• Previous Article
    A remark on the attainable set of the Schrödinger equation
  • EECT Home
  • This Issue
  • Next Article
    A blow – up result for the semilinear Moore – Gibson – Thompson equation with nonlinearity of derivative type in the conservative case
doi: 10.3934/eect.2020091

Approximate controllability of network systems

1. 

Faculty of Sciences, Department of Mathematics, Ibn Zohr University, Hay Dakhla, BP8106, 80000–Agadir, Morocco

2. 

Dipartimento di Ingegneria dell'Informazione, Ingegneria Elettrica e Matematica Applicata, Università degli Studi di Salerno, Via Giovanni Paolo Ⅱ, 132, 84084 Fisciano (Sa), Italy

* Corresponding author: Abdelaziz Rhandi

Dedicated to Rainer Nagel on the occasion of his 80th-Birthday

Received  October 2019 Revised  July 2020 Published  September 2020

Fund Project: This work has been supported by the COST Action CA18232. The third author is a member of the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM)

In this paper, the rich feedback theory of regular linear systems in the Salamon-Weiss sense as well as some advanced tools in semigroup theory are used to formulate and solve control problems for network systems. In fact, we derive necessary and sufficient conditions for approximate controllability of such systems. These criteria, in some particular cases, are given by the well-known Kalman's controllability rank condition.

Citation: Yassine El Gantouh, Said Hadd, Abdelaziz Rhandi. Approximate controllability of network systems. Evolution Equations & Control Theory, doi: 10.3934/eect.2020091
References:
[1]

R. K. Ahuja, T. L. Magnanti and J. B. Orlin, Network Flows: Theory, Algorithms and Applications, Prentice Hall, Inc., Englewood Cliffs, NJ, 1993.  Google Scholar

[2]

F. BayazitB. Dorn and A. Rhandi, Flows in networks with delay in the vertices, Math. Nachr., 285 (2012), 1603-1615.  doi: 10.1002/mana.201100163.  Google Scholar

[3]

S. BoccalettiV. LatoraY. MorenoM. Chavez and D. U. Hwang, Complex networks: Structure and dynamics, Phys. Rep., 424 (2006), 175-308.  doi: 10.1016/j.physrep.2005.10.009.  Google Scholar

[4]

B. Bolobás, Modern Graph Theory, Springer-Verlag, New York, 1998. Google Scholar

[5] J. Casti, Linear Dynamical Systems, Academic Press, Orlando, Florida, 1987.   Google Scholar
[6]

B. Dorn, Flows in Infinite Networks - A Semigroup Approach, Ph.D thesis, Tuebingen University, Germany, 2008. Google Scholar

[7]

B. DornM. Kramar Fijav$\tilde z$R. Nagel and A. Radl, The semigroup approach to transport processes in networks, Phys. D, 239 (2010), 1416-1421.  doi: 10.1016/j.physd.2009.06.012.  Google Scholar

[8]

M. El AzzouziH. BouslousL. Maniar and S. Boulite, Constrained approximate controllability of boundary control systems, IMA J. Math. Control Inform., 33 (2016), 669-683.  doi: 10.1093/imamci/dnv002.  Google Scholar

[9]

K.-J. Engel and M. Kramar Fijav$\tilde z$, Exact and positive controllability of boundary control systems, Netw. Heterog. Media, 12 (2017), 319-337.  doi: 10.3934/nhm.2017014.  Google Scholar

[10]

K.-J. EngelM. Kramar Fijav$\tilde z$R. Nagel and E. Sikolya, Vertex control of flows in networks, Netw. Heterog. Media, 3 (2008), 709-722.  doi: 10.3934/nhm.2008.3.709.  Google Scholar

[11]

K.-J. EngelB. KlössM. Kramar Fijav$\tilde z$R. Nagel and E. Sikolya, Maximal controllability for boundary control problems, Appl. Math. Optim., 62 (2010), 205-227.  doi: 10.1007/s00245-010-9101-1.  Google Scholar

