-
Previous Article
Optimal distributed control of the three dimensional primitive equations of large-scale ocean and atmosphere dynamics
- EECT Home
- This Issue
-
Next Article
Stabilization of the transmission wave/plate equation with variable coefficients on $ {\mathbb{R}}^n $
Null controllability for singular cascade systems of $ n $-coupled degenerate parabolic equations by one control force
1. | Faculté des Sciences et Techniques, Université Hassan 1er, Laboratoire MISI, B.P. 577, Settat 26000, Morocco |
2. | Département de Mathématiques, Faculté des Sciences Semlalia, LMDP, UMMISCO (IRD-UPMC), Université Cadi Ayyad, Marrakech 40000, B.P. 2390, Morocco |
In this paper, we consider a class of cascade systems of $ n $-coupled degenerate parabolic equations with singular lower order terms. We assume that both degeneracy and singularity occur in the interior of the space domain and we focus on null controllability problem. To this aim, we prove first Carleman estimates for the associated adjoint problem, then, we infer from it an indirect observability inequality. As a consequence, we deduce null controllability result when a unique distributed control is exerted on the system.
References:
[1] |
F. Alabau-Boussouira,
A hierarchic multi-level energy method for the control of bidiagonal and mixed $n$-coupled cascade systems of PDE's by a reduced number of controls, Adv. Differential Equations, 8 (2013), 1005-1072.
|
[2] |
K. Atifi, I. Boutaayamou, H. O. Sidi and J. Salhi,
An inverse source problem for singular parabolic equations with interior degeneracy, Abstract and Applied Analysis, 2018 (2018), 1-16.
doi: 10.1155/2018/2067304. |
[3] |
F. Ammar Khodja, A. Benabdallah, M. Gonzalez-Burgos and L. de Teresa,
Recent results on the controllability of linear coupled parabolic problems: A survey, Math. Control Relat. Fields, 1 (2011), 267-306.
doi: 10.3934/mcrf.2011.1.267. |
[4] |
W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, Vector-valued Laplace transforms and Cauchy Problems, Monographs in Mathematics, 96, Birkhäuser Verlag, Basel, 2001.
doi: 10.1007/978-3-0348-5075-9. |
[5] |
J. M. Ball,
Strongly continuous semigroups, weak solutions and the variation of constant formula, Proc. Amer. Math. Soc., 63 (1977), 370-373.
doi: 10.2307/2041821. |
[6] |
U. Biccari, V. Hernandez-Santamaria and J. Vancostenoble, Existence and cost of boundary controls for a degenerate/singular parabolic equations, preprint, arXiv: 2001.11403. Google Scholar |
[7] |
I. Boutaayamou, G. Fragnelli and L. Maniar,
Lipschitz stability for linear parabolic systems with interior degeneracy, Electron. J. Differential Equations, 2014 (2014), 1-26.
|
[8] |
I. Boutaayamou and J. Salhi,
Null controllability for linear parabolic cascade systems with interior degeneracy, Electron. J. Differential Equations, 2016 (2016), 1-22.
|
[9] |
H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer-Verlag, New York, 2011. |
[10] |
P. Cannarsa, G. Floridia, F. Golgeleteyen and M. Yamamoto, Inverse coefficient problems for a transport equation by local Carleman estimate, Inverse Problems, 35 (2019), 22 pp.
doi: 10.1088/1361-6420/ab1c69. |
[11] |
P. Cannarsa, R. Ferretti and P. Martinez,
Null controllability for parabolic operators with interior degeneracy and one-sided control, SIAM J. Control Optim., 57 (2019), 900-924.
doi: 10.1137/18M1198442. |
[12] |
P. Cannarsa and L. De Teresa,
Controllability of $1$-D coupled degenerate parabolic equations, addendum and corrigendum, Electron. J. Differential Equations, 2009 (2009), 1-24.
|
[13] |
T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, Clarendon Press, Oxford, 1998.
