• Previous Article
    S-asymptotically $ \omega $-periodic mild solutions and stability analysis of Hilfer fractional evolution equations
  • EECT Home
  • This Issue
  • Next Article
    Null controllability for singular cascade systems of $ n $-coupled degenerate parabolic equations by one control force
doi: 10.3934/eect.2020097

Optimal distributed control of the three dimensional primitive equations of large-scale ocean and atmosphere dynamics

School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, China

Received  July 2019 Revised  September 2020 Published  October 2020

Fund Project: This work was supported by the National Science Foundation of China Grant (11401459, 11871389), the Natural Science Foundation of Shaanxi Province (2018JM1012) and the Fundamental Research Funds for the Central Universities (xjj2018088)

The main objective of this paper is to study the optimal distributed control of the three dimensional non-autonomous primitive equations of large-scale ocean and atmosphere dynamics. We apply the well-posedness and regularity results of solutions for this system as well as some abstract results from the nonlinear functional analysis to establish the existence of optimal controls as well as the first-order necessary optimality condition for an associated optimal control problem in which a distributed control is applied to the temperature.

Citation: Bo You. Optimal distributed control of the three dimensional primitive equations of large-scale ocean and atmosphere dynamics. Evolution Equations & Control Theory, doi: 10.3934/eect.2020097
References:
[1]

A. Belmiloudi, Mathematical analysis and optimal control problems for the perturbation of the primitive equations of the ocean with vertical viscosity, J. Appl. Anal., 8 (2002), 153-200.  doi: 10.1515/JAA.2002.153.  Google Scholar

[2]

C. S. Cao and E. S. Titi, Global well-posedness of the three-dimensional viscous primitive equations of large-scale ocean and atmosphere dynamics, Ann. of Math., 166 (2007), 245-267.  doi: 10.4007/annals.2007.166.245.  Google Scholar

[3]

A. DebusscheN. Glatt-HoltzR. Temam and M. Ziane, Global existence and regularity for the 3D stochastic primitive equations of the ocean and atmosphere with multiplicative white noise, Nonlinearity, 25 (2012), 2093-2118.  doi: 10.1088/0951-7715/25/7/2093.  Google Scholar

[4]

S. FrigeriE. Rocca and J. Sprekels, Optimal distributed control of a nonlocal Cahn-Hilliard/Navier-Stokes system in two dimensions, SIAM J. Control Optim., 54 (2016), 221-250.  doi: 10.1137/140994800.  Google Scholar

[5]

A. V. FursikovM. D. Gunzburger and L. S. Hou, Optimal boundary control for the evolutionary Navier-Stokes system: the three-dimensional case, SIAM J. Control Optim., 43 (2005), 2191-2232.  doi: 10.1137/S0363012904400805.  Google Scholar

[6]

H. J. Gao and C. F. Sun, Well-posedness of stochastic primitive equations with multiplicative noise in three dimensions, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 3053-3073.  doi: 10.3934/dcdsb.2016087.  Google Scholar

[7]

B. L. Guo and D. W. Huang, Existence of weak solutions and trajectory attractors for the moist atmospheric equations in geophysics, J. Math. Phys., 47 (2006), 083508, 23pp. doi: 10.1063/1.2245207.  Google Scholar

[8]

B. L. Guo and D. W. Huang, On the existence of atmospheric attractors, Sci. China, Ser. D, 51 (2008), 469-480.   Google Scholar

[9]

B. L. Guo and D. W. Huang, 3D stochastic primitive equations of the large-scale ocean: global well-posedness and attractors, Comm. Math. Phys., 286 (2009), 697-723.  doi: 10.1007/s00220-008-0654-7.  Google Scholar

[10]

B. L. Guo and D. W. Huang, On the 3D viscous primitive equations of the large-scale atmosphere, Acta Math. Sci. Ser. B, 29 (2009), 846-866.  doi: 10.1016/S0252-9602(09)60074-6.  Google Scholar

[11]

B. L. Guo and D. W. Huang, Existence of the universal attractor for the 3D viscous primitive equations of large-scale moist atmosphere, J. Differential Equations, 251 (2011), 457-491.  doi: 10.1016/j.jde.2011.05.010.  Google Scholar

[12]

N. Glatt-Holtz, I. Kukavica, V. Vicol and M. Ziane, Existence and regularity of invariant measures for the three dimensional stochastic primitive equations, J. Math. Phys., 55 (2014), 051504, 34pp. doi: 10.1063/1.4875104.  Google Scholar

