-
Previous Article
Non-autonomous 2D Newton-Boussinesq equation with oscillating external forces and its uniform attractor
- EECT Home
- This Issue
-
Next Article
Some results on the behaviour of transfer functions at the right half plane
Uniform stability in a vectorial full Von Kármán thermoelastic system with solenoidal dissipation and free boundary conditions
Wayne State University, Department of Mathematics, Detroit, MI 48201 USA |
We will consider the full von Kármán thermoelastic system with free boundary conditions and dissipation imposed only on the in-plane displacement. It will be shown that the corresponding solutions are exponentially stable, though there is no mechanical dissipation on the vertical displacements. The main tools used are: (i) partial analyticity of the linearized semigroup and (ii) trace estimates which exploit the hidden regularity harvested from partial analyticity.
References:
[1] |
G. Avalos and I. Lasiecka,
Exponential stability of a thermoelastic system without mechanical dissipation, Rend. Istit. Mat. Univ. Trieste, 28 (1997), 1-28.
|
[2] |
M. Belishev and I. Lasiecka,
The dynamical Lamé system: Regularity of solutions, boundary controllability and boundary data continuation, ESAIM, Control Optim. Calc. Var., 8 (2002), 143-167.
doi: 10.1051/cocv:2002058. |
[3] |
A. Benabdallah, Modeling of Von Kármán system with thermal effects, Prepublications de L'equipe de Mathematiques de Besancon, 99 (1999). Google Scholar |
[4] |
A. Benabdallah and I. Lasiecka,
Exponential decay rates for a full Von Kármán system of dynamic thermoelasticity, J. Differential Equations, 160 (2000), 51-93.
doi: 10.1006/jdeq.1999.3656. |
[5] |
A. Benabdallah and I. Lasiecka,
Exponential decay rates for a full Von Kármán thermoelastic system with nonlinear thermal coupling, ESIAM: Proceedings. Contrôle des systèmes gouvernés par des équations aux dérivées partielles, 8 (2000), 13-38.
doi: 10.1051/proc:2000002. |
[6] |
A. Benabdallah and D. Teniou, Exponential stability of a Von Kármán model with thermal effects, Electronic Journal of Differential Equations, (1998), 1–13. |
[7] |
A. Bensoussan, G. Da Prato, M. Delfour and S. Mitter and K. Sanjoy, Representation and Control of Infinite Dimensional Systems, 2$^nd$ edition, Birkhäuser Boston, Inc., Boston, MA, 2007.
doi: 10.1007/978-0-8176-4581-6. |
[8] |
P. G. Ciarlet, Mathematical Elasticity. Vol. Ⅲ. Theory of Shells, in Studies in Mathematics and its Applications, Vol. 29, North-Holland Publishing Co., Amsterdam, 2000. |
[9] |
P. G. Ciarlet and P.Rabier, Les Equations de Von Karman, Springer, Berlin, 1980. |
[10] |
C. M. Dafermos,
On the existence and asymptotic stability of solutions to the equations of linear thermoelasticity, Archive for Rational Mechanics and Analysis, 29 (1968), 241-271.
doi: 10.1007/BF00276727. |
[11] |
E. H. Dowell, A Modern Course in Aeroelasticity, 5th edition, Springer, Cham, 2015.
doi: 10.1007/978-3-319-09453-3. |
[12] |
A. Favini, M. Horn, I. Lasiecka and D. Tataru,
Global existence, uniqueness and regularity of solutions to a von Kármán system with nonlinear boundary dissipation, Differential Integral Equation, 9 (1996), 267-294.
|
[13] |
I. Chueshov and I. Lasiecka, Von Kármán Evolution Equations, Springer, New York, 2010.
doi: 10.1007/978-0-387-87712-9. |
[14] |
J. U. Kim,
On the energy decay of a linear thermoelastic bar and plate, SIAM J. Math. Anal., 23 (1992), 889-899.
doi: 10.1137/0523047. |
[15] |
H. Koch,
Slow decay in linear thermoelasticity, Quart. Appl. Math, 58 (2000), 601-612.
