\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Uniform stability in a vectorial full Von Kármán thermoelastic system with solenoidal dissipation and free boundary conditions

Abstract Full Text(HTML) Related Papers Cited by
  • We will consider the full von Kármán thermoelastic system with free boundary conditions and dissipation imposed only on the in-plane displacement. It will be shown that the corresponding solutions are exponentially stable, though there is no mechanical dissipation on the vertical displacements. The main tools used are: (i) partial analyticity of the linearized semigroup and (ii) trace estimates which exploit the hidden regularity harvested from partial analyticity.

    Mathematics Subject Classification: Primary:35B35, 35M30, 74B20, 74F05, 74K20;Secondary:35A01, 35A02.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] G. Avalos and I. Lasiecka, Exponential stability of a thermoelastic system without mechanical dissipation, Rend. Istit. Mat. Univ. Trieste, 28 (1997), 1-28. 
    [2] M. Belishev and I. Lasiecka, The dynamical Lamé system: Regularity of solutions, boundary controllability and boundary data continuation, ESAIM, Control Optim. Calc. Var., 8 (2002), 143-167.  doi: 10.1051/cocv:2002058.
    [3] A. Benabdallah, Modeling of Von Kármán system with thermal effects, Prepublications de L'equipe de Mathematiques de Besancon, 99 (1999).
    [4] A. Benabdallah and I. Lasiecka, Exponential decay rates for a full Von Kármán system of dynamic thermoelasticity, J. Differential Equations, 160 (2000), 51-93.  doi: 10.1006/jdeq.1999.3656.
    [5] A. Benabdallah and I. Lasiecka, Exponential decay rates for a full Von Kármán thermoelastic system with nonlinear thermal coupling, ESIAM: Proceedings. Contrôle des systèmes gouvernés par des équations aux dérivées partielles, 8 (2000), 13-38.  doi: 10.1051/proc:2000002.
    [6] A. Benabdallah and D. Teniou, Exponential stability of a Von Kármán model with thermal effects, Electronic Journal of Differential Equations, (1998), 1–13.
    [7] A. Bensoussan, G. Da Prato, M. Delfour and S. Mitter and K. Sanjoy, Representation and Control of Infinite Dimensional Systems, 2$^nd$ edition, Birkhäuser Boston, Inc., Boston, MA, 2007. doi: 10.1007/978-0-8176-4581-6.
    [8] P. G. Ciarlet, Mathematical Elasticity. Vol. Ⅲ. Theory of Shells, in Studies in Mathematics and its Applications, Vol. 29, North-Holland Publishing Co., Amsterdam, 2000.
    [9] P. G. Ciarlet and P.Rabier, Les Equations de Von Karman, Springer, Berlin, 1980.
    [10] C. M. Dafermos, On the existence and asymptotic stability of solutions to the equations of linear thermoelasticity, Archive for Rational Mechanics and Analysis, 29 (1968), 241-271.  doi: 10.1007/BF00276727.
    [11] E. H. Dowell, A Modern Course in Aeroelasticity, 5th edition, Springer, Cham, 2015. doi: 10.1007/978-3-319-09453-3.
    [12] A. FaviniM. HornI. Lasiecka and D. Tataru, Global existence, uniqueness and regularity of solutions to a von Kármán system with nonlinear boundary dissipation, Differential Integral Equation, 9 (1996), 267-294. 
    [13] I. Chueshov and I. Lasiecka, Von Kármán Evolution Equations, Springer, New York, 2010. doi: 10.1007/978-0-387-87712-9.
    [14] J. U. Kim, On the energy decay of a linear thermoelastic bar and plate, SIAM J. Math. Anal., 23 (1992), 889-899.  doi: 10.1137/0523047.
    [15] H. Koch, Slow decay in linear thermoelasticity, Quart. Appl. Math, 58 (2000), 601-612.  doi: 10.1090/qam/1788420.
    [16] H. Koch and I. Lasiecka, Hadamard well-posedness of weak solutions in nonlinear dynamic elasticity – full von Kármán systems, in Progress in Nonlinear Differential Equations and their Appl., Vol. 50, Birkhäuser, Basel, 2002.
