Article Contents
Article Contents

# Stabilization of higher order Schrödinger equations on a finite interval: Part I

• * Corresponding author: Türker Özsarı
• We study the backstepping stabilization of higher order linear and nonlinear Schrödinger equations on a finite interval, where the boundary feedback acts from the left Dirichlet boundary condition. The plant is stabilized with a prescribed rate of decay. The construction of the backstepping kernel is based on a challenging successive approximation analysis. This contrasts with the case of second order pdes. Second, we consider the case where the full state of the system cannot be measured at all times but some partial information such as measurements of a boundary trace are available. For this problem, we simultaneously construct an observer and the associated backstepping controller which is capable of stabilizing the original plant. Wellposedness and regularity results are provided for all pde models. Although the linear part of the model is similar to the KdV equation, the power type nonlinearity brings additional difficulties. We give two examples of boundary conditions and partial measurements. We also present numerical algorithms and simulations verifying our theoretical results to the fullest extent. Our numerical approach is novel in the sense that we solve the target systems first and obtain the solution to the feedback system by using the bounded invertibility of the backstepping transformation.

Mathematics Subject Classification: Primary: 35Q93, 93B52, 93C20, 93D15, 93D20, 93D23, Secondary: 35A01, 35A02, 35Q55, 35Q60.

 Citation:

• Figure 1.  Triangular regions

Figure 2.  Backstepping kernel on $\Delta_{x,y}$ for $L = \pi$, $\beta = 1$, $\alpha = 2$, $\delta = 8$ and $r = 1$

Figure 3.  Left: Contour plot of $|p(x,y)|$ on $\Delta_{x,y}$ for $L = \pi$, $\beta = 0.5$, $\alpha = 1$, $\delta = 0.5$ and $r = 0.2$. Right: Real and imaginary parts of $p_1(x) = -i \beta p(x,L)$

Figure 4.  Uncontrolled solution for linear case

Figure 5.  Numerical results for the linear controller case. Left: Time evolution of $|u(x,t)|$. Right: Contour plot of $|u(x,t)|$

Figure 6.  Left: Time evolution of $|u(\cdot,t)|_2$ for different values of $r$. Right: Control gain $|k(0,y)|$ for different values of $r$

Figure 7.  Uncontrolled solution for nonlinear case, $p \geq 1$

Figure 8.  Numerical results of the controlled nonlinear model for $p \geq 1$

Figure 9.  Numerical results of the controlled nonlinear model for $0 < p < 1$

Figure 10.  Numerical results for the observer case. Left: Time evolution of $|u(x,t)|$. Right: Contour plot of $|u(x,t)|$

