doi: 10.3934/eect.2020082

Blow-up criteria for linearly damped nonlinear Schrödinger equations

1. 

Laboratoire Paul Painlevé UMR 8524, Université de Lille CNRS, 59655 Villeneuve d'Ascq Cedex, France

2. 

Department of Mathematics, HCMC University of Pedagogy, 280 An Duong Vuong, Ho Chi Minh, Vietnam

* Corresponding author: Van Duong Dinh

Received  February 2020 Revised  May 2020 Published  July 2020

We consider the Cauchy problem for linearly damped nonlinear Schrödinger equations
$ i\partial_t u + \Delta u + i a u = \pm |u|^\alpha u, \quad (t,x) \in [0,\infty) \times \mathbb R^N, $
where
$ a>0 $
and
$ \alpha>0 $
. We prove the global existence and scattering for a sufficiently large damping parameter in the energy-critical case. We also prove the existence of finite time blow-up
$ H^1 $
solutions to the focusing problem in the mass-critical and mass-supercritical cases.
Citation: Van Duong Dinh. Blow-up criteria for linearly damped nonlinear Schrödinger equations. Evolution Equations & Control Theory, doi: 10.3934/eect.2020082
References:
[1]

G. D. AkrivisV. A. DougalisO. A. Karakashian and V. R. McKinney, Numerical approximation of singular solutions of the damped nonlinear Schrödinger equation, ENUMATH, 97 (Heidelberg), World Scientific, River Edge, NJ, (1998), 117-124.   Google Scholar

[2]

M. M. Cavalcanti, W. J. Corrêa, T. Özsari, M. Sepúlveda and R. Véjar-Asem, Exponential stability for the nonlinear Schrödinger equation with locally distributed damping, Comm. Partial Differential Equations, (in press), (2020). Google Scholar

[3]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics 10, American Mathematical Society, Courant Institute of Mathematical Sciences, 2003. doi: 10.1090/cln/010.  Google Scholar

[4]

J. CollianderM. KeelG. StaffilaniH. Takaoka and T. Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $ \mathbb R^3$, Annal. Math., 2008 (2008), 767-865.  doi: 10.4007/annals.2008.167.767.  Google Scholar

[5]

G. Chen, J. Zhang and Y. Wei, A small initial data criterion of global existence for the damped nonlinear Schrödinger equation, J. Phys. A: Math. Theor., 42 (2009), 055205. doi: 10.1088/1751-8113/42/5/055205.  Google Scholar

[6]

M. Darwich, Blow-up for the damped $L^2$-critical nonlinear Schrödinger equation, Adv. Differential Equations, 17 (2012), 337-367.   Google Scholar

[7]

V. D. Dinh, Blowup of $H^1$ solutions for a class of the focusing inhomogeneous nonlinear Schrödinger equation, Nonlinear Anal., 174 (2018), 169-188.  doi: 10.1016/j.na.2018.04.024.  Google Scholar

[8]

R. T. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys., 18 (1977), 1794-1797.  doi: 10.1063/1.523491.  Google Scholar

[9]

M. V. GoldmanK. Rypdal and B. Hafizi, Dimensionality and dissipation in Langmuir collapse, Phys. Fluids, 23 (1980), 945-955.  doi: 10.1063/1.863074.  Google Scholar

[10]

H. Hajaiej, S. Ibrahim and N. Masmoudi, Ground state solutions of the complex Gross-Pitaevskii associated to Exciton-Polariton Bose-Einstein condensates, preprint arXiv: 1905.07660. Google Scholar

[11]

V. K. Kalantarov and T. Özsari, Qualitative properties of solutions for nonlinear Schrödinger equations with nonlinear boundary conditions on the half-line, J. Math. Phys., 18 (2016), 021511. doi: 10.1063/1.4941459.  Google Scholar

[12]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy critical, focusing, nonlinear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675.  doi: 10.1007/s00222-006-0011-4.  Google Scholar

[13]

F. Merle and P. Raphael, Blow up dynamic and upper bound on the blow up rate for critical nonlinear Schrödinger equation, Ann. Math., 161 (2005), 157-222.  doi: 10.4007/annals.2005.161.157.  Google Scholar

[14]