![]() |
[14] |
John B. Conway, A Course in Functional Analysis, 2$^nd$ edition, Springer-Verlag, New York, 1990. |
[15] |
M. Duprez and P. Lissy,
Indirect controllability of some linear parabolic systems of $m$ equations with $m-1$ controls involving coupling terms of zero or first order, J. Math. Pures Appl., 9 (2016), 905-934.
doi: 10.1016/j.matpur.2016.03.016. |
[16] |
M. Fadili and L. Maniar,
Null controllability of $n$-coupled degenerate parabolic systems with $m$-controls, J. Evol. Equ., 17 (2017), 1311-1340.
doi: 10.1007/s00028-017-0385-3. |
[17] |
E. Fernández-Cara, M. González-Burgos and L. de Teresa,
Boundary controllability of parabolic coupled equations, J. Funct. Anal., 7 (2010), 1720-1758.
doi: 10.1016/j.jfa.2010.06.003. |
[18] |
J. Carmelo Flores and L. de Teresa, Null controllability of one dimensional degenerate parabolic equations with first order terms, Discrete & Continuous Dynamical Systems - B, 22 (2017).
doi: 10.3934/dcdsb.2020136. |
[19] |
G. Floridia, C. Nitsch and C. Trombetti, Multiplicative controllability for nonlinear degenerate parabolic equations between sign-changing states, ESAIM Control Optim. Calc. Var., 26 (2020), 34 pp.
doi: 10.1051/cocv/2019066. |
[20] |
M. Fotouhi and L. Salimi,
Controllability results for a class of one dimensional degenerate/singular parabolic equations, Commun. Pure Appl. Anal., 12 (2013), 1415-1430.
doi: 10.3934/cpaa.2013.12.1415. |
[21] |
M. Fotouhi and L. Salimi,
Null controllability of degenerate/singular parabolic equations, J. Dyn. Control Syst., 18 (2012), 573-602.
doi: 10.1007/s10883-012-9160-5. |
[22] |
G. Fragnelli,
Interior degenerate/singular parabolic equations in nondivergence form: Well-posedness and Carleman estimates, J. Differential Equations, 260 (2016), 1314-1371.
doi: 10.1016/j.jde.2015.09.019. |
[23] |
G. Fragnelli, G. R. Goldstein, J. A. Goldstein and S. Romanelli,
Generators with interior degeneracy on spaces of $L^2$ type, Electron. J. Differential Equations, 2012 (2012), 1-30.
|
[24] |
G. Fragnelli and D. Mugnai,
Carleman estimates for singular parabolic equations with interior degeneracy and non smooth coefficients, Adv. Nonlinear Anal., 6 (2017), 61-84.
doi: 10.1515/anona-2015-0163. |
[25] |
G. Fragnelli and D. Mugnai, Carleman estimates, observability inequalities and null controllability for interior degenerate non smooth parabolic equations, Mem. Amer. Math. Soc., 242 (2016), 84 pp.
doi: 10.1090/memo/1146. |
[26] |
G. Fragnelli and D. Mugnai,
Carleman estimates and observability inequalities for parabolic equations with interior degeneracy, Adv. Nonlinear Anal., 2 (2013), 339-378.
doi: 10.1515/anona-2013-0015. |
[27] |
A. V. Fursikov and O. Y. Imanuvilov, Controllability of evolution equations, Lect. Notes Ser., 34, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996. |
[28] |
M. González-Burgos and L. De Teresa,
Controllability results for cascade systems of $m$ coupled parabolic PDEs by one control force, Portugal. Math., 67 (2010), 91-113.
doi: 10.4171/PM/1859. |
[29] |
A. Hajjaj, L. Maniar and J. Salhi,
Carleman estimates and null controllability of degenerate/singular parabolic systems, Electron. J. Differential Equations, 2016 (2016), 1-25.
|
[30] |
A.Y. Khapalov,
Global non-negative controllability of the semilinear parabolic equation governed by bilinear control, ESAIM: Control, Optimisation and Calculus of Variations, 7 (2002), 269-283.
doi: 10.1051/cocv:2002011. |
[31] |
J. Le Rousseau and G. Lebeau,
On carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations, ESAIM Control Optim. Calc. Var., 18 (2012), 712-747.
doi: 10.1051/cocv/2011168. |
[32] |
J. Salhi,
Null controllability for a singular coupled system of degenerate parabolic equations in nondivergence form, Electron. J. Qual. Theory Differ. Equ., 13 (2018), 1-28.
doi: 10.14232/ejqtde.2018.1.31. |
[33] |
J. Vancostenoble, Global non-negative approximate controllability of parabolic equations with singular potentials, in Trends in Control Theory and Partial Differential Equations, , Springer INdAM Series, 32, Springer, Cham, 2019,255–276. |
[34] |
J. Vancostenoble,
Improved Hardy-Poincaré inequalities and sharp Carleman estimates for degenerate/singular parabolic problems, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 761-790.
