• Previous Article
    S-asymptotically $ \omega $-periodic mild solutions and stability analysis of Hilfer fractional evolution equations
  • EECT Home
  • This Issue
  • Next Article
    Null controllability for singular cascade systems of $ n $-coupled degenerate parabolic equations by one control force
doi: 10.3934/eect.2020097

Optimal distributed control of the three dimensional primitive equations of large-scale ocean and atmosphere dynamics

School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, China

Received  July 2019 Revised  September 2020 Published  October 2020

Fund Project: This work was supported by the National Science Foundation of China Grant (11401459, 11871389), the Natural Science Foundation of Shaanxi Province (2018JM1012) and the Fundamental Research Funds for the Central Universities (xjj2018088)

The main objective of this paper is to study the optimal distributed control of the three dimensional non-autonomous primitive equations of large-scale ocean and atmosphere dynamics. We apply the well-posedness and regularity results of solutions for this system as well as some abstract results from the nonlinear functional analysis to establish the existence of optimal controls as well as the first-order necessary optimality condition for an associated optimal control problem in which a distributed control is applied to the temperature.

Citation: Bo You. Optimal distributed control of the three dimensional primitive equations of large-scale ocean and atmosphere dynamics. Evolution Equations & Control Theory, doi: 10.3934/eect.2020097
References:
[1]

A. Belmiloudi, Mathematical analysis and optimal control problems for the perturbation of the primitive equations of the ocean with vertical viscosity, J. Appl. Anal., 8 (2002), 153-200.  doi: 10.1515/JAA.2002.153.  Google Scholar

[2]

C. S. Cao and E. S. Titi, Global well-posedness of the three-dimensional viscous primitive equations of large-scale ocean and atmosphere dynamics, Ann. of Math., 166 (2007), 245-267.  doi: 10.4007/annals.2007.166.245.  Google Scholar

[3]

A. DebusscheN. Glatt-HoltzR. Temam and M. Ziane, Global existence and regularity for the 3D stochastic primitive equations of the ocean and atmosphere with multiplicative white noise, Nonlinearity, 25 (2012), 2093-2118.  doi: 10.1088/0951-7715/25/7/2093.  Google Scholar

[4]

S. FrigeriE. Rocca and J. Sprekels, Optimal distributed control of a nonlocal Cahn-Hilliard/Navier-Stokes system in two dimensions, SIAM J. Control Optim., 54 (2016), 221-250.  doi: 10.1137/140994800.  Google Scholar

[5]

A. V. FursikovM. D. Gunzburger and L. S. Hou, Optimal boundary control for the evolutionary Navier-Stokes system: the three-dimensional case, SIAM J. Control Optim., 43 (2005), 2191-2232.  doi: 10.1137/S0363012904400805.  Google Scholar

[6]

H. J. Gao and C. F. Sun, Well-posedness of stochastic primitive equations with multiplicative noise in three dimensions, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 3053-3073.  doi: 10.3934/dcdsb.2016087.  Google Scholar

[7]

B. L. Guo and D. W. Huang, Existence of weak solutions and trajectory attractors for the moist atmospheric equations in geophysics, J. Math. Phys., 47 (2006), 083508, 23pp. doi: 10.1063/1.2245207.  Google Scholar

[8]

B. L. Guo and D. W. Huang, On the existence of atmospheric attractors, Sci. China, Ser. D, 51 (2008), 469-480.   Google Scholar

[9]

B. L. Guo and D. W. Huang, 3D stochastic primitive equations of the large-scale ocean: global well-posedness and attractors, Comm. Math. Phys., 286 (2009), 697-723.  doi: 10.1007/s00220-008-0654-7.  Google Scholar

[10]

B. L. Guo and D. W. Huang, On the 3D viscous primitive equations of the large-scale atmosphere, Acta Math. Sci. Ser. B, 29 (2009), 846-866.  doi: 10.1016/S0252-9602(09)60074-6.  Google Scholar

[11]

B. L. Guo and D. W. Huang, Existence of the universal attractor for the 3D viscous primitive equations of large-scale moist atmosphere, J. Differential Equations, 251 (2011), 457-491.  doi: 10.1016/j.jde.2011.05.010.  Google Scholar

[12]

N. Glatt-Holtz, I. Kukavica, V. Vicol and M. Ziane, Existence and regularity of invariant measures for the three dimensional stochastic primitive equations, J. Math. Phys., 55 (2014), 051504, 34pp. doi: 10.1063/1.4875104.  Google Scholar

[13]

C. B. HuR. Temam and M. Ziane, Regularity results for linear elliptic problems related to the primitive equations, Chinese Ann. Math. Ser. B, 23 (2002), 277-292.  doi: 10.1142/S0252959902000262.  Google Scholar

[14]

N. Ju, The global attractor for the solutions to the three dimensional viscous primitive equations, Discrete Contin. Dyn. Syst., 17 (2007), 159-179.  doi: 10.3934/dcds.2007.17.159.  Google Scholar

[15]

N. Ju, The finite dimensional global attractor for the 3D viscous primitive equations, Discrete Contin. Dyn. Syst., 36 (2016), 7001-7020.  doi: 10.3934/dcds.2016104.  Google Scholar

[16]

N. Ju, On $H^2$ solutions and $z$-weak solutions of the 3D primitive equations, Indiana Univ. Math. J., 66 (2017), 973-996.  doi: 10.1512/iumj.2017.66.6065.  Google Scholar

[17]

N. Ju and R. Temam, Finite dimensions of the global attractor for 3D primitive equations with viscosity, J. Nonlinear Sci., 25 (2015), 131-155.  doi: 10.1007/s00332-014-9223-8.  Google Scholar

[18]

I. Kukavica and M. Ziane, On the regularity of the primitive equations of the ocean, Nonlinearity, 20 (2007), 2739-2753.  doi: 10.1088/0951-7715/20/12/001.  Google Scholar

[19]

J. L. LionsO. P. ManleyR. Temam and S. Wang, Physical interpretation of the attractor dimension for the primitive equations of atmospheric circulation, J. Atmospheric Sci., 54 (1997), 1137-1143.  doi: 10.1175/1520-0469(1997)054<1137:PIOTAD>2.0.CO;2.  Google Scholar

[20]

J. L. LionsR. Temam and S. Wang, On the equations of the large-scale ocean, Nonlinearity, 5 (1992), 1007-1053.  doi: 10.1088/0951-7715/5/5/002.  Google Scholar

[21]

T. T. Medjo, Maximum principle of optimal control of the primitive equations of the ocean with two point boundary state constraint, Appl. Math. Optim., 62 (2010), 1-26.  doi: 10.1007/s00245-009-9092-y.  Google Scholar

[22]

T. T. Medjo, Optimal control of the primitive equations of the ocean with state constraints, Nonlinear Anal., 73 (2010), 634-649.  doi: 10.1016/j.na.2010.03.043.  Google Scholar

[23]

T. T. Medjo, Second-order optimality conditions for optimal control of the primitive equations of the ocean with periodic inputs, Appl. Math. Optim., 63 (2011), 75-106.  doi: 10.1007/s00245-010-9112-y.  Google Scholar

[24]

T. T. Medjo, Non-autonomous 3D primitive equations with oscillating external force and its global attractor, Discrete Contin. Dyn. Syst., 32 (2012), 265-291.  doi: 10.3934/dcds.2012.32.265.  Google Scholar

[25]

T. T. Medjo, Averaging of a 3D primitive equations with oscillating external forces, Appl. Anal., 92 (2013), 869-900.  doi: 10.1080/00036811.2011.640628.  Google Scholar

[26]

M. Nodet, Optimal control of the primitive equations of the ocean with Lagrangian observations, ESAIM Control Optim. Calc. Var., 16 (2010), 400-419.  doi: 10.1051/cocv/2009003.  Google Scholar

[27]

J. Pedlosky, Geophysical Fluid Dynamics, Springer-Verlag, New York, 1987. Google Scholar

[28]

S. S. Sritharan, Optimal Control of Viscous Flow, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1998. doi: 10.1137/1.9781611971415.  Google Scholar

[29]

F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods and Applications, American Mathematical Society Providence, Rhode Island, 2010. Google Scholar

[30]

B. You and F. Li, Global attractor of the three-dimensional primitive equations of large-scale ocean and atmosphere dynamics, Z. Angew. Math. Phys., 69 (2018), Page No. 114, 13pp. doi: 10.1007/s00033-018-1007-9.  Google Scholar

[31]

G. L. Zhou, Random attractor for the 3D viscous primitive equations driven by fractional noises, J. Differential Equations, 266 (2019), 7569-7637.  doi: 10.1016/j.jde.2018.12.009.  Google Scholar

show all references

References:
[1]

A. Belmiloudi, Mathematical analysis and optimal control problems for the perturbation of the primitive equations of the ocean with vertical viscosity, J. Appl. Anal., 8 (2002), 153-200.  doi: 10.1515/JAA.2002.153.  Google Scholar

[2]

C. S. Cao and E. S. Titi, Global well-posedness of the three-dimensional viscous primitive equations of large-scale ocean and atmosphere dynamics, Ann. of Math., 166 (2007), 245-267.  doi: 10.4007/annals.2007.166.245.  Google Scholar

[3]

A. DebusscheN. Glatt-HoltzR. Temam and M. Ziane, Global existence and regularity for the 3D stochastic primitive equations of the ocean and atmosphere with multiplicative white noise, Nonlinearity, 25 (2012), 2093-2118.  doi: 10.1088/0951-7715/25/7/2093.  Google Scholar

[4]

S. FrigeriE. Rocca and J. Sprekels, Optimal distributed control of a nonlocal Cahn-Hilliard/Navier-Stokes system in two dimensions, SIAM J. Control Optim., 54 (2016), 221-250.  doi: 10.1137/140994800.  Google Scholar

[5]

A. V. FursikovM. D. Gunzburger and L. S. Hou, Optimal boundary control for the evolutionary Navier-Stokes system: the three-dimensional case, SIAM J. Control Optim., 43 (2005), 2191-2232.  doi: 10.1137/S0363012904400805.  Google Scholar

[6]

H. J. Gao and C. F. Sun, Well-posedness of stochastic primitive equations with multiplicative noise in three dimensions, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 3053-3073.  doi: 10.3934/dcdsb.2016087.  Google Scholar

[7]

B. L. Guo and D. W. Huang, Existence of weak solutions and trajectory attractors for the moist atmospheric equations in geophysics, J. Math. Phys., 47 (2006), 083508, 23pp. doi: 10.1063/1.2245207.  Google Scholar

[8]

B. L. Guo and D. W. Huang, On the existence of atmospheric attractors, Sci. China, Ser. D, 51 (2008), 469-480.   Google Scholar

[9]

B. L. Guo and D. W. Huang, 3D stochastic primitive equations of the large-scale ocean: global well-posedness and attractors, Comm. Math. Phys., 286 (2009), 697-723.  doi: 10.1007/s00220-008-0654-7.  Google Scholar

[10]

B. L. Guo and D. W. Huang, On the 3D viscous primitive equations of the large-scale atmosphere, Acta Math. Sci. Ser. B, 29 (2009), 846-866.  doi: 10.1016/S0252-9602(09)60074-6.  Google Scholar

[11]

B. L. Guo and D. W. Huang, Existence of the universal attractor for the 3D viscous primitive equations of large-scale moist atmosphere, J. Differential Equations, 251 (2011), 457-491.  doi: 10.1016/j.jde.2011.05.010.  Google Scholar

[12]

N. Glatt-Holtz, I. Kukavica, V. Vicol and M. Ziane, Existence and regularity of invariant measures for the three dimensional stochastic primitive equations, J. Math. Phys., 55 (2014), 051504, 34pp. doi: 10.1063/1.4875104.  Google Scholar

[13]

C. B. HuR. Temam and M. Ziane, Regularity results for linear elliptic problems related to the primitive equations, Chinese Ann. Math. Ser. B, 23 (2002), 277-292.  doi: 10.1142/S0252959902000262.  Google Scholar

[14]

N. Ju, The global attractor for the solutions to the three dimensional viscous primitive equations, Discrete Contin. Dyn. Syst., 17 (2007), 159-179.  doi: 10.3934/dcds.2007.17.159.  Google Scholar

[15]

N. Ju, The finite dimensional global attractor for the 3D viscous primitive equations, Discrete Contin. Dyn. Syst., 36 (2016), 7001-7020.  doi: 10.3934/dcds.2016104.  Google Scholar

[16]

N. Ju, On $H^2$ solutions and $z$-weak solutions of the 3D primitive equations, Indiana Univ. Math. J., 66 (2017), 973-996.  doi: 10.1512/iumj.2017.66.6065.  Google Scholar

[17]

N. Ju and R. Temam, Finite dimensions of the global attractor for 3D primitive equations with viscosity, J. Nonlinear Sci., 25 (2015), 131-155.  doi: 10.1007/s00332-014-9223-8.  Google Scholar

[18]

I. Kukavica and M. Ziane, On the regularity of the primitive equations of the ocean, Nonlinearity, 20 (2007), 2739-2753.  doi: 10.1088/0951-7715/20/12/001.  Google Scholar

[19]

J. L. LionsO. P. ManleyR. Temam and S. Wang, Physical interpretation of the attractor dimension for the primitive equations of atmospheric circulation, J. Atmospheric Sci., 54 (1997), 1137-1143.  doi: 10.1175/1520-0469(1997)054<1137:PIOTAD>2.0.CO;2.  Google Scholar

[20]

J. L. LionsR. Temam and S. Wang, On the equations of the large-scale ocean, Nonlinearity, 5 (1992), 1007-1053.  doi: 10.1088/0951-7715/5/5/002.  Google Scholar

[21]

T. T. Medjo, Maximum principle of optimal control of the primitive equations of the ocean with two point boundary state constraint, Appl. Math. Optim., 62 (2010), 1-26.  doi: 10.1007/s00245-009-9092-y.  Google Scholar

[22]

T. T. Medjo, Optimal control of the primitive equations of the ocean with state constraints, Nonlinear Anal., 73 (2010), 634-649.  doi: 10.1016/j.na.2010.03.043.  Google Scholar

[23]

T. T. Medjo, Second-order optimality conditions for optimal control of the primitive equations of the ocean with periodic inputs, Appl. Math. Optim., 63 (2011), 75-106.  doi: 10.1007/s00245-010-9112-y.  Google Scholar

[24]

T. T. Medjo, Non-autonomous 3D primitive equations with oscillating external force and its global attractor, Discrete Contin. Dyn. Syst., 32 (2012), 265-291.  doi: 10.3934/dcds.2012.32.265.  Google Scholar

[25]

T. T. Medjo, Averaging of a 3D primitive equations with oscillating external forces, Appl. Anal., 92 (2013), 869-900.  doi: 10.1080/00036811.2011.640628.  Google Scholar

[26]

M. Nodet, Optimal control of the primitive equations of the ocean with Lagrangian observations, ESAIM Control Optim. Calc. Var., 16 (2010), 400-419.  doi: 10.1051/cocv/2009003.  Google Scholar

[27]

J. Pedlosky, Geophysical Fluid Dynamics, Springer-Verlag, New York, 1987. Google Scholar

[28]

S. S. Sritharan, Optimal Control of Viscous Flow, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1998. doi: 10.1137/1.9781611971415.  Google Scholar

[29]

F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods and Applications, American Mathematical Society Providence, Rhode Island, 2010. Google Scholar

[30]

B. You and F. Li, Global attractor of the three-dimensional primitive equations of large-scale ocean and atmosphere dynamics, Z. Angew. Math. Phys., 69 (2018), Page No. 114, 13pp. doi: 10.1007/s00033-018-1007-9.  Google Scholar

[31]

G. L. Zhou, Random attractor for the 3D viscous primitive equations driven by fractional noises, J. Differential Equations, 266 (2019), 7569-7637.  doi: 10.1016/j.jde.2018.12.009.  Google Scholar

[1]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[2]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[3]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[4]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[5]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[6]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[7]

Yen-Luan Chen, Chin-Chih Chang, Zhe George Zhang, Xiaofeng Chen. Optimal preventive "maintenance-first or -last" policies with generalized imperfect maintenance models. Journal of Industrial & Management Optimization, 2021, 17 (1) : 501-516. doi: 10.3934/jimo.2020149

[8]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[9]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[10]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[11]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[12]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[13]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[14]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[15]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[16]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[17]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[18]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[19]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[20]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

2019 Impact Factor: 0.953

Article outline

[Back to Top]