[13]

C. B. HuR. Temam and M. Ziane, Regularity results for linear elliptic problems related to the primitive equations, Chinese Ann. Math. Ser. B, 23 (2002), 277-292.  doi: 10.1142/S0252959902000262.  Google Scholar

[14]

N. Ju, The global attractor for the solutions to the three dimensional viscous primitive equations, Discrete Contin. Dyn. Syst., 17 (2007), 159-179.  doi: 10.3934/dcds.2007.17.159.  Google Scholar

[15]

N. Ju, The finite dimensional global attractor for the 3D viscous primitive equations, Discrete Contin. Dyn. Syst., 36 (2016), 7001-7020.  doi: 10.3934/dcds.2016104.  Google Scholar

[16]

N. Ju, On $H^2$ solutions and $z$-weak solutions of the 3D primitive equations, Indiana Univ. Math. J., 66 (2017), 973-996.  doi: 10.1512/iumj.2017.66.6065.  Google Scholar

[17]

N. Ju and R. Temam, Finite dimensions of the global attractor for 3D primitive equations with viscosity, J. Nonlinear Sci., 25 (2015), 131-155.  doi: 10.1007/s00332-014-9223-8.  Google Scholar

[18]

I. Kukavica and M. Ziane, On the regularity of the primitive equations of the ocean, Nonlinearity, 20 (2007), 2739-2753.  doi: 10.1088/0951-7715/20/12/001.  Google Scholar

[19]

J. L. LionsO. P. ManleyR. Temam and S. Wang, Physical interpretation of the attractor dimension for the primitive equations of atmospheric circulation, J. Atmospheric Sci., 54 (1997), 1137-1143.  doi: 10.1175/1520-0469(1997)054<1137:PIOTAD>2.0.CO;2.  Google Scholar

[20]

J. L. LionsR. Temam and S. Wang, On the equations of the large-scale ocean, Nonlinearity, 5 (1992), 1007-1053.  doi: 10.1088/0951-7715/5/5/002.  Google Scholar

[21]

T. T. Medjo, Maximum principle of optimal control of the primitive equations of the ocean with two point boundary state constraint, Appl. Math. Optim., 62 (2010), 1-26.  doi: 10.1007/s00245-009-9092-y.  Google Scholar

[22]

T. T. Medjo, Optimal control of the primitive equations of the ocean with state constraints, Nonlinear Anal., 73 (2010), 634-649.  doi: 10.1016/j.na.2010.03.043.  Google Scholar

[23]

T. T. Medjo, Second-order optimality conditions for optimal control of the primitive equations of the ocean with periodic inputs, Appl. Math. Optim., 63 (2011), 75-106.  doi: 10.1007/s00245-010-9112-y.  Google Scholar

[24]

T. T. Medjo, Non-autonomous 3D primitive equations with oscillating external force and its global attractor, Discrete Contin. Dyn. Syst., 32 (2012), 265-291.  doi: 10.3934/dcds.2012.32.265.  Google Scholar

[25]

T. T. Medjo, Averaging of a 3D primitive equations with oscillating external forces, Appl. Anal., 92 (2013), 869-900.  doi: 10.1080/00036811.2011.640628.  Google Scholar

[26]

M. Nodet, Optimal control of the primitive equations of the ocean with Lagrangian observations, ESAIM Control Optim. Calc. Var., 16 (2010), 400-419.  doi: 10.1051/cocv/2009003.  Google Scholar

[27]

J. Pedlosky, Geophysical Fluid Dynamics, Springer-Verlag, New York, 1987. Google Scholar

[28]

S. S. Sritharan, Optimal Control of Viscous Flow, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1998. doi: 10.1137/1.9781611971415.  Google Scholar

[29]

F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods and Applications, American Mathematical Society Providence, Rhode Island, 2010. Google Scholar

[30]

B. You and F. Li, Global attractor of the three-dimensional primitive equations of large-scale ocean and atmosphere dynamics, Z. Angew. Math. Phys., 69 (2018), Page No. 114, 13pp. doi: 10.1007/s00033-018-1007-9.  Google Scholar

[31]

G. L. Zhou, Random attractor for the 3D viscous primitive equations driven by fractional noises, J. Differential Equations, 266 (2019), 7569-7637.  doi: 10.1016/j.jde.2018.12.009.  Google Scholar

show all references

References:
[1]