G. Fibich, Self-focusing in the damped nonlinear Schrödinger equation, SIAM J. Appl. Math., 61 (2001), 1680-1705.  doi: 10.1137/S0036139999362609.  Google Scholar

[15]

G. Fibich, The nonlinear Schrödinger equations: Singular solutions and optical collapse, Applied Mathematical Sciences 192, Springer, New York, 2015. doi: 10.1007/978-3-319-12748-4.  Google Scholar

[16]

T. Inui, Asymptotic behavior of the nonlinear damped Schrödinger equation, Proc. Amer. Math. Soc., 147 (2019), 763-773.  doi: 10.1090/proc/14276.  Google Scholar

[17]

T. Ogawa and Y. Tsutsumi, Blow-up of $H^1$ solutions for the nonlinear Schrödinger equation, J. Differential Equations, 92 (1991), 317-330.  doi: 10.1016/0022-0396(91)90052-B.  Google Scholar

[18]

M. Ohta and G. Todorova, Remarks on global existence and blowup for damped nonlinear Schrödinger equations, Discrete Contin. Dyn. Syst., 23 (2009), 1313-1325.  doi: 10.3934/dcds.2009.23.1313.  Google Scholar

[19]

T. ÖzsariV. K. Kalantarov and I. Lasiecka, Uniform decay rates for the energy of weakly damped defocusing semilinear Schrödinger equations with inhomogeneous Dirichlet boundary control, J. Differential Equations, 251 (2011), 1841-1863.  doi: 10.1016/j.jde.2011.04.003.  Google Scholar

[20]

T. Özsari, Weakly-damped focusing nonlinear Schrödinger equations with Dirichlet control, J. Math. Anal. Appl., 389 (2012), 84-97.  doi: 10.1016/j.jmaa.2011.11.053.  Google Scholar

[21]

T. Özsari, Global existence and open loop exponential stabilization of weak solutions for nonlinear Schrödinger equations with localized external Neumann manipulation, Nonlinear Anal., 80 (2013), 179-193.  doi: 10.1016/j.na.2012.10.006.  Google Scholar

[22]

T. Özsari, Blow-up of solutions of nonlinear Schrödinger equations with oscillating nonlinearities, Commun. Pure Appl. Anal., 18 (2019), 549-558.  doi: 10.3934/cpaa.2019027.  Google Scholar

[23]

V. Perez-GarciaM. Porras and L. Vazquez, The nonlinear Schrödinger equation with dissipation and the moment method, Phys. Lett. A, 202 (1995), 176-182.  doi: 10.1016/0375-9601(95)00263-3.  Google Scholar

[24]

K. O. RasmussenO. Bang and P. I. Christiansen, Driving and collapse in a nonlinear Schrödinger equation, Phys. Lett. A, 184 (1994), 241-244.  doi: 10.1016/0375-9601(94)90382-4.  Google Scholar

[25]

J. SierraA. KasimovP. Markowich and R. M. Weishäupl, On the Gross-Pitaevskii equation with pumping and decay: stationary states and their stability, J. Nonlinear Sci., 25 (2015), 709-739.  doi: 10.1007/s00332-015-9239-8.  Google Scholar

[26]

T. TaoM. Visan and X. Zhang, The nonlinear Schrödinger equation with combined power-type nonlinearities, Comm. Partial Differential Equations, 32 (2007), 1281-1343.  doi: 10.1080/03605300701588805.  Google Scholar

[27]

M. Tsutsumi, Nonexistence of global solutions to the Cauchy problem for the damped nonlinear Schrödinger equations, SIAM J. Math. Anal., 15 (1984), 357-366.  doi: 10.1137/0515028.  Google Scholar

[28]

M. Tsutsumi, On global solutions to the initial-boundary value problem for the damped nonlinear Schrödinger equations, J. Math. Anal. Appl., 145 (1990), 328-341.  doi: 10.1016/0022-247X(90)90403-3.  Google Scholar

[29]

Y. Tsutsumi, $L^2$-solutions for nonlinear Schrödinger equations and nonlinear groups, Funkcial. Ekvac., 30 (1987), 115-125.   Google Scholar

show all references

References:
[1]

G. D. AkrivisV. A. DougalisO. A. Karakashian and V. R. McKinney, Numerical approximation of singular solutions of the damped nonlinear Schrödinger equation, ENUMATH, 97 (Heidelberg), World Scientific, River Edge, NJ, (1998), 117-124.   Google Scholar