    [17] W. T. Koiter, On the nonlinear theory of thin elastic shells, Nederl. Akad. Wetensch. Proc. Ser. B, 69 (1966), 1-54. 
    [18] J. Lagnese, Boundary Stabilization of Thin Plates, SIAM, Philadelphia, PA, 1989. doi: 10.1137/1.9781611970821.
    [19] J. Lagnese and G. Leugering, Uniform stabilization of a nonlinear beam by nonlinear boundary feedback, J. Differential Equations, 91 (1991), 355-388.  doi: 10.1016/0022-0396(91)90145-Y.
    [20] J. Lagnese and J.-L. Lions, Modelling analysis and control of thin plates, in Research in Applied Mathematics, Vol. 6, Masson, Paris, 1988.
    [21] I. Lasiecka, Uniform stabilizability of a full von Kármán system with nonlinear boundary feedback, SIAM J. Control Optim., 36 (1998), 1376-1422.  doi: 10.1137/S0363012996301907.
    [22] I. Lasiecka, Uniform decay rates for full von Kármán system of dynamic thermoelasticity with free boundary conditions and partial boundary dissipation, Comm. Partial Differential Equations, 24 (1999), 1801-1847.  doi: 10.1080/03605309908821483.
    [23] I. Lasiecka, Mathematical Control Theory of Coupled PDEs, SIAM, Philadelphia, PA, 2002. doi: 10.1137/1.9780898717099.
    [24] I. LasieckaJ. L. Lions and R. Triggiani, Nonhomogeneous boundary value problems for second-order hyperbolic operators, J. Math. Pures Appl., 65 (1986), 149-192. 
    [25] I. LasieckaT. Ma and R. Montiero, Global smooth attractors for dynamics of thermal shallow shells without vertical dissipation, Trans. Amer. Math. Soc., 371 (2019), 8051-8096.  doi: 10.1090/tran/7756.
    [26] I. LasieckaT. Ma and R. Montiero, Long-time dynamics of vectorial von Kármán system with nonlinear thermal effects and free boundary condition, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 1037-1072.  doi: 10.3934/dcdsb.2018141.
    [27] I. Lasiecka and R. Triggiani, Sharp regularity theory for second order hyperbolic equations of Neumann type. Part Ⅰ. $L_2$ nonhomogenous data, Ann. Mat. Pura Appl., 157 (1990), 285-367.  doi: 10.1007/BF01765322.
    [28] I. Lasiecka and R. Triggiani, Analyticity of thermoelastic semigroups with free boundary conditions, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 27 (1999), 457-487. 
    [29] I. Lasiecka and  R. TriggianiControl Theory for Partial Differential Equations: Continuous and Approximation Theories, in Encyclopedia of Mathematics and its Applications, Volume Ⅰ and Ⅱ, Cambridge University Press, Cambridge, 2000. 
    [30] J. L. Lions, Quelques Methodes de Résolution des Problèmes aux Limits Nonlinéaires, Dunod, Gauthier-Villars, Paris, 1969.
    [31] Z. Liu and M. Renardy, A note on the equations of a thermoelastic plate, Appl. Math. Lett, 8 (1995), 1-6.  doi: 10.1016/0893-9659(95)00020-Q.
    [32] S. Miyatake, Mixed problem for hyperbolic equation of second order, J. Math. Kyoto Univ., 13 (1973), 435-487.  doi: 10.1215/kjm/1250523319.
    [33] V. I. Sedenko, On uniqueness of the generalized solutions of initial boundary value problem for Marguerre-Vlasov nonlinear oscillations of the shallow shells, Russian Izvestiya, North-Caucasus Region, Ser. Natural Sciences, 1-2 (1994).
    [34] D. Tataru, On the regularity of boundary traces for the wave equation, Annali di Scuola Normale Superiore, 26 (1998), 185-206. 
    [35] T. von Kármán, Festigkeitprobleme in Maschinenbau, Encyklopedie der Mathematischen Wissenschaften, 4 (1910), 314-385. 
  • 加载中
SHARE

Article Metrics

HTML views(1081) PDF downloads(254) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return