doi: 10.3934/eect.2020095

Stabilization of higher order Schrödinger equations on a finite interval: Part I

1. 

Department of Mathematics, İzmir Institute of Technology, Urla, İzmir, 35430 Turkey

2. 

Department of Mathematics, Bilkent University, Bilkent, Ankara, 06800 Turkey

* Corresponding author: Türker Özsarı

Received  May 2020 Revised  July 2020 Published  September 2020

We study the backstepping stabilization of higher order linear and nonlinear Schrödinger equations on a finite interval, where the boundary feedback acts from the left Dirichlet boundary condition. The plant is stabilized with a prescribed rate of decay. The construction of the backstepping kernel is based on a challenging successive approximation analysis. This contrasts with the case of second order pdes. Second, we consider the case where the full state of the system cannot be measured at all times but some partial information such as measurements of a boundary trace are available. For this problem, we simultaneously construct an observer and the associated backstepping controller which is capable of stabilizing the original plant. Wellposedness and regularity results are provided for all pde models. Although the linear part of the model is similar to the KdV equation, the power type nonlinearity brings additional difficulties. We give two examples of boundary conditions and partial measurements. We also present numerical algorithms and simulations verifying our theoretical results to the fullest extent. Our numerical approach is novel in the sense that we solve the target systems first and obtain the solution to the feedback system by using the bounded invertibility of the backstepping transformation.

Citation: Ahmet Batal, Türker Özsarı, Kemal Cem Yılmaz. Stabilization of higher order Schrödinger equations on a finite interval: Part I. Evolution Equations & Control Theory, doi: 10.3934/eect.2020095
References:
[1]

G. P. Agrawal, Nonlinear Fiber Optics, Nonlinear Science at the Dawn of the 21$^{st}$ Century, Springer, Berlin, Heidelberg, 2000,195–211. doi: 10.1007/3-540-46629-0_9.  Google Scholar

[2]

A. Balogh and M. Krstic, Boundary control of the Korteweg-de Vries-Burgers equation: Further results on stabilization and well-posedness, with numerical demonstration, IEEE Trans. Automat. Control, 45 (2000), 1739-1745.  doi: 10.1109/9.880639.  Google Scholar

[3]

A. Batal and T. Özsarı, Output feedback stabilization of the linearized Korteweg-de Vries equation with right endpoint controllers, Automatica, 109 (2019), 108531, 8 pp. doi: 10.1016/j.automatica.2019.108531.  Google Scholar

[4]

E. Bisognin, V. Bisognin and O. P. Vera Villagrán, Stabilization of solutions to higher-order nonlinear Schrödinger equation with localized damping, Electron. J. Differential Equations, (2007), No. 6, 18 pp.  Google Scholar

[5]

X. Carvajal and F. Linares, A higher-order nonlinear Schrödinger equation with variable coefficients, Differential Integral Equations, 16 (2003), 1111-1130.   Google Scholar

[6]

X. Carvajal, Local well-posedness for a higher order nonlinear Schrödinger equation in Sobolev spaces of negative indices, Electron. J. Differential Equations, (2004), No. 13, 10 pp.  Google Scholar

[7]

X. Carvajal, Sharp global well-posedness for a higher order Schrödinger equation, J. Fourier Anal. Appl., 12 (2006), 53-70.  doi: 10.1007/s00041-005-5028-3.  Google Scholar

[8]

M. M. CavalcantiW. J. CorreaM. A. Sepulveda and R. V. Asem, Finite difference scheme for a high order nonlinear Schrödinger equation with localized damping, Stud. Univ. Babes-Bolyai Math., 64 (2019), 161-172.  doi: 10.24193/subbmath.2019.2.03.  Google Scholar

[9]

J. C. Ceballos V., R. Pavez F. and O. P. Vera Villagrán, Exact boundary controllability for higher order nonlinear Schrödinger equations with constant coefficients, Electron. J. Differential Equations, (2005), No. 122, 31 pp.  Google Scholar

[10]

E. Cerpa and J.-M. Coron, Rapid stabilization for a Korteweg-de Vries equation from the left Dirichlet boundary condition, IEEE Trans. Automat. Control, 58 (2013), 1688-1695.  doi: 10.1109/TAC.2013.2241479.  Google Scholar

