\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Lipschitz stability for an inverse source problem in anisotropic parabolic equations with dynamic boundary conditions

  • * Corresponding author: Lahcen Maniar

    * Corresponding author: Lahcen Maniar 
Abstract Full Text(HTML) Related Papers Cited by
  • In this paper, we study an inverse problem for linear parabolic system with variable diffusion coefficients subject to dynamic boundary conditions. We prove a global Lipschitz stability for the inverse problem involving a simultaneous recovery of two source terms from a single measurement and interior observations, based on a recent Carleman estimate for such problems.

    Mathematics Subject Classification: Primary:35R30;Secondary:35K05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] M. Bellassoued and M. Yamamoto, Carleman Estimates and Applications to Inverse Problems for Hyperbolic Systems, Springer, Tokyo, 2017. doi: 10.1007/978-4-431-56600-7.
    [2] M. Bellassoued and M. Yamamoto, Carleman estimate with second large parameter for second order hyperbolic operators in a Riemannian manifold and applications in thermoelasticity cases, Appl. Anal., 91 (2012), 35-67.  doi: 10.1080/00036811.2010.534731.
    [3] M. Bellassoued and M. Yamamoto, Inverse source problem for a transmission problem for a parabolic equation, J. Inverse Ⅲ-Posed Probl., 14 (2006), 47-56.  doi: 10.1515/156939406776237456.
    [4] A. Bensoussan, G. Da Prato, M. C. Delfour and S. K. Mitter, Representation and Control of Infinite Dimensional Systems, 2$^nd$ edition, Birkhäuser Boston, Inc., Boston, MA, 2007, 159–165. doi: 10.1007/978-0-8176-4581-6.
    [5] I. BoutaayamouG. Fragnelli and L. Maniar, Inverse problems for parabolic equations with interior degeneracy and Neumann boundary conditions, J. Inverse Ⅲ-Posed Probl., 24 (2016), 275-292.  doi: 10.1515/jiip-2014-0032.
    [6] I. Boutaayamou, G. Fragnelli and L. Maniar, Lipschitz stability for linear parabolic systems with interior degeneracy, Electron. J. Differential Equations, (2014), No. 167, 26 pp.
    [7] I. Boutaayamou, A. Hajjaj and L. Maniar, Lipschitz stability for degenerate parabolic systems, Electron. J. Differential Equations, (2014), No. 149, 15 pp.
    [8] A. L. Bukhgeim and M. V. Klibanov, Global uniqueness of class of multidimensional inverse problems, Soviet Math. Dokl., 24 (1981), 244-247. 
    [9] P. Cannarsa, J. Tort and M. Yamamoto, Determination of source terms in a degenerate parabolic equation, Inverse Problems, 26 (2010), 105003, 20 pp. doi: 10.1088/0266-5611/26/10/105003.
    [10] D. ChaeO. Y. Imanuvilov and S. M. Kim, Exact controllability for semilinear parabolic equations with Neumann boundary conditions, J. Dynam. Control Systems, 2 (1996), 449-483.  doi: 10.1007/BF02254698.
    [11] M. Cristofol and L. Roques, On the determination of the nonlinearity from localized measurements in a reaction-diffusion equation, Nonlinearity, 23 (2010), 675-686.  doi: 10.1088/0951-7715/23/3/014.
    [12] J. Z. Farkas and P. Hinow, Physiologically structured populations with diffusion and dynamic boundary conditions, Math. Biosci. Eng., 8 (2011), 503-513.  doi: 10.3934/mbe.2011.8.503.
    [13] A. FaviniJ. A. GoldsteinG. R. Goldstein and S. Romanelli, The heat equation with generalized Wentzell boundary condition, J. Evol. Equ., 2 (2002), 1-19.  doi: 10.1007/s00028-002-8077-y.
    [14] E. Fernández-Cara and S. Guerrero, Global Carleman inequalities for parabolic systems and applications to controllability, SIAM J. Control Optim., 45 (2006), 1395-1446.  doi: 10.1137/S0363012904439696.
