scholar

[23]

E. P. RyanA. Ilchmann and C. J. Sangwin, Tracking with prescribed transient behaviour, ESAIM: Control, Optimisation and Calculus of Variations, 7 (2002), 471-493.  doi: 10.1051/cocv:2002064.  Google Scholar

[24]

T. SeligA. Ilchmann and C. Trunk, The Byrnes–Isidori form for infinite-dimensional systems, SIAM J. Control Optim., 54 (2016), 1504-1534.  doi: 10.1137/130942413.  Google Scholar

[25]

R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, American Mathematical Society, Providence, RI, 1996.  Google Scholar

[26] O. J. Staffans, Well-Posed Linear Systems, 103, Cambridge University Press, 2005.  doi: 10.1017/CBO9780511543197.  Google Scholar
[27]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts Basler Lehrbücher, Birkhäuser, Basel, 2009. doi: 10.1007/978-3-7643-8994-9.  Google Scholar

show all references

References:
[1] R. Adams, Sobolev Spaces, Pure and Applied Mathematics, 65, Academic press, New York, London, 1975.   Google Scholar
[2]

H. Alt, Linear Functional Analysis, Universitext, Springer-Verlag, London, 2016. doi: 10.1007/978-1-4471-7280-2.  Google Scholar

[3]

W. Arendt, R. Chill, C. Seifert, H. Vogt and J. Voigt, Form methods for evolution equations, and applications, 2015, Available at https://www.mat.tuhh.de/veranstaltungen/isem18/pdf/LectureNotes.pdf. Google Scholar

[4]

W. Arendt and A. ert Elst, From forms to semigroups, in Spectral Theory, Mathematical System Theory, Evolution Equations, Differential and Difference Equations (eds. W. Arendt, J. A. Ball, J. Behrndt, K.-H. Förster, V. Mehrmann and C. Trunk), Operator Theory: Advances and Applications, 221, Birkhäuser, Basel, Switzerland, 2012, 47–69. doi: 10.1007/978-3-0348-0297-0_4.  Google Scholar

[5]

B. Augner, Stabilisation of Infinite-Dimensional Port-Hamiltonian Systems via Dissipative Boundary Feedback, Ph.D thesis, Bergische Universität Wuppertal, 2016. Google Scholar

[6]

B. Augner, Well-posedness and stability of infinite-dimensional linear port-Hamiltonian systems with nonlinear boundary feedback, SIAM J. Control Optim., 57 (2019), 1818-1844.  doi: 10.1137/15M1024901.  Google Scholar

[7]

B. Augner and B. Jacob, Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems, Evol. Equ. Control Theory, 3 (2014), 207-229.  doi: 10.3934/eect.2014.3.207.  Google Scholar

[8]

G. Bastin and J.-M. Coron, Stability and Boundary Stabilization of 1-D Hyperbolic Systems, Progress in Nonlinear Differential Equations and Their Applications: Subseries in Control, 88, Birkhäuser, 2016. doi: 10.1007/978-3-319-32062-5.  Google Scholar

[9]

T. BergerL. H. Hoang and T. Reis, Funnel control for nonlinear systems with known strict relative degree, Automatica, 87 (2018), 345-357.  doi: 10.1016/j.automatica.2017.10.017.  Google Scholar

[10]

T. Berger, M. Puche and F. Schwenninger, Funnel control for a moving water tank, 2019, Submitted for publication. Available at arXiv: https://arXiv.org/abs/1902.00586. Google Scholar

[11]

T. Berger, M. Puche and F. L. Schwenninger, Funnel control in the presence of infinite-dimensional internal dynamics, Systems Control Lett., 139 (2020), 104678. doi: 10.1016/j.sysconle.2020.104678.  Google Scholar

[12]

A. Cheng and K. Morris, Well-posedness of boundary control systems, SIAM J. Control Optim., 42 (2003), 1244-1265.  doi: 10.1137/S0363012902384916.  Google Scholar

[13]