doi: 10.1090/qam/1788420. |
[16] |
H. Koch and I. Lasiecka, Hadamard well-posedness of weak solutions in nonlinear dynamic elasticity – full von Kármán systems, in Progress in Nonlinear Differential Equations and their Appl., Vol. 50, Birkhäuser, Basel, 2002. |
[17] |
W. T. Koiter,
On the nonlinear theory of thin elastic shells, Nederl. Akad. Wetensch. Proc. Ser. B, 69 (1966), 1-54.
|
[18] |
J. Lagnese, Boundary Stabilization of Thin Plates, SIAM, Philadelphia, PA, 1989.
doi: 10.1137/1.9781611970821. |
[19] |
J. Lagnese and G. Leugering,
Uniform stabilization of a nonlinear beam by nonlinear boundary feedback, J. Differential Equations, 91 (1991), 355-388.
doi: 10.1016/0022-0396(91)90145-Y. |
[20] |
J. Lagnese and J.-L. Lions, Modelling analysis and control of thin plates, in Research in Applied Mathematics, Vol. 6, Masson, Paris, 1988. |
[21] |
I. Lasiecka,
Uniform stabilizability of a full von Kármán system with nonlinear boundary feedback, SIAM J. Control Optim., 36 (1998), 1376-1422.
doi: 10.1137/S0363012996301907. |
[22] |
I. Lasiecka,
Uniform decay rates for full von Kármán system of dynamic thermoelasticity with free boundary conditions and partial boundary dissipation, Comm. Partial Differential Equations, 24 (1999), 1801-1847.
doi: 10.1080/03605309908821483. |
[23] |
I. Lasiecka, Mathematical Control Theory of Coupled PDEs, SIAM, Philadelphia, PA, 2002.
doi: 10.1137/1.9780898717099. |
[24] |
I. Lasiecka, J. L. Lions and R. Triggiani,
Nonhomogeneous boundary value problems for second-order hyperbolic operators, J. Math. Pures Appl., 65 (1986), 149-192.
|
[25] |
I. Lasiecka, T. Ma and R. Montiero,
Global smooth attractors for dynamics of thermal shallow shells without vertical dissipation, Trans. Amer. Math. Soc., 371 (2019), 8051-8096.
doi: 10.1090/tran/7756. |
[26] |
I. Lasiecka, T. Ma and R. Montiero,
Long-time dynamics of vectorial von Kármán system with nonlinear thermal effects and free boundary condition, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 1037-1072.
doi: 10.3934/dcdsb.2018141. |
[27] |
I. Lasiecka and R. Triggiani,
Sharp regularity theory for second order hyperbolic equations of Neumann type. Part Ⅰ. $L_2$ nonhomogenous data, Ann. Mat. Pura Appl., 157 (1990), 285-367.
doi: 10.1007/BF01765322. |
[28] |
I. Lasiecka and R. Triggiani,
Analyticity of thermoelastic semigroups with free boundary conditions, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 27 (1999), 457-487.
|
[29] |
I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories, in ![]() |
[30] |
J. L. Lions, Quelques Methodes de Résolution des Problèmes aux Limits Nonlinéaires, Dunod, Gauthier-Villars, Paris, 1969. |
[31] |
Z. Liu and M. Renardy,
A note on the equations of a thermoelastic plate, Appl. Math. Lett, 8 (1995), 1-6.
doi: 10.1016/0893-9659(95)00020-Q. |
[32] |
S. Miyatake,
Mixed problem for hyperbolic equation of second order, J. Math. Kyoto Univ., 13 (1973), 435-487.
doi: 10.1215/kjm/1250523319. |
[33] |
V. I. Sedenko, On uniqueness of the generalized solutions of initial boundary value problem for Marguerre-Vlasov nonlinear oscillations of the shallow shells, Russian Izvestiya, North-Caucasus Region, Ser. Natural Sciences, 1-2 (1994). Google Scholar |
[34] |
D. Tataru,
On the regularity of boundary traces for the wave equation, Annali di Scuola Normale Superiore, 26 (1998), 185-206.
|
[35] |
T. von Kármán, Festigkeitprobleme in Maschinenbau, Encyklopedie der Mathematischen Wissenschaften, 4 (1910), 314-385. Google Scholar |
show all references
References:
[1] |
G. Avalos and I. Lasiecka,
Exponential stability of a thermoelastic system without mechanical dissipation, Rend. Istit. Mat. Univ. Trieste, 28 (1997), 1-28.
