• Previous Article
    Stabilization of higher order Schrödinger equations on a finite interval: Part I
  • EECT Home
  • This Issue
  • Next Article
    Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives
doi: 10.3934/eect.2020088

Lifespan of solutions to a parabolic type Kirchhoff equation with time-dependent nonlinearity

School of Mathematics, Changchun Normal University, Changchun, 130032, China

* Corresponding author: Haixia Li

Received  April 2020 Revised  July 2020 Published  August 2020

Fund Project: The author is supported by NSFC (11626044), by NSF of Changchun Normal University (2015-002) and by Scientific Research Foundation for Talented Scholars of Changchun Normal University (RC2016-008)

In this paper, an initial boundary value problem for a parabolic type Kirchhoff equation with time-dependent nonlinearity is considered. A new blow-up criterion for nonnegative initial energy is given and upper and lower bounds for the blow-up time are also derived. These results partially generalize some recent ones obtained by Han and Li in [Threshold results for the existence of global and blow-up solutions to Kirchhoff equations with arbitrary initial energy, Computers and Mathematics with Applications, 75(2018), 3283-3297].

Citation: Haixia Li. Lifespan of solutions to a parabolic type Kirchhoff equation with time-dependent nonlinearity. Evolution Equations & Control Theory, doi: 10.3934/eect.2020088
References:
[1]

M. ChipotV. Valente and G. Vergara Caffarelli, Remarks on a nonlocal problem involving the Dirichlet energy, Rend. Sem. Math. Univ. Padova, 110 (2003), 199-220.   Google Scholar

[2]

P. D'Ancona and S. Spagnolo, Global solvability for the degenerate Kirchhoff equation with real analytic data, Invent. Math., 108 (1992), 247-262.  doi: 10.1007/BF02100605.  Google Scholar

[3]

Y. Fu and M. Xiang, Existence of solutions for parabolic equations of Kirchhoff type involving variable exponent, Appl. Anal., 95 (2016), 524-544. doi: 10.1080/00036811.2015.1022153.  Google Scholar

[4]

Y. Han, A class of fourth-order parabolic equation with arbitrary initial energy, Nonlinear Anal., RWA, 43 (2018), 451-466.  doi: 10.1016/j.nonrwa.2018.03.009.  Google Scholar

[5]

Y. Han, A new blow-up criterion for non-Newton filtration equations with special medium void, Rocky Mountain J. Math., 48 (2018), 2489-2501.  doi: 10.1216/RMJ-2018-48-8-2489.  Google Scholar

[6]

Y. HanW. GaoZ. Sun and H. Li, Upper and lower bounds of blow-up time to a parabolic type Kirchhoff equation with arbitrary initial energy, Comput. Math. Appl., 76 (2018), 2477-2483.  doi: 10.1016/j.camwa.2018.08.043.  Google Scholar

[7]

Y. Han and Q. Li, Threshold results for the existence of global and blow-up solutions to Kirchhoff equations with arbitrary initial energy, Comput. Math. Appl., 75 (2018), 3283-3297.  doi: 10.1016/j.camwa.2018.01.047.  Google Scholar

[8]

H. A. Levine, Some nonexistence and instability theorems for solutions of formally parabolic equation of the form $Pu_t=-Au+\mathcal{F}u$, Arch. Ration. Mech. Anal., 51 (1973), 371-386.  doi: 10.1007/BF00263041.  Google Scholar

[9]

J. Li and Y. Han, Global existence and finite time blow-up of solutions to a nonlocal $p$-Laplace equation, Math. Modelling Anal., 24 (2019), 195-217.  doi: 10.3846/mma.2019.014.  Google Scholar

[10]

G. A. Philippin, Blow-up phenomena for a class of fourth-order parabolic problems, Proceedings AMS, 143 (2015), 2507-2513.  doi: 10.1090/S0002-9939-2015-12446-X.  Google Scholar

[11]

C. Qu and W. Zhou, Blow-up and extinction for a thin-film equation with initial-boundary value conditions, J. Math. Anal. Appl., 436 (2016), 796-809.  doi: 10.1016/j.jmaa.2015.11.075.  Google Scholar

[12]

F. SunL. Liu and Y. Wu, Finite time blow-up for a class of parabolic or pseudo-parabolic equations, Computers Math. Appl., 75 (2018), 3685-3701.  doi: 10.1016/j.camwa.2018.02.025.  Google Scholar

[13]

S. Zheng and M. Chipot, Asymptotic behavior of solutions to nonlinear parabolic equations with nonlocal terms, Asymp. Anal., 45 (2005), 301-312.   Google Scholar

show all references

References:
[1]

M. ChipotV. Valente and G. Vergara Caffarelli, Remarks on a nonlocal problem involving the Dirichlet energy, Rend. Sem. Math. Univ. Padova, 110 (2003), 199-220.   Google Scholar

[2]

P. D'Ancona and S. Spagnolo, Global solvability for the degenerate Kirchhoff equation with real analytic data, Invent. Math., 108 (1992), 247-262.  doi: 10.1007/BF02100605.  Google Scholar

