
-
Previous Article
Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations
- EECT Home
- This Issue
-
Next Article
An inverse problem for the pseudo-parabolic equation with p-Laplacian
Deterministic control of stochastic reaction-diffusion equations
Technische Universität Berlin, Institut für Mathematik, Straße des 17. Juni 136, 10623 Berlin, Germany |
We consider the control of semilinear stochastic partial differential equations (SPDEs) via deterministic controls. In the case of multiplicative noise, existence of optimal controls and necessary conditions for optimality are derived. In the case of additive noise, we obtain a representation for the gradient of the cost functional via adjoint calculus. The restriction to deterministic controls and additive noise avoids the necessity of introducing a backward SPDE. Based on this novel representation, we present a probabilistic nonlinear conjugate gradient descent method to approximate the optimal control, and apply our results to the stochastic Schlögl model. We also present some analysis in the case where the optimal control for the stochastic system differs from the optimal control for the deterministic system.
References:
[1] |
A. Bensoussan,
Stochastic maximum principle for distributed parameter systems, Journal of the Franklin Institute, 315 (1983), 387-406.
doi: 10.1016/0016-0032(83)90059-5. |
[2] |
R. Buchholz, H. Engel, E. Kammann and F. Tröltzsch,
On the optimal control of the Schlögl-model, Computational Optimization and Applications, 56 (2013), 153-185.
doi: 10.1007/s10589-013-9550-y. |
[3] |
R. Buchholz, H. Engel, E. Kammann and F. Tröltzsch,
Erratum to: On the optimal control of the Schlögl-model, Computational Optimization and Applications, 56 (2013), 187-188.
doi: 10.1007/s10589-013-9570-7. |
[4] |
S. Cerrai,
Optimal control problems for stochastic reaction-diffusion systems with non-Lipschitz coefficients, SIAM Journal on Control and Optimization, 39 (2001), 1779-1816.
doi: 10.1137/S0363012999356465. |
[5] |
S. Cerrai, Second Order PDEs in Finite and Infinite Dimension: A Probabilistic Approach, Lecture Notes in Mathematics, Springer, 2001.
doi: 10.1007/b80743. |
[6] |
Z. X. Chen and B. Y. Guo,
Analytic solutions of the Nagumo equation, IMA Journal of Applied Mathematics, 48 (1992), 107-115.
doi: 10.1093/imamat/48.2.107. |
[7] |
F. Cordoni and L. Di Persio,
Optimal control for the stochastic FitzHugh-Nagumo model with recovery variable, Evolution Equations & Control Theory, 7 (2018), 571-585.
doi: 10.3934/eect.2018027. |
[8] |
F. Cordoni and L. Di Persio, Optimal control of the FitzHugh-Nagumo stochastic model with nonlinear diffusion, preprint, arXiv: 1912.00683. Google Scholar |
[9] |
G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 2014.
doi: 10.1017/CBO9781107295513.![]() ![]() |
[10] |
G. Fabbri, F. Gozzi and A. Swiech, Stochastic Optimal Control in Infinite Dimension, Dynamic programming and HJB equations. Probability Theory and Stochastic Modeling, Springer, 2017.
doi: 10.1007/978-3-319-53067-3. |
[11] |
F. Flandoli and D. Gatarek,
Martingale and stationary solutions for stochastic Navier-Stokes equations, Probability Theory and Related Fields, 102 (1995), 367-391.
doi: 10.1007/BF01192467. |
[12] |
M. Fuhrman, Y. Hu and G. Tessitore,
Stochastic maximum principle for optimal control of partial differential equations driven by white noise, Stochastics and Partial Differential Equations: Analysis and Computations, 6 (2018), 255-285.
doi: 10.1007/s40072-017-0108-3. |
[13] |
M. Fuhrman and C. Orrieri,
Stochastic maximum principle for optimal control of a class of nonlinear SPDEs with dissipative drift, SIAM Journal on Control and Optimization, 54 (2016), 341-371.
doi: 10.1137/15M1012888. |
[14] |
W. W. Hager and H. Zhang,
A survey of nonlinear conjugate gradient methods, Pac. J. Optim., 2 (2006), 35-58.
|
[15] |
I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, Springer, New York, 1991.
doi: 10.1007/978-1-4612-0949-2. |
[16] |
H. Lisei,
Existence of optimal and $\varepsilon$-optimal controls for the stochastic Navier-Stokes equation, Nonlinear Analysis: Theory, Methods and Applications, 51 (2002), 95-118.