[12]

K.-J. Engel and R. Nagel, One-parameter Semigroups for Linear Evolution Equations, Springer-Verlag, New York, 2000.  Google Scholar

[13]

H. O. Fattorini, Boundary control systems, SIAM J. Control, 6 (1968), 349-385.  doi: 10.1137/0306025.  Google Scholar

[14]

G. Greiner, Perturbing the boundary conditions of a generator, Houston J. Math., 13 (1987), 213-229.   Google Scholar

[15]

S. Hadd, An Evolution Equation Approach, Ph.D thesis, Cadi Ayyad University, Marrakech, 2005. Google Scholar

[16]

S. HaddR. Manzo and A. Rhandi, Unbounded perturbations of the generator domain, Discrete Contin. Dyn. Syst., 35 (2015), 703-723.  doi: 10.3934/dcds.2015.35.703.  Google Scholar

[17]

U. Knauer, Algeberaic Graph Theory. Morphisms, Monoids and Matrices, De Gruyter Studies in Mathematics, Vol. 41, Walter de Gruyter & Co., Berlin, 2011. doi: 10.1515/9783110255096.  Google Scholar

[18]

M. Kramar and E. Sikolya, Spectral properties and asymptotic periodicity of flows in networks, Math. Z., 249 (2005), 139-162.  doi: 10.1007/s00209-004-0695-3.  Google Scholar

[19]

C.-T. Lin, Structural controllability, IEEE Trans. Automatic Control, AC-19 (1974), 201-208.  doi: 10.1109/tac.1974.1100557.  Google Scholar

[20]

Y.-Y. LiuJ.-J. Slotine and A.-L. Barabasi, Controllability of complex networks, Nature, 473 (2011), 167-173.  doi: 10.1038/nature10011.  Google Scholar

[21]

T. Matrai and E. Sikolya, Asymptotic behavior of flows in networks, Forum Math., 19 (2007), 429-461.  doi: 10.1515/FORUM.2007.018.  Google Scholar

[22]

D. Salamon, Infinite-dimensional linear system with unbounded control and observation: A functional analytic approach, Trans. Amer. Math. Soc., 300 (1987), 383-431.  doi: 10.2307/2000351.  Google Scholar

[23]

R. W. Shields and J. B. Pearson, Structural controllability of multi-input linear systems, IEEE Trans. Automat. Control, AC-21 (1976), 203-212.  doi: 10.1109/tac.1976.1101198.  Google Scholar

[24]

E. Sikolya, Semigroups for Flows in Networks, Ph.D thesis, Tuebingen University, Germany, 2004. Google Scholar

[25] O. J. Staffans, Well-posed Linear Systems, Cambridge Univ. Press, Cambridge, 2005.  doi: 10.1017/CBO9780511543197.  Google Scholar
[26]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-8994-9.  Google Scholar

[27]

G. Weiss, Admissible observation operators for linear semigoups, Israel J. Math., 65 (1989), 17-43.  doi: 10.1007/BF02788172.  Google Scholar

[28]

G. Weiss, Admissibility of unbounded control operators, SIAM J. Control Optim., 27 (1989), 527-545.  doi: 10.1137/0327028.  Google Scholar

[29]

G. Weiss, Transfer functions of regular linear systems. Part Ⅰ: Characterizations of regularity, Trans. Amer. Math. Soc., 342 (1994), 827-854.  doi: 10.2307/2154655.  Google Scholar

[30]

G. Weiss, Regular linear systems with feedback, Math. Control Signals Systems, 7 (1994), 23-57.  doi: 10.1007/BF01211484.  Google Scholar

show all references

References:
[1]

R. K. Ahuja, T. L. Magnanti and J. B. Orlin, Network Flows: Theory, Algorithms and Applications, Prentice Hall, Inc., Englewood Cliffs, NJ, 1993.  Google Scholar

[2]