    [15] A. V. Fursikov and O. Y. Imanuvilov, Controllability of Evolution Equations, Lecture Note Series, Vol. 34, Seoul National University, Research Institute of Mathematics, Seoul, 1996.
    [16] G. C. Gal and L. Tebou, Carleman inequalities for wave equations with oscillatory boundary conditions and application, SIAM J. Control Optim., 55 (2017), 324-364.  doi: 10.1137/15M1032211.
    [17] G. R. Goldstein, Derivation and physical interpretation of general boundary conditions, Adv. Differential Equations, 11 (2006), 457-480. 
    [18] O. Y. Imanuvilov and M. Yamamoto, Lipschitz stability in inverse parabolic problems by the Carleman estimate, Inverse Problems, 14 (1998), 1229-1245.  doi: 10.1088/0266-5611/14/5/009.
    [19] V. Isakov, Inverse Problems for Partial Differential Equations, 2$^nd$ edition, Appl. Math. Sci. 127, Springer, New York, 2006.
    [20] V. Isakov, Inverse Source Problems, Mathematical Surveys and Monographs, Vol. 34, Amer. Math. Soc., Providence, RI, 1990. doi: 10.1090/surv/034.
    [21] J. Jost, Partial Differential Equations, 2$^nd$ edition, Springer, New York, 2007. doi: 10.1007/978-0-387-49319-0.
    [22] J. Jost, Riemannian Geometry and Geometric Analysis, 5$^th$ edition, Springer-Verlag, Berlin, 2008.
    [23] A. Khoutaibi and L. Maniar, Null controllability for a heat equation with dynamic boundary conditions and drift terms, Evol. Equ. Control Theory, 9 (2019), 535-559.  doi: 10.3934/eect.2020023.
    [24] A. Khoutaibi, L. Maniar, D. Mugnolo and A. Rhandi, Parabolic equations with dynamic boundary conditions and drift terms, preprint, 2019, arXiv: 1909.02377.
    [25] M. V. Klibanov, Inverse problems and Carleman estimates, Inverse Problems, 8 (1992), 575-596.  doi: 10.1088/0266-5611/8/4/009.
    [26] R. E. Langer, A problem in diffusion or in the flow of heat for a solid in contact with a fluid, Tohoku Math. J., 35 (1932), 260-275. 
    [27] J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. 1, Grundlehren der mathematischen Wissenschaften, Springer-Verlag, New York-Heidelberg, 1972.
    [28] L. ManiarM. Meyries and R. Schnaubelt, Null controllability for parabolic equations with dynamic boundary conditions, Evol. Equ. Control Theory, 6 (2017), 381-407.  doi: 10.3934/eect.2017020.
    [29] A. Miranville and S. Zelik, Exponential attractors for the Cahn-Hilliard equation with dynamic boundary conditions, Math. Methods Appl. Sci., 28 (2005), 709-735.  doi: 10.1002/mma.590.
    [30] E. M. OuhabazAnalysis of Heat Equations on Domains, LMS Monographs Series, 31, Princeton University Press, Princeton, NJ, 2005. 
    [31] M. E. Taylor, Partial Differential Equations. I. Basic Theory, 2$^nd$ edition, Applied Mathematical Sciences, Vol. 115, Springer, New York, 2011. doi: 10.1007/978-1-4419-7055-8.
    [32] J. Vancostenoble, Lipschitz stability in inverse source problems for singular parabolic equations, Comm. Partial Differential Equations, 36 (2011), 1287-1317.  doi: 10.1080/03605302.2011.587491.
    [33] J. L. Vazquez and E. Vitillaro, Heat equation with dynamical boundary conditions of reactive-diffusive type, J. Differential Equations, 250 (2011), 2143-2161.  doi: 10.1016/j.jde.2010.12.012.
    [34] M. Yamamoto, Carleman estimates for parabolic equations and applications, Inverse Problems, 25 (2009), 123013, 75 pp. doi: 10.1088/0266-5611/25/12/123013.
  • 加载中
SHARE

Article Metrics

HTML views(848) PDF downloads(327) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return