J. Diestel and J. Uhl, Vector Measures, Mathematical surveys and monographs, 15, American Mathematical Society, Providence, RI, 1977.  Google Scholar

[14]

K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, 194, Springer, New York, 2000.  Google Scholar

[15]

V. Girault and P.-A. Raviart, Finite Element Approximation of the Navier-Stokes Equations, Lecture Notes in Mathematics, 749, Springer, Berlin Heidelberg, 1979.  Google Scholar

[16]

P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics, 24, Pitman Advanced Publishing Program, Boston, London, Melbourne, 1985.  Google Scholar

[17]

A. IlchmannE. Ryan and P. Townsend, Tracking with prescribed transient behaviour for non-linear systems of known relative degree, SIAM J. Control Optim., 46 (2007), 210-230.  doi: 10.1137/050641946.  Google Scholar

[18]

B. Jacob and H. Zwart, Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces, Operator Theory: Advances and Applications, 223, Birkhäuser, Basel, 2012. doi: 10.1007/978-3-0348-0399-1.  Google Scholar

[19]

T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan, 19 (1967), 508-520.  doi: 10.2969/jmsj/01940508.  Google Scholar

[20]

T. Kato, Perturbation Theory for Linear Operators, 2$^nd$ edition, Springer, Berlin Heidelberg, Germany, 1980.  Google Scholar

[21]

I. Miyadera, Nonlinear Semigroups, Translations of Mathematical Monographs, 109, American Mathematical Society, Providence, RI, 1992.  Google Scholar

[22]

T. Reis and T. Selig, Funnel control for the boundary controlled heat equation, SIAM J. Control Optim., 53 (2015), 547-574.  doi: 10.1137/140971567.  Google Scholar

[23]

E. P. RyanA. Ilchmann and C. J. Sangwin, Tracking with prescribed transient behaviour, ESAIM: Control, Optimisation and Calculus of Variations, 7 (2002), 471-493.  doi: 10.1051/cocv:2002064.  Google Scholar

[24]

T. SeligA. Ilchmann and C. Trunk, The Byrnes–Isidori form for infinite-dimensional systems, SIAM J. Control Optim., 54 (2016), 1504-1534.  doi: 10.1137/130942413.  Google Scholar

[25]

R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, American Mathematical Society, Providence, RI, 1996.  Google Scholar

[26] O. J. Staffans, Well-Posed Linear Systems, 103, Cambridge University Press, 2005.  doi: 10.1017/CBO9780511543197.  Google Scholar
[27]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts Basler Lehrbücher, Birkhäuser, Basel, 2009. doi: 10.1007/978-3-7643-8994-9.  Google Scholar

Figure 1.  Error evolution in a funnel $ \mathcal{F}_{\varphi} $ with boundary $ \varphi(t)^{-1} $
Figure 2.  Left: Norm of the error within the funnel boundary followed by the two reference signals and the respective outputs. Right: Inputs obtained from the feedback law
Figure 3.  Performance funnel with the error, reference signal with the output of the closed-loop system and input of the closed-loop
Figure 4.  From left to right, top to bottom, the temperature of the plate for different increasing times
[1]

Hee-Dae Kwon, Jeehyun Lee, Sung-Dae Yang. Eigenseries solutions to optimal control problem and controllability problems on hyperbolic PDEs. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 305-325. doi: 10.3934/dcdsb.2010.13.305

[2]

Stephen W. Taylor. Locally smooth unitary groups and applications to boundary control of PDEs. Evolution Equations & Control Theory, 2013, 2 (4) : 733-740. doi: 10.3934/eect.2013.2.733

[3]

Lorena Bociu, Barbara Kaltenbacher, Petronela Radu. Preface: Introduction to the Special Volume on Nonlinear PDEs and Control Theory with Applications. Evolution Equations & Control Theory, 2013, 2 (2) : i-ii. doi: 10.3934/eect.2013.2.2i

[4]