|
[2] |
M. Belishev and I. Lasiecka,
The dynamical Lamé system: Regularity of solutions, boundary controllability and boundary data continuation, ESAIM, Control Optim. Calc. Var., 8 (2002), 143-167.
doi: 10.1051/cocv:2002058. |
[3] |
A. Benabdallah, Modeling of Von Kármán system with thermal effects, Prepublications de L'equipe de Mathematiques de Besancon, 99 (1999). Google Scholar |
[4] |
A. Benabdallah and I. Lasiecka,
Exponential decay rates for a full Von Kármán system of dynamic thermoelasticity, J. Differential Equations, 160 (2000), 51-93.
doi: 10.1006/jdeq.1999.3656. |
[5] |
A. Benabdallah and I. Lasiecka,
Exponential decay rates for a full Von Kármán thermoelastic system with nonlinear thermal coupling, ESIAM: Proceedings. Contrôle des systèmes gouvernés par des équations aux dérivées partielles, 8 (2000), 13-38.
doi: 10.1051/proc:2000002. |
[6] |
A. Benabdallah and D. Teniou, Exponential stability of a Von Kármán model with thermal effects, Electronic Journal of Differential Equations, (1998), 1–13. |
[7] |
A. Bensoussan, G. Da Prato, M. Delfour and S. Mitter and K. Sanjoy, Representation and Control of Infinite Dimensional Systems, 2$^nd$ edition, Birkhäuser Boston, Inc., Boston, MA, 2007.
doi: 10.1007/978-0-8176-4581-6. |
[8] |
P. G. Ciarlet, Mathematical Elasticity. Vol. Ⅲ. Theory of Shells, in Studies in Mathematics and its Applications, Vol. 29, North-Holland Publishing Co., Amsterdam, 2000. |
[9] |
P. G. Ciarlet and P.Rabier, Les Equations de Von Karman, Springer, Berlin, 1980. |
[10] |
C. M. Dafermos,
On the existence and asymptotic stability of solutions to the equations of linear thermoelasticity, Archive for Rational Mechanics and Analysis, 29 (1968), 241-271.
doi: 10.1007/BF00276727. |
[11] |
E. H. Dowell, A Modern Course in Aeroelasticity, 5th edition, Springer, Cham, 2015.
doi: 10.1007/978-3-319-09453-3. |
[12] |
A. Favini, M. Horn, I. Lasiecka and D. Tataru,
Global existence, uniqueness and regularity of solutions to a von Kármán system with nonlinear boundary dissipation, Differential Integral Equation, 9 (1996), 267-294.
|
[13] |
I. Chueshov and I. Lasiecka, Von Kármán Evolution Equations, Springer, New York, 2010.
doi: 10.1007/978-0-387-87712-9. |
[14] |
J. U. Kim,
On the energy decay of a linear thermoelastic bar and plate, SIAM J. Math. Anal., 23 (1992), 889-899.
doi: 10.1137/0523047. |
[15] |
H. Koch,
Slow decay in linear thermoelasticity, Quart. Appl. Math, 58 (2000), 601-612.
doi: 10.1090/qam/1788420. |
[16] |
H. Koch and I. Lasiecka, Hadamard well-posedness of weak solutions in nonlinear dynamic elasticity – full von Kármán systems, in Progress in Nonlinear Differential Equations and their Appl., Vol. 50, Birkhäuser, Basel, 2002. |
[17] |
W. T. Koiter,
On the nonlinear theory of thin elastic shells, Nederl. Akad. Wetensch. Proc. Ser. B, 69 (1966), 1-54.
|
[18] |
J. Lagnese, Boundary Stabilization of Thin Plates, SIAM, Philadelphia, PA, 1989.
doi: 10.1137/1.9781611970821. |
[19] |
J. Lagnese and G. Leugering,
Uniform stabilization of a nonlinear beam by nonlinear boundary feedback, J. Differential Equations, 91 (1991), 355-388.
