\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Lifespan of solutions to a parabolic type Kirchhoff equation with time-dependent nonlinearity

  • * Corresponding author: Haixia Li

    * Corresponding author: Haixia Li

The author is supported by NSFC (11626044), by NSF of Changchun Normal University (2015-002) and by Scientific Research Foundation for Talented Scholars of Changchun Normal University (RC2016-008)

Abstract Full Text(HTML) Related Papers Cited by
  • In this paper, an initial boundary value problem for a parabolic type Kirchhoff equation with time-dependent nonlinearity is considered. A new blow-up criterion for nonnegative initial energy is given and upper and lower bounds for the blow-up time are also derived. These results partially generalize some recent ones obtained by Han and Li in [Threshold results for the existence of global and blow-up solutions to Kirchhoff equations with arbitrary initial energy, Computers and Mathematics with Applications, 75(2018), 3283-3297].

    Mathematics Subject Classification: Primary: 35K20; Secondary: 35K59.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] M. ChipotV. Valente and G. Vergara Caffarelli, Remarks on a nonlocal problem involving the Dirichlet energy, Rend. Sem. Math. Univ. Padova, 110 (2003), 199-220. 
    [2] P. D'Ancona and S. Spagnolo, Global solvability for the degenerate Kirchhoff equation with real analytic data, Invent. Math., 108 (1992), 247-262.  doi: 10.1007/BF02100605.
    [3] Y. Fu and M. Xiang, Existence of solutions for parabolic equations of Kirchhoff type involving variable exponent, Appl. Anal., 95 (2016), 524-544. doi: 10.1080/00036811.2015.1022153.
    [4] Y. Han, A class of fourth-order parabolic equation with arbitrary initial energy, Nonlinear Anal., RWA, 43 (2018), 451-466.  doi: 10.1016/j.nonrwa.2018.03.009.
    [5] Y. Han, A new blow-up criterion for non-Newton filtration equations with special medium void, Rocky Mountain J. Math., 48 (2018), 2489-2501.  doi: 10.1216/RMJ-2018-48-8-2489.
    [6] Y. HanW. GaoZ. Sun and H. Li, Upper and lower bounds of blow-up time to a parabolic type Kirchhoff equation with arbitrary initial energy, Comput. Math. Appl., 76 (2018), 2477-2483.  doi: 10.1016/j.camwa.2018.08.043.
    [7] Y. Han and Q. Li, Threshold results for the existence of global and blow-up solutions to Kirchhoff equations with arbitrary initial energy, Comput. Math. Appl., 75 (2018), 3283-3297.  doi: 10.1016/j.camwa.2018.01.047.
    [8] H. A. Levine, Some nonexistence and instability theorems for solutions of formally parabolic equation of the form $Pu_t=-Au+\mathcal{F}u$, Arch. Ration. Mech. Anal., 51 (1973), 371-386.  doi: 10.1007/BF00263041.
    [9] J. Li and Y. Han, Global existence and finite time blow-up of solutions to a nonlocal $p$-Laplace equation, Math. Modelling Anal., 24 (2019), 195-217.  doi: 10.3846/mma.2019.014.
    [10] G. A. Philippin, Blow-up phenomena for a class of fourth-order parabolic problems, Proceedings AMS, 143 (2015), 2507-2513.  doi: 10.1090/S0002-9939-2015-12446-X.
    [11] C. Qu and W. Zhou, Blow-up and extinction for a thin-film equation with initial-boundary value conditions, J. Math. Anal. Appl., 436 (2016), 796-809.  doi: 10.1016/j.jmaa.2015.11.075.
    [12] F. SunL. Liu and Y. Wu, Finite time blow-up for a class of parabolic or pseudo-parabolic equations, Computers Math. Appl., 75 (2018), 3685-3701.  doi: 10.1016/j.camwa.2018.02.025.
    [13] S. Zheng and M. Chipot, Asymptotic behavior of solutions to nonlinear parabolic equations with nonlocal terms, Asymp. Anal., 45 (2005), 301-312. 
  • 加载中
SHARE

Article Metrics

HTML views(850) PDF downloads(358) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return