[11]

M. Chen, Stabilization of the higher order nonlinear Schrödinger equation with constant coefficients, Proc. Indian Acad. Sci. Math. Sci., 128 (2018), No. 3, Paper No. 39, 15 pp. doi: 10.1007/s12044-018-0410-7.  Google Scholar

[12]

J.-M. Coron and Q. Lü, Local rapid stabilization for a Korteweg-de Vries equation with a Neumann boundary control on the right, J. Math. Pures Appl. (9), 102 (2014), 1080-1120.  doi: 10.1016/j.matpur.2014.03.004.  Google Scholar

[13]

C. Jia, Boundary feedback stabilization of the Korteweg–de Vries–Burgers equation posed on a finite interval, J. Math. Anal. Appl., 444 (2016), 624-647.  doi: 10.1016/j.jmaa.2016.06.063.  Google Scholar

[14]

Y. Kodama and A. Hasegawa, Nonlinear pulse propagation in a monomode dielectric guide, IEEE Journal of Quantum Electronics, 23 (1987), 510-524.   Google Scholar

[15]

Y. Kodama, Optical solitons in a monomode fiber, J. Stat. Phys., 39 (1985), 597-614.  doi: 10.1007/BF01008354.  Google Scholar

[16]

M. Krstic and A. Smyshlyaev, Boundary Control of PDEs: A Course on Backstepping Designs, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2008. doi: 10.1137/1.9780898718607.  Google Scholar

[17]

C. Laurey, The Cauchy problem for a third order nonlinear Schrödinger equation, Nonlinear Anal., 29 (1997), 121-158.  doi: 10.1016/S0362-546X(96)00081-8.  Google Scholar

[18]

W.-J. Liu and M. Krstić, Global boundary stabilization of the Korteweg-de Vries-Burgers equation, Comput. Appl. Math., 21 (2002), 315-354.   Google Scholar

[19]

W. Liu, Boundary feedback stabilization of an unstable heat equation, SIAM J. Control Optim., 42 (2003), 1033-1043.  doi: 10.1137/S0363012902402414.  Google Scholar

[20]

S. Marx and E. Cerpa, Output feedback stabilization of the Korteweg–de Vries equation, Automatica J. IFAC, 87 (2018), 210-217.  doi: 10.1016/j.automatica.2017.07.057.  Google Scholar

[21]

T. Özsarı and E. Arabacı, Boosting the decay of solutions of the linearised Korteweg–de Vries–Burgers equation to a predetermined rate from the boundary, Internat. J. Control, 92 (2019), 1753-1763.  doi: 10.1080/00207179.2017.1408923.  Google Scholar

[22]

T. Özsarı and A. Batal, Pseudo-backstepping and its application to the control of Korteweg–de Vries equation from the right endpoint on a finite domain, SIAM J. Control Optim., 57 (2019), 1255-1283.  doi: 10.1137/18M1211933.  Google Scholar

[23]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, Vol. 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[24]

H. Takaoka, Well-posedness for the higher order nonlinear Schrödinger equations, Adv. Math. Sci. Appl., 10 (2000), 149-171.  doi: 10.1016/j.na.2006.06.020.  Google Scholar

[25]

S. Tang and M. Krstic, Stabilization of linearized Korteweg-de Vries systems with anti-diffusion, in IEEE 2013 American Control Conference, Washington, DC, 2013, 3302–3307. Google Scholar

[26]

S. Tang and M. Krstic, Stabilization of linearized Korteweg-de Vries with anti-diffusion by boundary feedback with non-collocated observation, in IEEE 2015 American Control Conference, Chicago, IL, 2015. doi: 10.1109/ACC.2015.7171020.  Google Scholar

show all references

References:
[1]

G. P. Agrawal, Nonlinear Fiber Optics, Nonlinear Science at the Dawn of the 21$^{st}$ Century, Springer, Berlin, Heidelberg, 2000,195–211. doi: 10.1007/3-540-46629-0_9.  Google Scholar

[2]