doi: 10.1016/0022-0396(91)90145-Y. |
[20] |
J. Lagnese and J.-L. Lions, Modelling analysis and control of thin plates, in Research in Applied Mathematics, Vol. 6, Masson, Paris, 1988. |
[21] |
I. Lasiecka,
Uniform stabilizability of a full von Kármán system with nonlinear boundary feedback, SIAM J. Control Optim., 36 (1998), 1376-1422.
doi: 10.1137/S0363012996301907. |
[22] |
I. Lasiecka,
Uniform decay rates for full von Kármán system of dynamic thermoelasticity with free boundary conditions and partial boundary dissipation, Comm. Partial Differential Equations, 24 (1999), 1801-1847.
doi: 10.1080/03605309908821483. |
[23] |
I. Lasiecka, Mathematical Control Theory of Coupled PDEs, SIAM, Philadelphia, PA, 2002.
doi: 10.1137/1.9780898717099. |
[24] |
I. Lasiecka, J. L. Lions and R. Triggiani,
Nonhomogeneous boundary value problems for second-order hyperbolic operators, J. Math. Pures Appl., 65 (1986), 149-192.
|
[25] |
I. Lasiecka, T. Ma and R. Montiero,
Global smooth attractors for dynamics of thermal shallow shells without vertical dissipation, Trans. Amer. Math. Soc., 371 (2019), 8051-8096.
doi: 10.1090/tran/7756. |
[26] |
I. Lasiecka, T. Ma and R. Montiero,
Long-time dynamics of vectorial von Kármán system with nonlinear thermal effects and free boundary condition, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 1037-1072.
doi: 10.3934/dcdsb.2018141. |
[27] |
I. Lasiecka and R. Triggiani,
Sharp regularity theory for second order hyperbolic equations of Neumann type. Part Ⅰ. $L_2$ nonhomogenous data, Ann. Mat. Pura Appl., 157 (1990), 285-367.
doi: 10.1007/BF01765322. |
[28] |
I. Lasiecka and R. Triggiani,
Analyticity of thermoelastic semigroups with free boundary conditions, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 27 (1999), 457-487.
|
[29] |
I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories, in ![]() |
[30] |
J. L. Lions, Quelques Methodes de Résolution des Problèmes aux Limits Nonlinéaires, Dunod, Gauthier-Villars, Paris, 1969. |
[31] |
Z. Liu and M. Renardy,
A note on the equations of a thermoelastic plate, Appl. Math. Lett, 8 (1995), 1-6.
doi: 10.1016/0893-9659(95)00020-Q. |
[32] |
S. Miyatake,
Mixed problem for hyperbolic equation of second order, J. Math. Kyoto Univ., 13 (1973), 435-487.
doi: 10.1215/kjm/1250523319. |
[33] |
V. I. Sedenko, On uniqueness of the generalized solutions of initial boundary value problem for Marguerre-Vlasov nonlinear oscillations of the shallow shells, Russian Izvestiya, North-Caucasus Region, Ser. Natural Sciences, 1-2 (1994). Google Scholar |
[34] |
D. Tataru,
On the regularity of boundary traces for the wave equation, Annali di Scuola Normale Superiore, 26 (1998), 185-206.