A. Belmiloudi, Mathematical analysis and optimal control problems for the perturbation of the primitive equations of the ocean with vertical viscosity, J. Appl. Anal., 8 (2002), 153-200.  doi: 10.1515/JAA.2002.153.  Google Scholar

[2]

C. S. Cao and E. S. Titi, Global well-posedness of the three-dimensional viscous primitive equations of large-scale ocean and atmosphere dynamics, Ann. of Math., 166 (2007), 245-267.  doi: 10.4007/annals.2007.166.245.  Google Scholar

[3]

A. DebusscheN. Glatt-HoltzR. Temam and M. Ziane, Global existence and regularity for the 3D stochastic primitive equations of the ocean and atmosphere with multiplicative white noise, Nonlinearity, 25 (2012), 2093-2118.  doi: 10.1088/0951-7715/25/7/2093.  Google Scholar

[4]

S. FrigeriE. Rocca and J. Sprekels, Optimal distributed control of a nonlocal Cahn-Hilliard/Navier-Stokes system in two dimensions, SIAM J. Control Optim., 54 (2016), 221-250.  doi: 10.1137/140994800.  Google Scholar

[5]

A. V. FursikovM. D. Gunzburger and L. S. Hou, Optimal boundary control for the evolutionary Navier-Stokes system: the three-dimensional case, SIAM J. Control Optim., 43 (2005), 2191-2232.  doi: 10.1137/S0363012904400805.  Google Scholar

[6]

H. J. Gao and C. F. Sun, Well-posedness of stochastic primitive equations with multiplicative noise in three dimensions, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 3053-3073.  doi: 10.3934/dcdsb.2016087.  Google Scholar

[7]

B. L. Guo and D. W. Huang, Existence of weak solutions and trajectory attractors for the moist atmospheric equations in geophysics, J. Math. Phys., 47 (2006), 083508, 23pp. doi: 10.1063/1.2245207.  Google Scholar

[8]

B. L. Guo and D. W. Huang, On the existence of atmospheric attractors, Sci. China, Ser. D, 51 (2008), 469-480.   Google Scholar

[9]

B. L. Guo and D. W. Huang, 3D stochastic primitive equations of the large-scale ocean: global well-posedness and attractors, Comm. Math. Phys., 286 (2009), 697-723.  doi: 10.1007/s00220-008-0654-7.  Google Scholar

[10]

B. L. Guo and D. W. Huang, On the 3D viscous primitive equations of the large-scale atmosphere, Acta Math. Sci. Ser. B, 29 (2009), 846-866.  doi: 10.1016/S0252-9602(09)60074-6.  Google Scholar

[11]

B. L. Guo and D. W. Huang, Existence of the universal attractor for the 3D viscous primitive equations of large-scale moist atmosphere, J. Differential Equations, 251 (2011), 457-491.  doi: 10.1016/j.jde.2011.05.010.  Google Scholar

[12]

N. Glatt-Holtz, I. Kukavica, V. Vicol and M. Ziane, Existence and regularity of invariant measures for the three dimensional stochastic primitive equations, J. Math. Phys., 55 (2014), 051504, 34pp. doi: 10.1063/1.4875104.  Google Scholar

[13]

C. B. HuR. Temam and M. Ziane, Regularity results for linear elliptic problems related to the primitive equations, Chinese Ann. Math. Ser. B, 23 (2002), 277-292.  doi: 10.1142/S0252959902000262.  Google Scholar

[14]

N. Ju, The global attractor for the solutions to the three dimensional viscous primitive equations, Discrete Contin. Dyn. Syst., 17 (2007), 159-179.  doi: 10.3934/dcds.2007.17.159.  Google Scholar

[15]

N. Ju, The finite dimensional global attractor for the 3D viscous primitive equations, Discrete Contin. Dyn. Syst., 36 (2016), 7001-7020.  doi: 10.3934/dcds.2016104.  Google Scholar

[16]

N. Ju, On $H^2$ solutions and $z$-weak solutions of the 3D primitive equations, Indiana Univ. Math. J., 66 (2017), 973-996.  doi: 10.1512/iumj.2017.66.6065.  Google Scholar

[17]

N. Ju and R. Temam, Finite dimensions of the global attractor for 3D primitive equations with viscosity, J. Nonlinear Sci., 25 (2015), 131-155.  doi: 10.1007/s00332-014-9223-8.  Google Scholar