doi: 10.3934/dcdss.2011.4.761. |
show all references
References:
[1] |
F. Alabau-Boussouira,
A hierarchic multi-level energy method for the control of bidiagonal and mixed $n$-coupled cascade systems of PDE's by a reduced number of controls, Adv. Differential Equations, 8 (2013), 1005-1072.
|
[2] |
K. Atifi, I. Boutaayamou, H. O. Sidi and J. Salhi,
An inverse source problem for singular parabolic equations with interior degeneracy, Abstract and Applied Analysis, 2018 (2018), 1-16.
doi: 10.1155/2018/2067304. |
[3] |
F. Ammar Khodja, A. Benabdallah, M. Gonzalez-Burgos and L. de Teresa,
Recent results on the controllability of linear coupled parabolic problems: A survey, Math. Control Relat. Fields, 1 (2011), 267-306.
doi: 10.3934/mcrf.2011.1.267. |
[4] |
W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, Vector-valued Laplace transforms and Cauchy Problems, Monographs in Mathematics, 96, Birkhäuser Verlag, Basel, 2001.
doi: 10.1007/978-3-0348-5075-9. |
[5] |
J. M. Ball,
Strongly continuous semigroups, weak solutions and the variation of constant formula, Proc. Amer. Math. Soc., 63 (1977), 370-373.
doi: 10.2307/2041821. |
[6] |
U. Biccari, V. Hernandez-Santamaria and J. Vancostenoble, Existence and cost of boundary controls for a degenerate/singular parabolic equations, preprint, arXiv: 2001.11403. Google Scholar |
[7] |
I. Boutaayamou, G. Fragnelli and L. Maniar,
Lipschitz stability for linear parabolic systems with interior degeneracy, Electron. J. Differential Equations, 2014 (2014), 1-26.
|
[8] |
I. Boutaayamou and J. Salhi,
Null controllability for linear parabolic cascade systems with interior degeneracy, Electron. J. Differential Equations, 2016 (2016), 1-22.
|
[9] |
H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer-Verlag, New York, 2011. |
[10] |
P. Cannarsa, G. Floridia, F. Golgeleteyen and M. Yamamoto, Inverse coefficient problems for a transport equation by local Carleman estimate, Inverse Problems, 35 (2019), 22 pp.
doi: 10.1088/1361-6420/ab1c69. |
[11] |
P. Cannarsa, R. Ferretti and P. Martinez,
Null controllability for parabolic operators with interior degeneracy and one-sided control, SIAM J. Control Optim., 57 (2019), 900-924.
doi: 10.1137/18M1198442. |
[12] |
P. Cannarsa and L. De Teresa,
Controllability of $1$-D coupled degenerate parabolic equations, addendum and corrigendum, Electron. J. Differential Equations, 2009 (2009), 1-24.
|
[13] |
T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, Clarendon Press, Oxford, 1998.
![]() |
[14] |
John B. Conway, A Course in Functional Analysis, 2$^nd$ edition, Springer-Verlag, New York, 1990. |
[15] |
M. Duprez and P. Lissy,
Indirect controllability of some linear parabolic systems of $m$ equations with $m-1$ controls involving coupling terms of zero or first order, J. Math. Pures Appl., 9 (2016), 905-934.
doi: 10.1016/j.matpur.2016.03.016. |
[16] |
M. Fadili and L. Maniar,
Null controllability of $n$-coupled degenerate parabolic systems with $m$-controls, J. Evol. Equ., 17 (2017), 1311-1340.
doi: 10.1007/s00028-017-0385-3. |
[17] |
E. Fernández-Cara, M. González-Burgos and L. de Teresa,
Boundary controllability of parabolic coupled equations, J. Funct. Anal., 7 (2010), 1720-1758.
doi: 10.1016/j.jfa.2010.06.003. |
[18] |
J. Carmelo Flores and L. de Teresa, Null controllability of one dimensional degenerate parabolic equations with first order terms, Discrete & Continuous Dynamical Systems - B, 22 (2017).
doi: 10.3934/dcdsb.2020136. |
[19] |
G. Floridia, C. Nitsch and C. Trombetti, Multiplicative controllability for nonlinear degenerate parabolic equations between sign-changing states, ESAIM Control Optim. Calc. Var., 26 (2020), 34 pp.
doi: 10.1051/cocv/2019066. |
[20] |
M. Fotouhi and L. Salimi,
Controllability results for a class of one dimensional degenerate/singular parabolic equations, Commun. Pure Appl. Anal., 12 (2013), 1415-1430.