|
[35] |
T. von Kármán, Festigkeitprobleme in Maschinenbau, Encyklopedie der Mathematischen Wissenschaften, 4 (1910), 314-385. Google Scholar |
[1] |
Manuel Friedrich, Martin Kružík, Jan Valdman. Numerical approximation of von Kármán viscoelastic plates. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 299-319. doi: 10.3934/dcdss.2020322 |
[2] |
Marta Lewicka, Hui Li. Convergence of equilibria for incompressible elastic plates in the von Kármán regime. Communications on Pure & Applied Analysis, 2015, 14 (1) : 143-166. doi: 10.3934/cpaa.2015.14.143 |
[3] |
Ammar Khemmoudj, Yacine Mokhtari. General decay of the solution to a nonlinear viscoelastic modified von-Kármán system with delay. Discrete & Continuous Dynamical Systems, 2019, 39 (7) : 3839-3866. doi: 10.3934/dcds.2019155 |
[4] |
Irena Lasiecka, To Fu Ma, Rodrigo Nunes Monteiro. Long-time dynamics of vectorial von Karman system with nonlinear thermal effects and free boundary conditions. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1037-1072. doi: 10.3934/dcdsb.2018141 |
[5] |
Andrzej Nowakowski. Variational approach to stability of semilinear wave equation with nonlinear boundary conditions. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2603-2616. doi: 10.3934/dcdsb.2014.19.2603 |
[6] |
Ramon Quintanilla, Reinhard Racke. Stability in thermoelasticity of type III. Discrete & Continuous Dynamical Systems - B, 2003, 3 (3) : 383-400. doi: 10.3934/dcdsb.2003.3.383 |
[7] |
Baowei Feng, Abdelaziz Soufyane. New general decay results for a von Karman plate equation with memory-type boundary conditions. Discrete & Continuous Dynamical Systems, 2020, 40 (3) : 1757-1774. doi: 10.3934/dcds.2020092 |
[8] |
Irena Lasiecka, Justin Webster. Eliminating flutter for clamped von Karman plates immersed in subsonic flows. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1935-1969. doi: 10.3934/cpaa.2014.13.1935 |
[9] |
Théophile Chaumont-Frelet, Serge Nicaise, Jérôme Tomezyk. Uniform a priori estimates for elliptic problems with impedance boundary conditions. Communications on Pure & Applied Analysis, 2020, 19 (5) : 2445-2471. doi: 10.3934/cpaa.2020107 |
[10] |
Ramón Quintanilla, Reinhard Racke. Stability for thermoelastic plates with two temperatures. Discrete & Continuous Dynamical Systems, 2017, 37 (12) : 6333-6352. doi: 10.3934/dcds.2017274 |
[11] |
Andrzej Nowakowski. Variational analysis of semilinear plate equation with free boundary conditions. Discrete & Continuous Dynamical Systems, 2015, 35 (7) : 3133-3154. doi: 10.3934/dcds.2015.35.3133 |
[12] |
Chun Liu, Jie Shen. On liquid crystal flows with free-slip boundary conditions. Discrete & Continuous Dynamical Systems, 2001, 7 (2) : 307-318. doi: 10.3934/dcds.2001.7.307 |
[13] |
Robert Denk, Yoshihiro Shibata. Generation of semigroups for the thermoelastic plate equation with free boundary conditions. Evolution Equations & Control Theory, 2019, 8 (2) : 301-313. doi: 10.3934/eect.2019016 |
[14] |
Boris Muha, Zvonimir Tutek. Note on evolutionary free piston problem for Stokes equations with slip boundary conditions. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1629-1639. doi: 10.3934/cpaa.2014.13.1629 |
[15] |
Scott W. Hansen, Oleg Yu Imanuvilov. Exact controllability of a multilayer Rao-Nakra plate with free boundary conditions. Mathematical Control & Related Fields, 2011, 1 (2) : 189-230. doi: 10.3934/mcrf.2011.1.189 |
[16] |
Margareth S. Alves, Rodrigo N. Monteiro. Stability of non-classical thermoelasticity mixture problems. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4879-4898. doi: 10.3934/cpaa.2020216 |
[17] |
Cemil Tunç. Stability, boundedness and uniform boundedness of solutions of nonlinear delay differential equations. Conference Publications, 2011, 2011 (Special) : 1395-1403. doi: 10.3934/proc.2011.2011.1395 |
[18] |
Duy Phan. Approximate controllability for Navier–Stokes equations in $ \rm3D $ cylinders under Lions boundary conditions by an explicit saturating set. Evolution Equations & Control Theory, 2021, 10 (1) : 199-227. doi: 10.3934/eect.2020062 |
[19] |
Alexandre Nolasco de Carvalho, Marcos Roberto Teixeira Primo. Spatial homogeneity in parabolic problems with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2004, 3 (4) : 637-651. doi: 10.3934/cpaa.2004.3.637 |
[20] |
Narcisa Apreutesei, Vitaly Volpert. Reaction-diffusion waves with nonlinear boundary conditions. Networks & Heterogeneous Media, 2013, 8 (1) : 23-35. doi: 10.3934/nhm.2013.8.23 |
2019 Impact Factor: 0.953
Tools
Metrics
Other articles
by authors
[Back to Top]