[2]

M. M. Cavalcanti, W. J. Corrêa, T. Özsari, M. Sepúlveda and R. Véjar-Asem, Exponential stability for the nonlinear Schrödinger equation with locally distributed damping, Comm. Partial Differential Equations, (in press), (2020). Google Scholar

[3]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics 10, American Mathematical Society, Courant Institute of Mathematical Sciences, 2003. doi: 10.1090/cln/010.  Google Scholar

[4]

J. CollianderM. KeelG. StaffilaniH. Takaoka and T. Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $ \mathbb R^3$, Annal. Math., 2008 (2008), 767-865.  doi: 10.4007/annals.2008.167.767.  Google Scholar

[5]

G. Chen, J. Zhang and Y. Wei, A small initial data criterion of global existence for the damped nonlinear Schrödinger equation, J. Phys. A: Math. Theor., 42 (2009), 055205. doi: 10.1088/1751-8113/42/5/055205.  Google Scholar

[6]

M. Darwich, Blow-up for the damped $L^2$-critical nonlinear Schrödinger equation, Adv. Differential Equations, 17 (2012), 337-367.   Google Scholar

[7]

V. D. Dinh, Blowup of $H^1$ solutions for a class of the focusing inhomogeneous nonlinear Schrödinger equation, Nonlinear Anal., 174 (2018), 169-188.  doi: 10.1016/j.na.2018.04.024.  Google Scholar

[8]

R. T. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys., 18 (1977), 1794-1797.  doi: 10.1063/1.523491.  Google Scholar

[9]

M. V. GoldmanK. Rypdal and B. Hafizi, Dimensionality and dissipation in Langmuir collapse, Phys. Fluids, 23 (1980), 945-955.  doi: 10.1063/1.863074.  Google Scholar

[10]

H. Hajaiej, S. Ibrahim and N. Masmoudi, Ground state solutions of the complex Gross-Pitaevskii associated to Exciton-Polariton Bose-Einstein condensates, preprint arXiv: 1905.07660. Google Scholar

[11]

V. K. Kalantarov and T. Özsari, Qualitative properties of solutions for nonlinear Schrödinger equations with nonlinear boundary conditions on the half-line, J. Math. Phys., 18 (2016), 021511. doi: 10.1063/1.4941459.  Google Scholar

[12]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy critical, focusing, nonlinear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675.  doi: 10.1007/s00222-006-0011-4.  Google Scholar

[13]

F. Merle and P. Raphael, Blow up dynamic and upper bound on the blow up rate for critical nonlinear Schrödinger equation, Ann. Math., 161 (2005), 157-222.  doi: 10.4007/annals.2005.161.157.  Google Scholar

[14]

G. Fibich, Self-focusing in the damped nonlinear Schrödinger equation, SIAM J. Appl. Math., 61 (2001), 1680-1705.  doi: 10.1137/S0036139999362609.  Google Scholar

[15]

G. Fibich, The nonlinear Schrödinger equations: Singular solutions and optical collapse, Applied Mathematical Sciences 192, Springer, New York, 2015. doi: 10.1007/978-3-319-12748-4.  Google Scholar

[16]

T. Inui, Asymptotic behavior of the nonlinear damped Schrödinger equation, Proc. Amer. Math. Soc., 147 (2019), 763-773.  doi: 10.1090/proc/14276.  Google Scholar

[17]

T. Ogawa and Y. Tsutsumi, Blow-up of $H^1$ solutions for the nonlinear Schrödinger equation, J. Differential Equations, 92 (1991), 317-330.  doi: 10.1016/0022-0396(91)90052-B.  Google Scholar

[18]

M. Ohta and G. Todorova, Remarks on global existence and blowup for damped nonlinear Schrödinger equations, Discrete Contin. Dyn. Syst., 23 (2009), 1313-1325.  doi: 10.3934/dcds.2009.23.1313.  Google Scholar

[19]

T. ÖzsariV. K. Kalantarov and I. Lasiecka, Uniform decay rates for the energy of weakly damped defocusing semilinear Schrödinger equations with inhomogeneous Dirichlet boundary control, J. Differential Equations, 251 (2011), 1841-1863.  doi: 10.1016/j.jde.2011.04.003.  Google Scholar