doi: 10.3934/cpaa.2013.12.1415. |
[21] |
M. Fotouhi and L. Salimi,
Null controllability of degenerate/singular parabolic equations, J. Dyn. Control Syst., 18 (2012), 573-602.
doi: 10.1007/s10883-012-9160-5. |
[22] |
G. Fragnelli,
Interior degenerate/singular parabolic equations in nondivergence form: Well-posedness and Carleman estimates, J. Differential Equations, 260 (2016), 1314-1371.
doi: 10.1016/j.jde.2015.09.019. |
[23] |
G. Fragnelli, G. R. Goldstein, J. A. Goldstein and S. Romanelli,
Generators with interior degeneracy on spaces of $L^2$ type, Electron. J. Differential Equations, 2012 (2012), 1-30.
|
[24] |
G. Fragnelli and D. Mugnai,
Carleman estimates for singular parabolic equations with interior degeneracy and non smooth coefficients, Adv. Nonlinear Anal., 6 (2017), 61-84.
doi: 10.1515/anona-2015-0163. |
[25] |
G. Fragnelli and D. Mugnai, Carleman estimates, observability inequalities and null controllability for interior degenerate non smooth parabolic equations, Mem. Amer. Math. Soc., 242 (2016), 84 pp.
doi: 10.1090/memo/1146. |
[26] |
G. Fragnelli and D. Mugnai,
Carleman estimates and observability inequalities for parabolic equations with interior degeneracy, Adv. Nonlinear Anal., 2 (2013), 339-378.
doi: 10.1515/anona-2013-0015. |
[27] |
A. V. Fursikov and O. Y. Imanuvilov, Controllability of evolution equations, Lect. Notes Ser., 34, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996. |
[28] |
M. González-Burgos and L. De Teresa,
Controllability results for cascade systems of $m$ coupled parabolic PDEs by one control force, Portugal. Math., 67 (2010), 91-113.
doi: 10.4171/PM/1859. |
[29] |
A. Hajjaj, L. Maniar and J. Salhi,
Carleman estimates and null controllability of degenerate/singular parabolic systems, Electron. J. Differential Equations, 2016 (2016), 1-25.
|
[30] |
A.Y. Khapalov,
Global non-negative controllability of the semilinear parabolic equation governed by bilinear control, ESAIM: Control, Optimisation and Calculus of Variations, 7 (2002), 269-283.
doi: 10.1051/cocv:2002011. |
[31] |
J. Le Rousseau and G. Lebeau,
On carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations, ESAIM Control Optim. Calc. Var., 18 (2012), 712-747.
doi: 10.1051/cocv/2011168. |
[32] |
J. Salhi,
Null controllability for a singular coupled system of degenerate parabolic equations in nondivergence form, Electron. J. Qual. Theory Differ. Equ., 13 (2018), 1-28.
doi: 10.14232/ejqtde.2018.1.31. |
[33] |
J. Vancostenoble, Global non-negative approximate controllability of parabolic equations with singular potentials, in Trends in Control Theory and Partial Differential Equations, , Springer INdAM Series, 32, Springer, Cham, 2019,255–276. |
[34] |
J. Vancostenoble,
Improved Hardy-Poincaré inequalities and sharp Carleman estimates for degenerate/singular parabolic problems, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 761-790.
doi: 10.3934/dcdss.2011.4.761. |
[1] |
Kuntal Bhandari, Franck Boyer. Boundary null-controllability of coupled parabolic systems with Robin conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 61-102. doi: 10.3934/eect.2020052 |
[2] |
Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020 doi: 10.3934/naco.2020055 |
[3] |
Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249 |
[4] |
Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561 |
[5] |
Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571 |
[6] |
Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226 |
[7] |
Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020444 |
[8] |
Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272 |
[9] |
Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020104 |
[10] |
Juhua Shi, Feida Jiang. The degenerate Monge-Ampère equations with the Neumann condition. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020297 |
[11] |
Gabrielle Nornberg, Delia Schiera, Boyan Sirakov. A priori estimates and multiplicity for systems of elliptic PDE with natural gradient growth. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3857-3881. doi: 10.3934/dcds.2020128 |
[12] |
Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020377 |
[13] |
Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168 |
[14] |
Nguyen Huy Tuan, Vo Van Au, Runzhang Xu. Semilinear Caputo time-fractional pseudo-parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020282 |
[15] |
Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020109 |
[16] |
Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020103 |
[17] |
Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001 |
[18] |
Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020 |
[19] |
Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011 |
[20] |
Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296 |
2019 Impact Factor: 0.953
Tools
Article outline
[Back to Top]