A. Balogh and M. Krstic, Boundary control of the Korteweg-de Vries-Burgers equation: Further results on stabilization and well-posedness, with numerical demonstration, IEEE Trans. Automat. Control, 45 (2000), 1739-1745.  doi: 10.1109/9.880639.  Google Scholar

[3]

A. Batal and T. Özsarı, Output feedback stabilization of the linearized Korteweg-de Vries equation with right endpoint controllers, Automatica, 109 (2019), 108531, 8 pp. doi: 10.1016/j.automatica.2019.108531.  Google Scholar

[4]

E. Bisognin, V. Bisognin and O. P. Vera Villagrán, Stabilization of solutions to higher-order nonlinear Schrödinger equation with localized damping, Electron. J. Differential Equations, (2007), No. 6, 18 pp.  Google Scholar

[5]

X. Carvajal and F. Linares, A higher-order nonlinear Schrödinger equation with variable coefficients, Differential Integral Equations, 16 (2003), 1111-1130.   Google Scholar

[6]

X. Carvajal, Local well-posedness for a higher order nonlinear Schrödinger equation in Sobolev spaces of negative indices, Electron. J. Differential Equations, (2004), No. 13, 10 pp.  Google Scholar

[7]

X. Carvajal, Sharp global well-posedness for a higher order Schrödinger equation, J. Fourier Anal. Appl., 12 (2006), 53-70.  doi: 10.1007/s00041-005-5028-3.  Google Scholar

[8]

M. M. CavalcantiW. J. CorreaM. A. Sepulveda and R. V. Asem, Finite difference scheme for a high order nonlinear Schrödinger equation with localized damping, Stud. Univ. Babes-Bolyai Math., 64 (2019), 161-172.  doi: 10.24193/subbmath.2019.2.03.  Google Scholar

[9]

J. C. Ceballos V., R. Pavez F. and O. P. Vera Villagrán, Exact boundary controllability for higher order nonlinear Schrödinger equations with constant coefficients, Electron. J. Differential Equations, (2005), No. 122, 31 pp.  Google Scholar

[10]

E. Cerpa and J.-M. Coron, Rapid stabilization for a Korteweg-de Vries equation from the left Dirichlet boundary condition, IEEE Trans. Automat. Control, 58 (2013), 1688-1695.  doi: 10.1109/TAC.2013.2241479.  Google Scholar

[11]

M. Chen, Stabilization of the higher order nonlinear Schrödinger equation with constant coefficients, Proc. Indian Acad. Sci. Math. Sci., 128 (2018), No. 3, Paper No. 39, 15 pp. doi: 10.1007/s12044-018-0410-7.  Google Scholar

[12]

J.-M. Coron and Q. Lü, Local rapid stabilization for a Korteweg-de Vries equation with a Neumann boundary control on the right, J. Math. Pures Appl. (9), 102 (2014), 1080-1120.  doi: 10.1016/j.matpur.2014.03.004.  Google Scholar

[13]

C. Jia, Boundary feedback stabilization of the Korteweg–de Vries–Burgers equation posed on a finite interval, J. Math. Anal. Appl., 444 (2016), 624-647.  doi: 10.1016/j.jmaa.2016.06.063.  Google Scholar

[14]

Y. Kodama and A. Hasegawa, Nonlinear pulse propagation in a monomode dielectric guide, IEEE Journal of Quantum Electronics, 23 (1987), 510-524.   Google Scholar

[15]

Y. Kodama, Optical solitons in a monomode fiber, J. Stat. Phys., 39 (1985), 597-614.  doi: 10.1007/BF01008354.  Google Scholar

[16]

M. Krstic and A. Smyshlyaev, Boundary Control of PDEs: A Course on Backstepping Designs, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2008. doi: 10.1137/1.9780898718607.  Google Scholar

[17]

C. Laurey, The Cauchy problem for a third order nonlinear Schrödinger equation, Nonlinear Anal., 29 (1997), 121-158.  doi: 10.1016/S0362-546X(96)00081-8.  Google Scholar

[18]

W.-J. Liu and M. Krstić, Global boundary stabilization of the Korteweg-de Vries-Burgers equation, Comput. Appl. Math., 21 (2002), 315-354.   Google Scholar

