Advanced Search
Article Contents
Article Contents

Blow-up criteria for linearly damped nonlinear Schrödinger equations

  • * Corresponding author: Van Duong Dinh

    * Corresponding author: Van Duong Dinh
Abstract Full Text(HTML) Related Papers Cited by
  • We consider the Cauchy problem for linearly damped nonlinear Schrödinger equations

    $ i\partial_t u + \Delta u + i a u = \pm |u|^\alpha u, \quad (t,x) \in [0,\infty) \times \mathbb R^N, $

    where $ a>0 $ and $ \alpha>0 $. We prove the global existence and scattering for a sufficiently large damping parameter in the energy-critical case. We also prove the existence of finite time blow-up $ H^1 $ solutions to the focusing problem in the mass-critical and mass-supercritical cases.

    Mathematics Subject Classification: Primary: 35Q55; Secondary: 35Q44.


    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] G. D. AkrivisV. A. DougalisO. A. Karakashian and V. R. McKinney, Numerical approximation of singular solutions of the damped nonlinear Schrödinger equation, ENUMATH, 97 (Heidelberg), World Scientific, River Edge, NJ, (1998), 117-124. 
    [2] M. M. Cavalcanti, W. J. Corrêa, T. Özsari, M. Sepúlveda and R. Véjar-Asem, Exponential stability for the nonlinear Schrödinger equation with locally distributed damping, Comm. Partial Differential Equations, (in press), (2020).
    [3] T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics 10, American Mathematical Society, Courant Institute of Mathematical Sciences, 2003. doi: 10.1090/cln/010.
    [4] J. CollianderM. KeelG. StaffilaniH. Takaoka and T. Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $ \mathbb R^3$, Annal. Math., 2008 (2008), 767-865.  doi: 10.4007/annals.2008.167.767.
    [5] G. Chen, J. Zhang and Y. Wei, A small initial data criterion of global existence for the damped nonlinear Schrödinger equation, J. Phys. A: Math. Theor., 42 (2009), 055205. doi: 10.1088/1751-8113/42/5/055205.
    [6] M. Darwich, Blow-up for the damped $L^2$-critical nonlinear Schrödinger equation, Adv. Differential Equations, 17 (2012), 337-367. 
    [7] V. D. Dinh, Blowup of $H^1$ solutions for a class of the focusing inhomogeneous nonlinear Schrödinger equation, Nonlinear Anal., 174 (2018), 169-188.  doi: 10.1016/j.na.2018.04.024.
    [8] R. T. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys., 18 (1977), 1794-1797.  doi: 10.1063/1.523491.
    [9] M. V. GoldmanK. Rypdal and B. Hafizi, Dimensionality and dissipation in Langmuir collapse, Phys. Fluids, 23 (1980), 945-955.  doi: 10.1063/1.863074.
    [10] H. Hajaiej, S. Ibrahim and N. Masmoudi, Ground state solutions of the complex Gross-Pitaevskii associated to Exciton-Polariton Bose-Einstein condensates, preprint arXiv: 1905.07660.
    [11] V. K. Kalantarov and T. Özsari, Qualitative properties of solutions for nonlinear Schrödinger equations with nonlinear boundary conditions on the half-line, J. Math. Phys., 18 (2016), 021511. doi: 10.1063/1.4941459.
    [12] C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy critical, focusing, nonlinear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675.  doi: 10.1007/s00222-006-0011-4.
    [13] F. Merle and P. Raphael, Blow up dynamic and upper bound on the blow up rate for critical nonlinear Schrödinger equation, Ann. Math., 161 (2005), 157-222.  doi: 10.4007/annals.2005.161.157.
    [14] G. Fibich, Self-focusing in the damped nonlinear Schrödinger equation, SIAM J. Appl. Math., 61 (2001), 1680-1705.  doi: 10.1137/S0036139999362609.
    [15] G. Fibich, The nonlinear Schrödinger equations: Singular solutions and optical collapse, Applied Mathematical Sciences 192, Springer, New York, 2015. doi: 10.1007/978-3-319-12748-4.
    [16] T. Inui, Asymptotic behavior of the nonlinear damped Schrödinger equation, Proc. Amer. Math. Soc., 147 (2019), 763-773.  doi: 10.1090/proc/14276.
    [17] T. Ogawa and Y. Tsutsumi, Blow-up of $H^1$ solutions for the nonlinear Schrödinger equation, J. Differential Equations, 92 (1991), 317-330.  doi: 10.1016/0022-0396(91)90052-B.
    [18] M. Ohta and G. Todorova, Remarks on global existence and blowup for damped nonlinear Schrödinger equations, Discrete Contin. Dyn. Syst., 23 (2009), 1313-1325.  doi: 10.3934/dcds.2009.23.1313.
    [19] T. ÖzsariV. K. Kalantarov and I. Lasiecka, Uniform decay rates for the energy of weakly damped defocusing semilinear Schrödinger equations with inhomogeneous Dirichlet boundary control, J. Differential Equations, 251 (2011), 1841-1863.  doi: 10.1016/j.jde.2011.04.003.
    [20] T. Özsari, Weakly-damped focusing nonlinear Schrödinger equations with Dirichlet control, J. Math. Anal. Appl., 389 (2012), 84-97.  doi: 10.1016/j.jmaa.2011.11.053.
    [21] T. Özsari, Global existence and open loop exponential stabilization of weak solutions for nonlinear Schrödinger equations with localized external Neumann manipulation, Nonlinear Anal., 80 (2013), 179-193.  doi: 10.1016/j.na.2012.10.006.
    [22] T. Özsari, Blow-up of solutions of nonlinear Schrödinger equations with oscillating nonlinearities, Commun. Pure Appl. Anal., 18 (2019), 549-558.  doi: 10.3934/cpaa.2019027.
    [23] V. Perez-GarciaM. Porras and L. Vazquez, The nonlinear Schrödinger equation with dissipation and the moment method, Phys. Lett. A, 202 (1995), 176-182.  doi: 10.1016/0375-9601(95)00263-3.
    [24] K. O. RasmussenO. Bang and P. I. Christiansen, Driving and collapse in a nonlinear Schrödinger equation, Phys. Lett. A, 184 (1994), 241-244.  doi: 10.1016/0375-9601(94)90382-4.
    [25] J. SierraA. KasimovP. Markowich and R. M. Weishäupl, On the Gross-Pitaevskii equation with pumping and decay: stationary states and their stability, J. Nonlinear Sci., 25 (2015), 709-739.  doi: 10.1007/s00332-015-9239-8.
    [26] T. TaoM. Visan and X. Zhang, The nonlinear Schrödinger equation with combined power-type nonlinearities, Comm. Partial Differential Equations, 32 (2007), 1281-1343.  doi: 10.1080/03605300701588805.
    [27] M. Tsutsumi, Nonexistence of global solutions to the Cauchy problem for the damped nonlinear Schrödinger equations, SIAM J. Math. Anal., 15 (1984), 357-366.  doi: 10.1137/0515028.
    [28] M. Tsutsumi, On global solutions to the initial-boundary value problem for the damped nonlinear Schrödinger equations, J. Math. Anal. Appl., 145 (1990), 328-341.  doi: 10.1016/0022-247X(90)90403-3.
    [29] Y. Tsutsumi, $L^2$-solutions for nonlinear Schrödinger equations and nonlinear groups, Funkcial. Ekvac., 30 (1987), 115-125. 
  • 加载中

Article Metrics

HTML views(938) PDF downloads(238) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint