-
Previous Article
S-asymptotically $ \omega $-periodic mild solutions and stability analysis of Hilfer fractional evolution equations
- EECT Home
- This Issue
-
Next Article
Null controllability for singular cascade systems of $ n $-coupled degenerate parabolic equations by one control force
Optimal distributed control of the three dimensional primitive equations of large-scale ocean and atmosphere dynamics
School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, China |
The main objective of this paper is to study the optimal distributed control of the three dimensional non-autonomous primitive equations of large-scale ocean and atmosphere dynamics. We apply the well-posedness and regularity results of solutions for this system as well as some abstract results from the nonlinear functional analysis to establish the existence of optimal controls as well as the first-order necessary optimality condition for an associated optimal control problem in which a distributed control is applied to the temperature.
References:
[1] |
A. Belmiloudi,
Mathematical analysis and optimal control problems for the perturbation of the primitive equations of the ocean with vertical viscosity, J. Appl. Anal., 8 (2002), 153-200.
doi: 10.1515/JAA.2002.153. |
[2] |
C. S. Cao and E. S. Titi,
Global well-posedness of the three-dimensional viscous primitive equations of large-scale ocean and atmosphere dynamics, Ann. of Math., 166 (2007), 245-267.
doi: 10.4007/annals.2007.166.245. |
[3] |
A. Debussche, N. Glatt-Holtz, R. Temam and M. Ziane,
Global existence and regularity for the 3D stochastic primitive equations of the ocean and atmosphere with multiplicative white noise, Nonlinearity, 25 (2012), 2093-2118.
doi: 10.1088/0951-7715/25/7/2093. |
[4] |
S. Frigeri, E. Rocca and J. Sprekels,
Optimal distributed control of a nonlocal Cahn-Hilliard/Navier-Stokes system in two dimensions, SIAM J. Control Optim., 54 (2016), 221-250.
doi: 10.1137/140994800. |
[5] |
A. V. Fursikov, M. D. Gunzburger and L. S. Hou,
Optimal boundary control for the evolutionary Navier-Stokes system: the three-dimensional case, SIAM J. Control Optim., 43 (2005), 2191-2232.
doi: 10.1137/S0363012904400805. |
[6] |
H. J. Gao and C. F. Sun,
Well-posedness of stochastic primitive equations with multiplicative noise in three dimensions, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 3053-3073.
doi: 10.3934/dcdsb.2016087. |
[7] |
B. L. Guo and D. W. Huang, Existence of weak solutions and trajectory attractors for the moist atmospheric equations in geophysics, J. Math. Phys., 47 (2006), 083508, 23pp.
doi: 10.1063/1.2245207. |
[8] |
B. L. Guo and D. W. Huang, On the existence of atmospheric attractors, Sci. China, Ser. D, 51 (2008), 469-480. Google Scholar |
[9] |
B. L. Guo and D. W. Huang,
3D stochastic primitive equations of the large-scale ocean: global well-posedness and attractors, Comm. Math. Phys., 286 (2009), 697-723.
doi: 10.1007/s00220-008-0654-7. |
[10] |
B. L. Guo and D. W. Huang,
On the 3D viscous primitive equations of the large-scale atmosphere, Acta Math. Sci. Ser. B, 29 (2009), 846-866.
doi: 10.1016/S0252-9602(09)60074-6. |
[11] |
B. L. Guo and D. W. Huang,
Existence of the universal attractor for the 3D viscous primitive equations of large-scale moist atmosphere, J. Differential Equations, 251 (2011), 457-491.
doi: 10.1016/j.jde.2011.05.010. |
[12] |
N. Glatt-Holtz, I. Kukavica, V. Vicol and M. Ziane, Existence and regularity of invariant measures for the three dimensional stochastic primitive equations, J. Math. Phys., 55 (2014), 051504, 34pp.
doi: 10.1063/1.4875104. |
[13] |
C. B. Hu, R. Temam and M. Ziane,
Regularity results for linear elliptic problems related to the primitive equations, Chinese Ann. Math. Ser. B, 23 (2002), 277-292.
doi: 10.1142/S0252959902000262. |
[14] |
N. Ju,
The global attractor for the solutions to the three dimensional viscous primitive equations, Discrete Contin. Dyn. Syst., 17 (2007), 159-179.
doi: 10.3934/dcds.2007.17.159. |
[15] |
N. Ju,
The finite dimensional global attractor for the 3D viscous primitive equations, Discrete Contin. Dyn. Syst., 36 (2016), 7001-7020.
doi: 10.3934/dcds.2016104. |
[16] |
N. Ju,
On $H^2$ solutions and $z$-weak solutions of the 3D primitive equations, Indiana Univ. Math. J., 66 (2017), 973-996.
doi: 10.1512/iumj.2017.66.6065. |
[17] |
N. Ju and R. Temam,
Finite dimensions of the global attractor for 3D primitive equations with viscosity, J. Nonlinear Sci., 25 (2015), 131-155.
doi: 10.1007/s00332-014-9223-8. |
[18] |
I. Kukavica and M. Ziane,
On the regularity of the primitive equations of the ocean, Nonlinearity, 20 (2007), 2739-2753.
doi: 10.1088/0951-7715/20/12/001. |
[19] |
J. L. Lions, O. P. Manley, R. Temam and S. Wang,
Physical interpretation of the attractor dimension for the primitive equations of atmospheric circulation, J. Atmospheric Sci., 54 (1997), 1137-1143.
doi: 10.1175/1520-0469(1997)054<1137:PIOTAD>2.0.CO;2. |
[20] |
J. L. Lions, R. Temam and S. Wang,
On the equations of the large-scale ocean, Nonlinearity, 5 (1992), 1007-1053.
doi: 10.1088/0951-7715/5/5/002. |
[21] |
T. T. Medjo,
Maximum principle of optimal control of the primitive equations of the ocean with two point boundary state constraint, Appl. Math. Optim., 62 (2010), 1-26.
doi: 10.1007/s00245-009-9092-y. |
[22] |
T. T. Medjo,
Optimal control of the primitive equations of the ocean with state constraints, Nonlinear Anal., 73 (2010), 634-649.
doi: 10.1016/j.na.2010.03.043. |
[23] |
T. T. Medjo,
Second-order optimality conditions for optimal control of the primitive equations of the ocean with periodic inputs, Appl. Math. Optim., 63 (2011), 75-106.
doi: 10.1007/s00245-010-9112-y. |
[24] |
T. T. Medjo,
Non-autonomous 3D primitive equations with oscillating external force and its global attractor, Discrete Contin. Dyn. Syst., 32 (2012), 265-291.
doi: 10.3934/dcds.2012.32.265. |
[25] |
T. T. Medjo,
Averaging of a 3D primitive equations with oscillating external forces, Appl. Anal., 92 (2013), 869-900.
doi: 10.1080/00036811.2011.640628. |
[26] |
M. Nodet,
Optimal control of the primitive equations of the ocean with Lagrangian observations, ESAIM Control Optim. Calc. Var., 16 (2010), 400-419.
doi: 10.1051/cocv/2009003. |
[27] |
J. Pedlosky, Geophysical Fluid Dynamics, Springer-Verlag, New York, 1987. Google Scholar |
[28] |
S. S. Sritharan, Optimal Control of Viscous Flow, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1998.
doi: 10.1137/1.9781611971415. |
[29] |
F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods and Applications, American Mathematical Society Providence, Rhode Island, 2010. Google Scholar |
[30] |
B. You and F. Li, Global attractor of the three-dimensional primitive equations of large-scale ocean and atmosphere dynamics, Z. Angew. Math. Phys., 69 (2018), Page No. 114, 13pp.
doi: 10.1007/s00033-018-1007-9. |
[31] |
G. L. Zhou,
Random attractor for the 3D viscous primitive equations driven by fractional noises, J. Differential Equations, 266 (2019), 7569-7637.
doi: 10.1016/j.jde.2018.12.009. |
show all references
References:
[1] |
A. Belmiloudi,
Mathematical analysis and optimal control problems for the perturbation of the primitive equations of the ocean with vertical viscosity, J. Appl. Anal., 8 (2002), 153-200.
doi: 10.1515/JAA.2002.153. |
[2] |
C. S. Cao and E. S. Titi,
Global well-posedness of the three-dimensional viscous primitive equations of large-scale ocean and atmosphere dynamics, Ann. of Math., 166 (2007), 245-267.
doi: 10.4007/annals.2007.166.245. |
[3] |
A. Debussche, N. Glatt-Holtz, R. Temam and M. Ziane,
Global existence and regularity for the 3D stochastic primitive equations of the ocean and atmosphere with multiplicative white noise, Nonlinearity, 25 (2012), 2093-2118.
doi: 10.1088/0951-7715/25/7/2093. |
[4] |
S. Frigeri, E. Rocca and J. Sprekels,
Optimal distributed control of a nonlocal Cahn-Hilliard/Navier-Stokes system in two dimensions, SIAM J. Control Optim., 54 (2016), 221-250.
doi: 10.1137/140994800. |
[5] |
A. V. Fursikov, M. D. Gunzburger and L. S. Hou,
Optimal boundary control for the evolutionary Navier-Stokes system: the three-dimensional case, SIAM J. Control Optim., 43 (2005), 2191-2232.
doi: 10.1137/S0363012904400805. |
[6] |
H. J. Gao and C. F. Sun,
Well-posedness of stochastic primitive equations with multiplicative noise in three dimensions, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 3053-3073.
doi: 10.3934/dcdsb.2016087. |
[7] |
B. L. Guo and D. W. Huang, Existence of weak solutions and trajectory attractors for the moist atmospheric equations in geophysics, J. Math. Phys., 47 (2006), 083508, 23pp.
doi: 10.1063/1.2245207. |
[8] |
B. L. Guo and D. W. Huang, On the existence of atmospheric attractors, Sci. China, Ser. D, 51 (2008), 469-480. Google Scholar |
[9] |
B. L. Guo and D. W. Huang,
3D stochastic primitive equations of the large-scale ocean: global well-posedness and attractors, Comm. Math. Phys., 286 (2009), 697-723.
doi: 10.1007/s00220-008-0654-7. |
[10] |
B. L. Guo and D. W. Huang,
On the 3D viscous primitive equations of the large-scale atmosphere, Acta Math. Sci. Ser. B, 29 (2009), 846-866.
doi: 10.1016/S0252-9602(09)60074-6. |
[11] |
B. L. Guo and D. W. Huang,
Existence of the universal attractor for the 3D viscous primitive equations of large-scale moist atmosphere, J. Differential Equations, 251 (2011), 457-491.
doi: 10.1016/j.jde.2011.05.010. |
[12] |
N. Glatt-Holtz, I. Kukavica, V. Vicol and M. Ziane, Existence and regularity of invariant measures for the three dimensional stochastic primitive equations, J. Math. Phys., 55 (2014), 051504, 34pp.
doi: 10.1063/1.4875104. |
[13] |
C. B. Hu, R. Temam and M. Ziane,
Regularity results for linear elliptic problems related to the primitive equations, Chinese Ann. Math. Ser. B, 23 (2002), 277-292.
doi: 10.1142/S0252959902000262. |
[14] |
N. Ju,
The global attractor for the solutions to the three dimensional viscous primitive equations, Discrete Contin. Dyn. Syst., 17 (2007), 159-179.
doi: 10.3934/dcds.2007.17.159. |
[15] |
N. Ju,
The finite dimensional global attractor for the 3D viscous primitive equations, Discrete Contin. Dyn. Syst., 36 (2016), 7001-7020.
doi: 10.3934/dcds.2016104. |
[16] |
N. Ju,
On $H^2$ solutions and $z$-weak solutions of the 3D primitive equations, Indiana Univ. Math. J., 66 (2017), 973-996.
doi: 10.1512/iumj.2017.66.6065. |
[17] |
N. Ju and R. Temam,
Finite dimensions of the global attractor for 3D primitive equations with viscosity, J. Nonlinear Sci., 25 (2015), 131-155.
doi: 10.1007/s00332-014-9223-8. |
[18] |
I. Kukavica and M. Ziane,
On the regularity of the primitive equations of the ocean, Nonlinearity, 20 (2007), 2739-2753.
doi: 10.1088/0951-7715/20/12/001. |
[19] |
J. L. Lions, O. P. Manley, R. Temam and S. Wang,
Physical interpretation of the attractor dimension for the primitive equations of atmospheric circulation, J. Atmospheric Sci., 54 (1997), 1137-1143.
doi: 10.1175/1520-0469(1997)054<1137:PIOTAD>2.0.CO;2. |
[20] |
J. L. Lions, R. Temam and S. Wang,
On the equations of the large-scale ocean, Nonlinearity, 5 (1992), 1007-1053.
doi: 10.1088/0951-7715/5/5/002. |
[21] |
T. T. Medjo,
Maximum principle of optimal control of the primitive equations of the ocean with two point boundary state constraint, Appl. Math. Optim., 62 (2010), 1-26.
doi: 10.1007/s00245-009-9092-y. |
[22] |
T. T. Medjo,
Optimal control of the primitive equations of the ocean with state constraints, Nonlinear Anal., 73 (2010), 634-649.
doi: 10.1016/j.na.2010.03.043. |
[23] |
T. T. Medjo,
Second-order optimality conditions for optimal control of the primitive equations of the ocean with periodic inputs, Appl. Math. Optim., 63 (2011), 75-106.
doi: 10.1007/s00245-010-9112-y. |
[24] |
T. T. Medjo,
Non-autonomous 3D primitive equations with oscillating external force and its global attractor, Discrete Contin. Dyn. Syst., 32 (2012), 265-291.
doi: 10.3934/dcds.2012.32.265. |
[25] |
T. T. Medjo,
Averaging of a 3D primitive equations with oscillating external forces, Appl. Anal., 92 (2013), 869-900.
doi: 10.1080/00036811.2011.640628. |
[26] |
M. Nodet,
Optimal control of the primitive equations of the ocean with Lagrangian observations, ESAIM Control Optim. Calc. Var., 16 (2010), 400-419.
doi: 10.1051/cocv/2009003. |
[27] |
J. Pedlosky, Geophysical Fluid Dynamics, Springer-Verlag, New York, 1987. Google Scholar |
[28] |
S. S. Sritharan, Optimal Control of Viscous Flow, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1998.
doi: 10.1137/1.9781611971415. |
[29] |
F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods and Applications, American Mathematical Society Providence, Rhode Island, 2010. Google Scholar |
[30] |
B. You and F. Li, Global attractor of the three-dimensional primitive equations of large-scale ocean and atmosphere dynamics, Z. Angew. Math. Phys., 69 (2018), Page No. 114, 13pp.
doi: 10.1007/s00033-018-1007-9. |
[31] |
G. L. Zhou,
Random attractor for the 3D viscous primitive equations driven by fractional noises, J. Differential Equations, 266 (2019), 7569-7637.
doi: 10.1016/j.jde.2018.12.009. |
[1] |
Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021012 |
[2] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[3] |
Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021014 |
[4] |
Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301 |
[5] |
Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209 |
[6] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[7] |
Lorenzo Freddi. Optimal control of the transmission rate in compartmental epidemics. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021007 |
[8] |
Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675 |
[9] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[10] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[11] |
Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021040 |
[12] |
John T. Betts, Stephen Campbell, Claire Digirolamo. Examination of solving optimal control problems with delays using GPOPS-Ⅱ. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 283-305. doi: 10.3934/naco.2020026 |
[13] |
Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021009 |
[14] |
Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203 |
[15] |
Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027 |
[16] |
Karl-Peter Hadeler, Frithjof Lutscher. Quiescent phases with distributed exit times. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 849-869. doi: 10.3934/dcdsb.2012.17.849 |
[17] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
[18] |
Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637 |
[19] |
Raz Kupferman, Cy Maor. The emergence of torsion in the continuum limit of distributed edge-dislocations. Journal of Geometric Mechanics, 2015, 7 (3) : 361-387. doi: 10.3934/jgm.2015.7.361 |
[20] |
Meiqiao Ai, Zhimin Zhang, Wenguang Yu. First passage problems of refracted jump diffusion processes and their applications in valuing equity-linked death benefits. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021039 |
2019 Impact Factor: 0.953
Tools
Article outline
[Back to Top]