[20]

T. Özsari, Weakly-damped focusing nonlinear Schrödinger equations with Dirichlet control, J. Math. Anal. Appl., 389 (2012), 84-97.  doi: 10.1016/j.jmaa.2011.11.053.  Google Scholar

[21]

T. Özsari, Global existence and open loop exponential stabilization of weak solutions for nonlinear Schrödinger equations with localized external Neumann manipulation, Nonlinear Anal., 80 (2013), 179-193.  doi: 10.1016/j.na.2012.10.006.  Google Scholar

[22]

T. Özsari, Blow-up of solutions of nonlinear Schrödinger equations with oscillating nonlinearities, Commun. Pure Appl. Anal., 18 (2019), 549-558.  doi: 10.3934/cpaa.2019027.  Google Scholar

[23]

V. Perez-GarciaM. Porras and L. Vazquez, The nonlinear Schrödinger equation with dissipation and the moment method, Phys. Lett. A, 202 (1995), 176-182.  doi: 10.1016/0375-9601(95)00263-3.  Google Scholar

[24]

K. O. RasmussenO. Bang and P. I. Christiansen, Driving and collapse in a nonlinear Schrödinger equation, Phys. Lett. A, 184 (1994), 241-244.  doi: 10.1016/0375-9601(94)90382-4.  Google Scholar

[25]

J. SierraA. KasimovP. Markowich and R. M. Weishäupl, On the Gross-Pitaevskii equation with pumping and decay: stationary states and their stability, J. Nonlinear Sci., 25 (2015), 709-739.  doi: 10.1007/s00332-015-9239-8.  Google Scholar

[26]

T. TaoM. Visan and X. Zhang, The nonlinear Schrödinger equation with combined power-type nonlinearities, Comm. Partial Differential Equations, 32 (2007), 1281-1343.  doi: 10.1080/03605300701588805.  Google Scholar

[27]

M. Tsutsumi, Nonexistence of global solutions to the Cauchy problem for the damped nonlinear Schrödinger equations, SIAM J. Math. Anal., 15 (1984), 357-366.  doi: 10.1137/0515028.  Google Scholar

[28]

M. Tsutsumi, On global solutions to the initial-boundary value problem for the damped nonlinear Schrödinger equations, J. Math. Anal. Appl., 145 (1990), 328-341.  doi: 10.1016/0022-247X(90)90403-3.  Google Scholar

[29]

Y. Tsutsumi, $L^2$-solutions for nonlinear Schrödinger equations and nonlinear groups, Funkcial. Ekvac., 30 (1987), 115-125.   Google Scholar

[1]

Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021011

[2]

Bouthaina Abdelhedi, Hatem Zaag. Single point blow-up and final profile for a perturbed nonlinear heat equation with a gradient and a non-local term. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021032

[3]

Chenjie Fan, Zehua Zhao. Decay estimates for nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3973-3984. doi: 10.3934/dcds.2021024

[4]

Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194

[5]

Norman Noguera, Ademir Pastor. Scattering of radial solutions for quadratic-type Schrödinger systems in dimension five. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3817-3836. doi: 10.3934/dcds.2021018

[6]

Abderrazak Chrifi, Mostafa Abounouh, Hassan Al Moatassime. Galerkin method of weakly damped cubic nonlinear Schrödinger with Dirac impurity, and artificial boundary condition in a half-line. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021030

[7]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[8]

Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028

[9]

Wided Kechiche. Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021031

[10]

Woocheol Choi, Youngwoo Koh. On the splitting method for the nonlinear Schrödinger equation with initial data in $ H^1 $. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3837-3867. doi: 10.3934/dcds.2021019

[11]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[12]

Asato Mukai, Yukihiro Seki. Refined construction of type II blow-up solutions for semilinear heat equations with Joseph–Lundgren supercritical nonlinearity. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021060

[13]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2601-2617. doi: 10.3934/dcds.2020376

[14]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[15]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[16]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[17]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[18]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[19]

Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030

[20]

Brahim Alouini. Finite dimensional global attractor for a class of two-coupled nonlinear fractional Schrödinger equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021013

2019 Impact Factor: 0.953

Article outline

[Back to Top]