F. BayazitB. Dorn and A. Rhandi, Flows in networks with delay in the vertices, Math. Nachr., 285 (2012), 1603-1615.  doi: 10.1002/mana.201100163.  Google Scholar

[3]

S. BoccalettiV. LatoraY. MorenoM. Chavez and D. U. Hwang, Complex networks: Structure and dynamics, Phys. Rep., 424 (2006), 175-308.  doi: 10.1016/j.physrep.2005.10.009.  Google Scholar

[4]

B. Bolobás, Modern Graph Theory, Springer-Verlag, New York, 1998. Google Scholar

[5] J. Casti, Linear Dynamical Systems, Academic Press, Orlando, Florida, 1987.   Google Scholar
[6]

B. Dorn, Flows in Infinite Networks - A Semigroup Approach, Ph.D thesis, Tuebingen University, Germany, 2008. Google Scholar

[7]

B. DornM. Kramar Fijav$\tilde z$R. Nagel and A. Radl, The semigroup approach to transport processes in networks, Phys. D, 239 (2010), 1416-1421.  doi: 10.1016/j.physd.2009.06.012.  Google Scholar

[8]

M. El AzzouziH. BouslousL. Maniar and S. Boulite, Constrained approximate controllability of boundary control systems, IMA J. Math. Control Inform., 33 (2016), 669-683.  doi: 10.1093/imamci/dnv002.  Google Scholar

[9]

K.-J. Engel and M. Kramar Fijav$\tilde z$, Exact and positive controllability of boundary control systems, Netw. Heterog. Media, 12 (2017), 319-337.  doi: 10.3934/nhm.2017014.  Google Scholar

[10]

K.-J. EngelM. Kramar Fijav$\tilde z$R. Nagel and E. Sikolya, Vertex control of flows in networks, Netw. Heterog. Media, 3 (2008), 709-722.  doi: 10.3934/nhm.2008.3.709.  Google Scholar

[11]

K.-J. EngelB. KlössM. Kramar Fijav$\tilde z$R. Nagel and E. Sikolya, Maximal controllability for boundary control problems, Appl. Math. Optim., 62 (2010), 205-227.  doi: 10.1007/s00245-010-9101-1.  Google Scholar

[12]

K.-J. Engel and R. Nagel, One-parameter Semigroups for Linear Evolution Equations, Springer-Verlag, New York, 2000.  Google Scholar

[13]

H. O. Fattorini, Boundary control systems, SIAM J. Control, 6 (1968), 349-385.  doi: 10.1137/0306025.  Google Scholar

[14]

G. Greiner, Perturbing the boundary conditions of a generator, Houston J. Math., 13 (1987), 213-229.   Google Scholar

[15]

S. Hadd, An Evolution Equation Approach, Ph.D thesis, Cadi Ayyad University, Marrakech, 2005. Google Scholar

[16]

S. HaddR. Manzo and A. Rhandi, Unbounded perturbations of the generator domain, Discrete Contin. Dyn. Syst., 35 (2015), 703-723.  doi: 10.3934/dcds.2015.35.703.  Google Scholar

[17]

U. Knauer, Algeberaic Graph Theory. Morphisms, Monoids and Matrices, De Gruyter Studies in Mathematics, Vol. 41, Walter de Gruyter & Co., Berlin, 2011. doi: 10.1515/9783110255096.  Google Scholar

[18]

M. Kramar and E. Sikolya, Spectral properties and asymptotic periodicity of flows in networks, Math. Z., 249 (2005), 139-162.  doi: 10.1007/s00209-004-0695-3.  Google Scholar

[19]

C.-T. Lin, Structural controllability, IEEE Trans. Automatic Control, AC-19 (1974), 201-208.  doi: 10.1109/tac.1974.1100557.  Google Scholar

[20]

Y.-Y. LiuJ.-J. Slotine and A.-L. Barabasi, Controllability of complex networks, Nature, 473 (2011), 167-173.  doi: 10.1038/nature10011.  Google Scholar