[3]

Y. Fu and M. Xiang, Existence of solutions for parabolic equations of Kirchhoff type involving variable exponent, Appl. Anal., 95 (2016), 524-544. doi: 10.1080/00036811.2015.1022153.  Google Scholar

[4]

Y. Han, A class of fourth-order parabolic equation with arbitrary initial energy, Nonlinear Anal., RWA, 43 (2018), 451-466.  doi: 10.1016/j.nonrwa.2018.03.009.  Google Scholar

[5]

Y. Han, A new blow-up criterion for non-Newton filtration equations with special medium void, Rocky Mountain J. Math., 48 (2018), 2489-2501.  doi: 10.1216/RMJ-2018-48-8-2489.  Google Scholar

[6]

Y. HanW. GaoZ. Sun and H. Li, Upper and lower bounds of blow-up time to a parabolic type Kirchhoff equation with arbitrary initial energy, Comput. Math. Appl., 76 (2018), 2477-2483.  doi: 10.1016/j.camwa.2018.08.043.  Google Scholar

[7]

Y. Han and Q. Li, Threshold results for the existence of global and blow-up solutions to Kirchhoff equations with arbitrary initial energy, Comput. Math. Appl., 75 (2018), 3283-3297.  doi: 10.1016/j.camwa.2018.01.047.  Google Scholar

[8]

H. A. Levine, Some nonexistence and instability theorems for solutions of formally parabolic equation of the form $Pu_t=-Au+\mathcal{F}u$, Arch. Ration. Mech. Anal., 51 (1973), 371-386.  doi: 10.1007/BF00263041.  Google Scholar

[9]

J. Li and Y. Han, Global existence and finite time blow-up of solutions to a nonlocal $p$-Laplace equation, Math. Modelling Anal., 24 (2019), 195-217.  doi: 10.3846/mma.2019.014.  Google Scholar

[10]

G. A. Philippin, Blow-up phenomena for a class of fourth-order parabolic problems, Proceedings AMS, 143 (2015), 2507-2513.  doi: 10.1090/S0002-9939-2015-12446-X.  Google Scholar

[11]

C. Qu and W. Zhou, Blow-up and extinction for a thin-film equation with initial-boundary value conditions, J. Math. Anal. Appl., 436 (2016), 796-809.  doi: 10.1016/j.jmaa.2015.11.075.  Google Scholar

[12]

F. SunL. Liu and Y. Wu, Finite time blow-up for a class of parabolic or pseudo-parabolic equations, Computers Math. Appl., 75 (2018), 3685-3701.  doi: 10.1016/j.camwa.2018.02.025.  Google Scholar

[13]

S. Zheng and M. Chipot, Asymptotic behavior of solutions to nonlinear parabolic equations with nonlocal terms, Asymp. Anal., 45 (2005), 301-312.   Google Scholar

[1]

Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021011

[2]

Asato Mukai, Yukihiro Seki. Refined construction of type II blow-up solutions for semilinear heat equations with Joseph–Lundgren supercritical nonlinearity. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021060

[3]

Paul Deuring. Spatial asymptotics of mild solutions to the time-dependent Oseen system. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021044

[4]

Ying Sui, Huimin Yu. Singularity formation for compressible Euler equations with time-dependent damping. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021062

[5]

Bouthaina Abdelhedi, Hatem Zaag. Single point blow-up and final profile for a perturbed nonlinear heat equation with a gradient and a non-local term. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021032

[6]

Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, 2021, 20 (3) : 995-1023. doi: 10.3934/cpaa.2021003

[7]

Yueqiang Shang, Qihui Zhang. A subgrid stabilizing postprocessed mixed finite element method for the time-dependent Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3119-3142. doi: 10.3934/dcdsb.2020222

[8]

Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, 2021, 15 (3) : 499-517. doi: 10.3934/ipi.2021002

[9]

Xiongxiong Bao, Wan-Tong Li. Existence and stability of generalized transition waves for time-dependent reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3621-3641. doi: 10.3934/dcdsb.2020249

[10]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[11]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[12]

Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194

[13]

Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021091

[14]

Huan Zhang, Jun Zhou. Asymptotic behaviors of solutions to a sixth-order Boussinesq equation with logarithmic nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021034

[15]

Wided Kechiche. Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021031

[16]

Hui Yang, Yuzhu Han. Initial boundary value problem for a strongly damped wave equation with a general nonlinearity. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021019

[17]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1779-1799. doi: 10.3934/dcdss.2020454

[18]

Pengyan Ding, Zhijian Yang. Well-posedness and attractor for a strongly damped wave equation with supercritical nonlinearity on $ \mathbb{R}^{N} $. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1059-1076. doi: 10.3934/cpaa.2021006

[19]

Andrew Comech, Elena Kopylova. Orbital stability and spectral properties of solitary waves of Klein–Gordon equation with concentrated nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021063

[20]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (70)
  • HTML views (278)
  • Cited by (0)

Other articles
by authors

[Back to Top]