doi: 10.1016/S0362-546X(01)00814-8. |
[17] |
W. Liu and M. Röckner, Stochastic Partial Differential Equations: An Introduction, Springer, Cham, 2015.
doi: 10.1007/978-3-319-22354-4. |
[18] |
G. J. Lord, C. E. Powell and T. Shardlow, An Introduction to Computational Stochastic PDEs, Cambridge University Press, 2014.
doi: 10.1017/CBO9781139017329.![]() ![]() |
[19] |
C. Marinelli and L. Scarpa,
Ergodicity and Kolmogorov equations for dissipative SPDEs with singular drift: A variational approach, Potential Analysis, 52 (2020), 69-103.
doi: 10.1007/s11118-018-9731-5. |
[20] |
F. Masiero,
Stochastic optimal control problems and parabolic equations in Banach spaces, SIAM Journal on Control and Optimization, 47 (2008), 251-300.
doi: 10.1137/050632725. |
[21] |
B. Øksendal,
Optimal control of stochastic partial differential equations, Stochastic Analysis and Applications, 23 (2005), 165-179.
doi: 10.1081/SAP-200044467. |
[22] |
T. Roubíček, Nonlinear Partial Differential Equations with Applications, Birkhäuser/Springer Basel AG, Basel, 2013. |
[23] |
C. Ryll, Optimal Control of Patterns in Some Reaction-Diffusion Systems, Ph.D thesis, Technische Universität Berlin, 2016. Google Scholar |
[24] |
C. Ryll, J. Löber, S. Martens, H. Engel and F. Tröltzsch, Analytical, optimal, and sparse optimal control of traveling wave solutions to reaction-diffusion systems, in Control of self-organizing nonlinear systems, (eds. E. Schöll, S. H. L. Klapp and P. Hövel), Springer, (2016), 189–210. |
[25] |
F. Tröltzsch, Optimal Control of Partial Differential Equations, Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2010.
doi: 10.1090/gsm/112. |
show all references
References:
[1] |
A. Bensoussan,
Stochastic maximum principle for distributed parameter systems, Journal of the Franklin Institute, 315 (1983), 387-406.
doi: 10.1016/0016-0032(83)90059-5. |
[2] |
R. Buchholz, H. Engel, E. Kammann and F. Tröltzsch,
On the optimal control of the Schlögl-model, Computational Optimization and Applications, 56 (2013), 153-185.
doi: 10.1007/s10589-013-9550-y. |
[3] |
R. Buchholz, H. Engel, E. Kammann and F. Tröltzsch,
Erratum to: On the optimal control of the Schlögl-model, Computational Optimization and Applications, 56 (2013), 187-188.
doi: 10.1007/s10589-013-9570-7. |
[4] |
S. Cerrai,
Optimal control problems for stochastic reaction-diffusion systems with non-Lipschitz coefficients, SIAM Journal on Control and Optimization, 39 (2001), 1779-1816.
doi: 10.1137/S0363012999356465. |
[5] |
S. Cerrai, Second Order PDEs in Finite and Infinite Dimension: A Probabilistic Approach, Lecture Notes in Mathematics, Springer, 2001.
doi: 10.1007/b80743. |
[6] |
Z. X. Chen and B. Y. Guo,
Analytic solutions of the Nagumo equation, IMA Journal of Applied Mathematics, 48 (1992), 107-115.
doi: 10.1093/imamat/48.2.107. |
[7] |
F. Cordoni and L. Di Persio,
Optimal control for the stochastic FitzHugh-Nagumo model with recovery variable, Evolution Equations & Control Theory, 7 (2018), 571-585.
doi: 10.3934/eect.2018027. |
[8] |
F. Cordoni and L. Di Persio, Optimal control of the FitzHugh-Nagumo stochastic model with nonlinear diffusion, preprint, arXiv: 1912.00683. Google Scholar |
[9] |
G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 2014.
doi: 10.1017/CBO9781107295513.![]() ![]() |
[10] |
G. Fabbri, F. Gozzi and A. Swiech, Stochastic Optimal Control in Infinite Dimension, Dynamic programming and HJB equations. Probability Theory and Stochastic Modeling, Springer, 2017.
doi: 10.1007/978-3-319-53067-3. |
[11] |
F. Flandoli and D. Gatarek,
Martingale and stationary solutions for stochastic Navier-Stokes equations, Probability Theory and Related Fields, 102 (1995), 367-391.