[18]

I. Kukavica and M. Ziane, On the regularity of the primitive equations of the ocean, Nonlinearity, 20 (2007), 2739-2753.  doi: 10.1088/0951-7715/20/12/001.  Google Scholar

[19]

J. L. LionsO. P. ManleyR. Temam and S. Wang, Physical interpretation of the attractor dimension for the primitive equations of atmospheric circulation, J. Atmospheric Sci., 54 (1997), 1137-1143.  doi: 10.1175/1520-0469(1997)054<1137:PIOTAD>2.0.CO;2.  Google Scholar

[20]

J. L. LionsR. Temam and S. Wang, On the equations of the large-scale ocean, Nonlinearity, 5 (1992), 1007-1053.  doi: 10.1088/0951-7715/5/5/002.  Google Scholar

[21]

T. T. Medjo, Maximum principle of optimal control of the primitive equations of the ocean with two point boundary state constraint, Appl. Math. Optim., 62 (2010), 1-26.  doi: 10.1007/s00245-009-9092-y.  Google Scholar

[22]

T. T. Medjo, Optimal control of the primitive equations of the ocean with state constraints, Nonlinear Anal., 73 (2010), 634-649.  doi: 10.1016/j.na.2010.03.043.  Google Scholar

[23]

T. T. Medjo, Second-order optimality conditions for optimal control of the primitive equations of the ocean with periodic inputs, Appl. Math. Optim., 63 (2011), 75-106.  doi: 10.1007/s00245-010-9112-y.  Google Scholar

[24]

T. T. Medjo, Non-autonomous 3D primitive equations with oscillating external force and its global attractor, Discrete Contin. Dyn. Syst., 32 (2012), 265-291.  doi: 10.3934/dcds.2012.32.265.  Google Scholar

[25]

T. T. Medjo, Averaging of a 3D primitive equations with oscillating external forces, Appl. Anal., 92 (2013), 869-900.  doi: 10.1080/00036811.2011.640628.  Google Scholar

[26]

M. Nodet, Optimal control of the primitive equations of the ocean with Lagrangian observations, ESAIM Control Optim. Calc. Var., 16 (2010), 400-419.  doi: 10.1051/cocv/2009003.  Google Scholar

[27]

J. Pedlosky, Geophysical Fluid Dynamics, Springer-Verlag, New York, 1987. Google Scholar

[28]

S. S. Sritharan, Optimal Control of Viscous Flow, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1998. doi: 10.1137/1.9781611971415.  Google Scholar

[29]

F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods and Applications, American Mathematical Society Providence, Rhode Island, 2010. Google Scholar

[30]

B. You and F. Li, Global attractor of the three-dimensional primitive equations of large-scale ocean and atmosphere dynamics, Z. Angew. Math. Phys., 69 (2018), Page No. 114, 13pp. doi: 10.1007/s00033-018-1007-9.  Google Scholar

[31]

G. L. Zhou, Random attractor for the 3D viscous primitive equations driven by fractional noises, J. Differential Equations, 266 (2019), 7569-7637.  doi: 10.1016/j.jde.2018.12.009.  Google Scholar

[1]

Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021012

[2]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[3]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[4]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[5]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[6]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[7]

Lorenzo Freddi. Optimal control of the transmission rate in compartmental epidemics. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021007

[8]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[9]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[10]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[11]

Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021040

[12]

John T. Betts, Stephen Campbell, Claire Digirolamo. Examination of solving optimal control problems with delays using GPOPS-Ⅱ. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 283-305. doi: 10.3934/naco.2020026

[13]

Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021009

[14]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[15]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[16]

Karl-Peter Hadeler, Frithjof Lutscher. Quiescent phases with distributed exit times. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 849-869. doi: 10.3934/dcdsb.2012.17.849

[17]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[18]

Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637

[19]

Raz Kupferman, Cy Maor. The emergence of torsion in the continuum limit of distributed edge-dislocations. Journal of Geometric Mechanics, 2015, 7 (3) : 361-387. doi: 10.3934/jgm.2015.7.361

[20]

Meiqiao Ai, Zhimin Zhang, Wenguang Yu. First passage problems of refracted jump diffusion processes and their applications in valuing equity-linked death benefits. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021039

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (29)
  • HTML views (146)
  • Cited by (0)

Other articles
by authors

[Back to Top]