[19]

W. Liu, Boundary feedback stabilization of an unstable heat equation, SIAM J. Control Optim., 42 (2003), 1033-1043.  doi: 10.1137/S0363012902402414.  Google Scholar

[20]

S. Marx and E. Cerpa, Output feedback stabilization of the Korteweg–de Vries equation, Automatica J. IFAC, 87 (2018), 210-217.  doi: 10.1016/j.automatica.2017.07.057.  Google Scholar

[21]

T. Özsarı and E. Arabacı, Boosting the decay of solutions of the linearised Korteweg–de Vries–Burgers equation to a predetermined rate from the boundary, Internat. J. Control, 92 (2019), 1753-1763.  doi: 10.1080/00207179.2017.1408923.  Google Scholar

[22]

T. Özsarı and A. Batal, Pseudo-backstepping and its application to the control of Korteweg–de Vries equation from the right endpoint on a finite domain, SIAM J. Control Optim., 57 (2019), 1255-1283.  doi: 10.1137/18M1211933.  Google Scholar

[23]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, Vol. 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[24]

H. Takaoka, Well-posedness for the higher order nonlinear Schrödinger equations, Adv. Math. Sci. Appl., 10 (2000), 149-171.  doi: 10.1016/j.na.2006.06.020.  Google Scholar

[25]

S. Tang and M. Krstic, Stabilization of linearized Korteweg-de Vries systems with anti-diffusion, in IEEE 2013 American Control Conference, Washington, DC, 2013, 3302–3307. Google Scholar

[26]

S. Tang and M. Krstic, Stabilization of linearized Korteweg-de Vries with anti-diffusion by boundary feedback with non-collocated observation, in IEEE 2015 American Control Conference, Chicago, IL, 2015. doi: 10.1109/ACC.2015.7171020.  Google Scholar

Figure 1.  Triangular regions
Figure 2.  Backstepping kernel on $ \Delta_{x,y} $ for $ L = \pi $, $ \beta = 1 $, $ \alpha = 2 $, $ \delta = 8 $ and $ r = 1 $
Figure 3.  Left: Contour plot of $ |p(x,y)| $ on $ \Delta_{x,y} $ for $ L = \pi $, $ \beta = 0.5 $, $ \alpha = 1 $, $ \delta = 0.5 $ and $ r = 0.2 $. Right: Real and imaginary parts of $ p_1(x) = -i \beta p(x,L) $
Figure 4.  Uncontrolled solution for linear case
Figure 5.  Numerical results for the linear controller case. Left: Time evolution of $ |u(x,t)| $. Right: Contour plot of $ |u(x,t)| $
Figure 6.  Left: Time evolution of $ |u(\cdot,t)|_2 $ for different values of $ r $. Right: Control gain $ |k(0,y)| $ for different values of $ r $
Figure 7.  Uncontrolled solution for nonlinear case, $ p \geq 1 $
Figure 8.  Numerical results of the controlled nonlinear model for $ p \geq 1 $
Figure 9.  Numerical results of the controlled nonlinear model for $ 0 < p < 1 $
Figure 10.  Numerical results for the observer case. Left: Time evolution of $ |u(x,t)| $. Right: Contour plot of $ |u(x,t)| $
Figure 11.  Time evolution of $ L^2 $ norms
Figure 12.  Uncontrolled solution for the linear case
Figure 13.  Numerical results of the controlled linear model
Figure 14.  Uncontrolled solution for nonlinear case, $ p \geq 1 $
Figure 15.  Numerical results of the controlled nonlinear model, $ p \geq 1 $
Figure 16.  Uncontrolled solution for the nonlinear case $ 0 < p < 1 $
Figure 17.  Numerical results of the controlled nonlinear model for $ 0 < p < 1 $
[1]

César Augusto Bortot, Wellington José Corrêa, Ryuichi Fukuoka, Thales Maier Souza. Exponential stability for the locally damped defocusing Schrödinger equation on compact manifold. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1367-1386. doi: 10.3934/cpaa.2020067

[2]