Figure 11.  Time evolution of $L^2$ norms

Figure 12.  Uncontrolled solution for the linear case

Figure 13.  Numerical results of the controlled linear model

Figure 14.  Uncontrolled solution for nonlinear case, $p \geq 1$

Figure 15.  Numerical results of the controlled nonlinear model, $p \geq 1$

Figure 16.  Uncontrolled solution for the nonlinear case $0 < p < 1$

Figure 17.  Numerical results of the controlled nonlinear model for $0 < p < 1$

•  [1] G. P. Agrawal, Nonlinear Fiber Optics, Nonlinear Science at the Dawn of the 21$^{st}$ Century, Springer, Berlin, Heidelberg, 2000,195–211. doi: 10.1007/3-540-46629-0_9. [2] A. Balogh and M. Krstic, Boundary control of the Korteweg-de Vries-Burgers equation: Further results on stabilization and well-posedness, with numerical demonstration, IEEE Trans. Automat. Control, 45 (2000), 1739-1745.  doi: 10.1109/9.880639. [3] A. Batal and T. Özsarı, Output feedback stabilization of the linearized Korteweg-de Vries equation with right endpoint controllers, Automatica, 109 (2019), 108531, 8 pp. doi: 10.1016/j.automatica.2019.108531. [4] E. Bisognin, V. Bisognin and O. P. Vera Villagrán, Stabilization of solutions to higher-order nonlinear Schrödinger equation with localized damping, Electron. J. Differential Equations, (2007), No. 6, 18 pp. [5] X. Carvajal and F. Linares, A higher-order nonlinear Schrödinger equation with variable coefficients, Differential Integral Equations, 16 (2003), 1111-1130. [6] X. Carvajal, Local well-posedness for a higher order nonlinear Schrödinger equation in Sobolev spaces of negative indices, Electron. J. Differential Equations, (2004), No. 13, 10 pp. [7] X. Carvajal, Sharp global well-posedness for a higher order Schrödinger equation, J. Fourier Anal. Appl., 12 (2006), 53-70.  doi: 10.1007/s00041-005-5028-3. [8] M. M. Cavalcanti, W. J. Correa, M. A. Sepulveda and R. V. Asem, Finite difference scheme for a high order nonlinear Schrödinger equation with localized damping, Stud. Univ. Babes-Bolyai Math., 64 (2019), 161-172.  doi: 10.24193/subbmath.2019.2.03. [9] J. C. Ceballos V., R. Pavez F. and O. P. Vera Villagrán, Exact boundary controllability for higher order nonlinear Schrödinger equations with constant coefficients, Electron. J. Differential Equations, (2005), No. 122, 31 pp. [10] E. Cerpa and J.-M. Coron, Rapid stabilization for a Korteweg-de Vries equation from the left Dirichlet boundary condition, IEEE Trans. Automat. Control, 58 (2013), 1688-1695.  doi: 10.1109/TAC.2013.2241479. [11] M. Chen, Stabilization of the higher order nonlinear Schrödinger equation with constant coefficients, Proc. Indian Acad. Sci. Math. Sci., 128 (2018), No. 3, Paper No. 39, 15 pp. doi: 10.1007/s12044-018-0410-7. [12] J.-M. Coron and Q. Lü, Local rapid stabilization for a Korteweg-de Vries equation with a Neumann boundary control on the right, J. Math. Pures Appl. (9), 102 (2014), 1080-1120.  doi: 10.1016/j.matpur.2014.03.004. [13] C. Jia, Boundary feedback stabilization of the Korteweg–de Vries–Burgers equation posed on a finite interval, J. Math. Anal. Appl., 444 (2016), 624-647.  doi: 10.1016/j.jmaa.2016.06.063. [14] Y. Kodama and A. Hasegawa, Nonlinear pulse propagation in a monomode dielectric guide, IEEE Journal of Quantum Electronics, 23 (1987), 510-524. [15] Y. Kodama, Optical solitons in a monomode fiber, J. Stat. Phys., 39 (1985), 597-614.  doi: 10.1007/BF01008354. [16] M. Krstic and A. Smyshlyaev, Boundary Control of PDEs: A Course on Backstepping Designs, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2008. doi: 10.1137/1.9780898718607. [17] C. Laurey, The Cauchy problem for a third order nonlinear Schrödinger equation, Nonlinear Anal., 29 (1997), 121-158.  doi: 10.1016/S0362-546X(96)00081-8. [18] W.-J. Liu and M. Krstić, Global boundary stabilization of the Korteweg-de Vries-Burgers equation, Comput. Appl. Math., 21 (2002), 315-354. [19] W. Liu, Boundary feedback stabilization of an unstable heat equation, SIAM J. Control Optim., 42 (2003), 1033-1043.  doi: 10.1137/S0363012902402414. [20] S. Marx and E. Cerpa, Output feedback stabilization of the Korteweg–de Vries equation, Automatica J. IFAC, 87 (2018), 210-217.  doi: 10.1016/j.automatica.2017.07.057. [21] T. Özsarı and E. Arabacı, Boosting the decay of solutions of the linearised Korteweg–de Vries–Burgers equation to a predetermined rate from the boundary, Internat. J. Control, 92 (2019), 1753-1763.  doi: 10.1080/00207179.2017.1408923. [22] T. Özsarı and A. Batal, Pseudo-backstepping and its application to the control of Korteweg–de Vries equation from the right endpoint on a finite domain, SIAM J. Control Optim., 57 (2019), 1255-1283.  doi: 10.1137/18M1211933. [23] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, Vol. 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1. [24] H. Takaoka, Well-posedness for the higher order nonlinear Schrödinger equations, Adv. Math. Sci. Appl., 10 (2000), 149-171.  doi: 10.1016/j.na.2006.06.020. [25] S. Tang and M. Krstic, Stabilization of linearized Korteweg-de Vries systems with anti-diffusion, in IEEE 2013 American Control Conference, Washington, DC, 2013, 3302–3307. [26] S. Tang and M. Krstic, Stabilization of linearized Korteweg-de Vries with anti-diffusion by boundary feedback with non-collocated observation, in IEEE 2015 American Control Conference, Chicago, IL, 2015. doi: 10.1109/ACC.2015.7171020.

Figures(17)