Swann Marx, Tillmann Weisser, Didier Henrion, Jean Bernard Lasserre. A moment approach for entropy solutions to nonlinear hyperbolic PDEs. Mathematical Control & Related Fields, 2020, 10 (1) : 113-140. doi: 10.3934/mcrf.2019032

[5]

Abderrahim Azouani, Edriss S. Titi. Feedback control of nonlinear dissipative systems by finite determining parameters - A reaction-diffusion paradigm. Evolution Equations & Control Theory, 2014, 3 (4) : 579-594. doi: 10.3934/eect.2014.3.579

[6]

Evelyn Lunasin, Edriss S. Titi. Finite determining parameters feedback control for distributed nonlinear dissipative systems -a computational study. Evolution Equations & Control Theory, 2017, 6 (4) : 535-557. doi: 10.3934/eect.2017027

[7]

Karel Kadlec, Bohdan Maslowski. Ergodic boundary and point control for linear stochastic PDEs driven by a cylindrical Lévy process. Discrete & Continuous Dynamical Systems - B, 2020, 25 (10) : 4039-4055. doi: 10.3934/dcdsb.2020137

[8]

Ming Yan, Lili Chang, Ningning Yan. Finite element method for constrained optimal control problems governed by nonlinear elliptic PDEs. Mathematical Control & Related Fields, 2012, 2 (2) : 183-194. doi: 10.3934/mcrf.2012.2.183

[9]

Rohit Gupta, Farhad Jafari, Robert J. Kipka, Boris S. Mordukhovich. Linear openness and feedback stabilization of nonlinear control systems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1103-1119. doi: 10.3934/dcdss.2018063

[10]

Igor Chueshov, Björn Schmalfuss. Qualitative behavior of a class of stochastic parabolic PDEs with dynamical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 315-338. doi: 10.3934/dcds.2007.18.315

[11]

Alexander Komech. Attractors of Hamilton nonlinear PDEs. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6201-6256. doi: 10.3934/dcds.2016071

[12]

Vahagn Nersesyan. Approximate controllability of nonlinear parabolic PDEs in arbitrary space dimension. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020035

[13]

Stephan Gerster, Michael Herty. Discretized feedback control for systems of linearized hyperbolic balance laws. Mathematical Control & Related Fields, 2019, 9 (3) : 517-539. doi: 10.3934/mcrf.2019024

[14]

Cătălin-George Lefter, Elena-Alexandra Melnig. Feedback stabilization with one simultaneous control for systems of parabolic equations. Mathematical Control & Related Fields, 2018, 8 (3&4) : 777-787. doi: 10.3934/mcrf.2018034

[15]

V. Rehbock, K.L. Teo, L.S. Jennings. Suboptimal feedback control for a class of nonlinear systems using spline interpolation. Discrete & Continuous Dynamical Systems - A, 1995, 1 (2) : 223-236. doi: 10.3934/dcds.1995.1.223

[16]

Volodymyr O. Kapustyan, Ivan O. Pyshnograiev, Olena A. Kapustian. Quasi-optimal control with a general quadratic criterion in a special norm for systems described by parabolic-hyperbolic equations with non-local boundary conditions. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1243-1258. doi: 10.3934/dcdsb.2019014

[17]

J.-P. Raymond. Nonlinear boundary control of semilinear parabolic problems with pointwise state constraints. Discrete & Continuous Dynamical Systems - A, 1997, 3 (3) : 341-370. doi: 10.3934/dcds.1997.3.341

[18]

Janusz Mierczyński, Wenxian Shen. Formulas for generalized principal Lyapunov exponent for parabolic PDEs. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1189-1199. doi: 10.3934/dcdss.2016048

[19]

Russell Johnson, Carmen Núñez. Remarks on linear-quadratic dissipative control systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 889-914. doi: 10.3934/dcdsb.2015.20.889

[20]

Marianne Beringhier, Adrien Leygue, Francisco Chinesta. Parametric nonlinear PDEs with multiple solutions: A PGD approach. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 383-392. doi: 10.3934/dcdss.2016002

2019 Impact Factor: 0.953

Article outline

Figures and Tables

[Back to Top]