doi: 10.1007/BF01192467. |
[12] |
M. Fuhrman, Y. Hu and G. Tessitore,
Stochastic maximum principle for optimal control of partial differential equations driven by white noise, Stochastics and Partial Differential Equations: Analysis and Computations, 6 (2018), 255-285.
doi: 10.1007/s40072-017-0108-3. |
[13] |
M. Fuhrman and C. Orrieri,
Stochastic maximum principle for optimal control of a class of nonlinear SPDEs with dissipative drift, SIAM Journal on Control and Optimization, 54 (2016), 341-371.
doi: 10.1137/15M1012888. |
[14] |
W. W. Hager and H. Zhang,
A survey of nonlinear conjugate gradient methods, Pac. J. Optim., 2 (2006), 35-58.
|
[15] |
I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, Springer, New York, 1991.
doi: 10.1007/978-1-4612-0949-2. |
[16] |
H. Lisei,
Existence of optimal and $\varepsilon$-optimal controls for the stochastic Navier-Stokes equation, Nonlinear Analysis: Theory, Methods and Applications, 51 (2002), 95-118.
doi: 10.1016/S0362-546X(01)00814-8. |
[17] |
W. Liu and M. Röckner, Stochastic Partial Differential Equations: An Introduction, Springer, Cham, 2015.
doi: 10.1007/978-3-319-22354-4. |
[18] |
G. J. Lord, C. E. Powell and T. Shardlow, An Introduction to Computational Stochastic PDEs, Cambridge University Press, 2014.
doi: 10.1017/CBO9781139017329.![]() ![]() |
[19] |
C. Marinelli and L. Scarpa,
Ergodicity and Kolmogorov equations for dissipative SPDEs with singular drift: A variational approach, Potential Analysis, 52 (2020), 69-103.
doi: 10.1007/s11118-018-9731-5. |
[20] |
F. Masiero,
Stochastic optimal control problems and parabolic equations in Banach spaces, SIAM Journal on Control and Optimization, 47 (2008), 251-300.
doi: 10.1137/050632725. |
[21] |
B. Øksendal,
Optimal control of stochastic partial differential equations, Stochastic Analysis and Applications, 23 (2005), 165-179.
doi: 10.1081/SAP-200044467. |
[22] |
T. Roubíček, Nonlinear Partial Differential Equations with Applications, Birkhäuser/Springer Basel AG, Basel, 2013. |
[23] |
C. Ryll, Optimal Control of Patterns in Some Reaction-Diffusion Systems, Ph.D thesis, Technische Universität Berlin, 2016. Google Scholar |
[24] |
C. Ryll, J. Löber, S. Martens, H. Engel and F. Tröltzsch, Analytical, optimal, and sparse optimal control of traveling wave solutions to reaction-diffusion systems, in Control of self-organizing nonlinear systems, (eds. E. Schöll, S. H. L. Klapp and P. Hövel), Springer, (2016), 189–210. |
[25] |
F. Tröltzsch, Optimal Control of Partial Differential Equations, Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2010.
doi: 10.1090/gsm/112. |










[1] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[2] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[3] |
Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021005 |
[4] |
Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223 |
[5] |
J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008 |
[6] |
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 |
[7] |
María J. Garrido-Atienza, Bohdan Maslowski, Jana Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088 |
[8] |
Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021066 |
[9] |
Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021004 |
[10] |
Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192 |
[11] |
Shangzhi Li, Shangjiang Guo. Permanence and extinction of a stochastic SIS epidemic model with three independent Brownian motions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2693-2719. doi: 10.3934/dcdsb.2020201 |
[12] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[13] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[14] |
Xiaohu Wang, Dingshi Li, Jun Shen. Wong-Zakai approximations and attractors for stochastic wave equations driven by additive noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2829-2855. doi: 10.3934/dcdsb.2020207 |
[15] |
Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113 |
[16] |
Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021009 |
[17] |
Seung-Yeal Ha, Dongnam Ko, Chanho Min, Xiongtao Zhang. Emergent collective behaviors of stochastic kuramoto oscillators. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1059-1081. doi: 10.3934/dcdsb.2019208 |
[18] |
Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023 |
[19] |
Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827 |
[20] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
2019 Impact Factor: 0.953
Tools
Article outline
Figures and Tables
[Back to Top]