[21]

T. Matrai and E. Sikolya, Asymptotic behavior of flows in networks, Forum Math., 19 (2007), 429-461.  doi: 10.1515/FORUM.2007.018.  Google Scholar

[22]

D. Salamon, Infinite-dimensional linear system with unbounded control and observation: A functional analytic approach, Trans. Amer. Math. Soc., 300 (1987), 383-431.  doi: 10.2307/2000351.  Google Scholar

[23]

R. W. Shields and J. B. Pearson, Structural controllability of multi-input linear systems, IEEE Trans. Automat. Control, AC-21 (1976), 203-212.  doi: 10.1109/tac.1976.1101198.  Google Scholar

[24]

E. Sikolya, Semigroups for Flows in Networks, Ph.D thesis, Tuebingen University, Germany, 2004. Google Scholar

[25] O. J. Staffans, Well-posed Linear Systems, Cambridge Univ. Press, Cambridge, 2005.  doi: 10.1017/CBO9780511543197.  Google Scholar
[26]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-8994-9.  Google Scholar

[27]

G. Weiss, Admissible observation operators for linear semigoups, Israel J. Math., 65 (1989), 17-43.  doi: 10.1007/BF02788172.  Google Scholar

[28]

G. Weiss, Admissibility of unbounded control operators, SIAM J. Control Optim., 27 (1989), 527-545.  doi: 10.1137/0327028.  Google Scholar

[29]

G. Weiss, Transfer functions of regular linear systems. Part Ⅰ: Characterizations of regularity, Trans. Amer. Math. Soc., 342 (1994), 827-854.  doi: 10.2307/2154655.  Google Scholar

[30]

G. Weiss, Regular linear systems with feedback, Math. Control Signals Systems, 7 (1994), 23-57.  doi: 10.1007/BF01211484.  Google Scholar

[1]

Kuntal Bhandari, Franck Boyer. Boundary null-controllability of coupled parabolic systems with Robin conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 61-102. doi: 10.3934/eect.2020052

[2]

Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034

[3]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[4]

Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021004

[5]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[6]

Nitha Niralda P C, Sunil Mathew. On properties of similarity boundary of attractors in product dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021004

[7]

Duy Phan. Approximate controllability for Navier–Stokes equations in $ \rm3D $ cylinders under Lions boundary conditions by an explicit saturating set. Evolution Equations & Control Theory, 2021, 10 (1) : 199-227. doi: 10.3934/eect.2020062

[8]

Duy Phan, Lassi Paunonen. Finite-dimensional controllers for robust regulation of boundary control systems. Mathematical Control & Related Fields, 2021, 11 (1) : 95-117. doi: 10.3934/mcrf.2020029

[9]

Yicheng Liu, Yipeng Chen, Jun Wu, Xiao Wang. Periodic consensus in network systems with general distributed processing delays. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2021002

[10]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001

[11]

Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164

[12]

Lei Yang, Lianzhang Bao. Numerical study of vanishing and spreading dynamics of chemotaxis systems with logistic source and a free boundary. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1083-1109. doi: 10.3934/dcdsb.2020154

[13]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[14]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[15]

Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230

[16]

Tomáš Bodnár, Philippe Fraunié, Petr Knobloch, Hynek Řezníček. Numerical evaluation of artificial boundary condition for wall-bounded stably stratified flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 785-801. doi: 10.3934/dcdss.2020333

[17]

Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020104

[18]

Oleg Yu. Imanuvilov, Jean Pierre Puel. On global controllability of 2-D Burgers equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 299-313. doi: 10.3934/dcds.2009.23.299

[19]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[20]

Xiaofeng Ren, David Shoup. The impact of the domain boundary on an inhibitory system: Interior discs and boundary half discs. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3957-3979. doi: 10.3934/dcds.2020048

2019 Impact Factor: 0.953

Article outline

[Back to Top]