Jean-Claude Saut, Jun-Ichi Segata. Asymptotic behavior in time of solution to the nonlinear Schrödinger equation with higher order anisotropic dispersion. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 219-239. doi: 10.3934/dcds.2019009

[3]

Frank Wusterhausen. Schrödinger equation with noise on the boundary. Conference Publications, 2013, 2013 (special) : 791-796. doi: 10.3934/proc.2013.2013.791

[4]

Niels Jacob, Feng-Yu Wang. Higher order eigenvalues for non-local Schrödinger operators. Communications on Pure & Applied Analysis, 2018, 17 (1) : 191-208. doi: 10.3934/cpaa.2018012

[5]

Aliang Xia, Jianfu Yang. Normalized solutions of higher-order Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 447-462. doi: 10.3934/dcds.2019018

[6]

Lassaad Aloui, Moez Khenissi. Boundary stabilization of the wave and Schrödinger equations in exterior domains. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 919-934. doi: 10.3934/dcds.2010.27.919

[7]

Jun-ichi Segata. Initial value problem for the fourth order nonlinear Schrödinger type equation on torus and orbital stability of standing waves. Communications on Pure & Applied Analysis, 2015, 14 (3) : 843-859. doi: 10.3934/cpaa.2015.14.843

[8]

Zhong Wang. Stability of Hasimoto solitons in energy space for a fourth order nonlinear Schrödinger type equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4091-4108. doi: 10.3934/dcds.2017174

[9]

Ionuţ Munteanu. Exponential stabilization of the stochastic Burgers equation by boundary proportional feedback. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2173-2185. doi: 10.3934/dcds.2019091

[10]

Mourad Bellassoued, Oumaima Ben Fraj. Stability estimates for time-dependent coefficients appearing in the magnetic Schrödinger equation from arbitrary boundary measurements. Inverse Problems & Imaging, 2020, 14 (5) : 841-865. doi: 10.3934/ipi.2020039

[11]

Alexander Komech, Elena Kopylova, David Stuart. On asymptotic stability of solitons in a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1063-1079. doi: 10.3934/cpaa.2012.11.1063

[12]

J. Cruz-Sampedro. Boundary values of the resolvent of Schrödinger hamiltonians with potentials of order zero. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1061-1076. doi: 10.3934/dcds.2013.33.1061

[13]

Maike Schulte, Anton Arnold. Discrete transparent boundary conditions for the Schrodinger equation -- a compact higher order scheme. Kinetic & Related Models, 2008, 1 (1) : 101-125. doi: 10.3934/krm.2008.1.101

[14]

Joel Andersson, Leo Tzou. Stability for a magnetic Schrödinger operator on a Riemann surface with boundary. Inverse Problems & Imaging, 2018, 12 (1) : 1-28. doi: 10.3934/ipi.2018001

[15]

Carlos Banquet, Élder J. Villamizar-Roa. On the management fourth-order Schrödinger-Hartree equation. Evolution Equations & Control Theory, 2020, 9 (3) : 865-889. doi: 10.3934/eect.2020037

[16]

Chuang Zheng. Inverse problems for the fourth order Schrödinger equation on a finite domain. Mathematical Control & Related Fields, 2015, 5 (1) : 177-189. doi: 10.3934/mcrf.2015.5.177

[17]

Naoufel Ben Abdallah, Yongyong Cai, Francois Castella, Florian Méhats. Second order averaging for the nonlinear Schrödinger equation with strongly anisotropic potential. Kinetic & Related Models, 2011, 4 (4) : 831-856. doi: 10.3934/krm.2011.4.831

[18]

Serge Nicaise, Cristina Pignotti, Julie Valein. Exponential stability of the wave equation with boundary time-varying delay. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 693-722. doi: 10.3934/dcdss.2011.4.693

[19]

Tarek Saanouni. Global well-posedness of some high-order semilinear wave and Schrödinger type equations with exponential nonlinearity. Communications on Pure & Applied Analysis, 2014, 13 (1) : 273-291. doi: 10.3934/cpaa.2014.13.273

[20]

Qian Shen, Na Wei. Stability of ground state for the Schrödinger-Poisson equation. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020095

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (18)
  • HTML views (49)
  • Cited by (0)

[Back to Top]