doi: 10.3934/eect.2020098
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Well-posedness of linear first order port-Hamiltonian Systems on multidimensional spatial domains

University of Wuppertal, School of Mathematics and Natural Science, Gaußstraße 20, D-42119 Wuppertal, Germany

* Corresponding author: skrepek@uni-wuppertal.de

Received  October 2019 Revised  June 2020 Early access October 2020

Fund Project: This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 765579

We consider a port-Hamiltonian system on an open spatial domain $ \Omega \subseteq \mathbb{R}^n $ with bounded Lipschitz boundary. We show that there is a boundary triple associated to this system. Hence, we can characterize all boundary conditions that provide unique solutions that are non-increasing in the Hamiltonian. As a by-product we develop the theory of quasi Gelfand triples. Adding "natural" boundary controls and boundary observations yields scattering/impedance passive boundary control systems. This framework will be applied to the wave equation, Maxwell's equations and Mindlin plate model. Probably, there are even more applications.

Citation: Nathanael Skrepek. Well-posedness of linear first order port-Hamiltonian Systems on multidimensional spatial domains. Evolution Equations & Control Theory, doi: 10.3934/eect.2020098
References:
[1]

J. Behrndt and M. Langer, Boundary value problems for elliptic partial differential operators on bounded domains, J. Funct. Anal., 243 (2007), 536-565.  doi: 10.1016/j.jfa.2006.10.009.  Google Scholar

[2]

A. BrugnoliD. AlazardV. Pommier-Budinger and D. Matignon, Port-Hamiltonian formulation and symplectic discretization of plate models. Part Ⅰ: Mindlin model for thick plates, Appl. Math. Model., 75 (2019), 940-960.  doi: 10.1016/j.apm.2019.04.035.  Google Scholar

[3]

L. Carbone and R. De Arcangelis, Unbounded Functionals in the Calculus of Variations, volume 125 of Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, Chapman & Hall/CRC, Boca Raton, FL, 2002.  Google Scholar

[4]

R. Cross, Multivalued Linear Operators, volume 213 of Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 1998.  Google Scholar

[5]

R. Dautray and J. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 3, Springer-Verlag, Berlin, 1990.  Google Scholar

[6]

V. I. Gorbachuk and M. L. Gorbachuk, Boundary Value Problems for Operator Differential Equations, volume 48 of Mathematics and its Applications (Soviet Series), Kluwer Academic Publishers Group, Dordrecht, 1991. doi: 10.1007/978-94-011-3714-0.  Google Scholar

[7]

L. Hörmander, The Analysis of Linear Partial Differential Operators I, Classics in Mathematics, Springer-Verlag, Berlin, 2003. doi: 10.1007/978-3-642-61497-2.  Google Scholar

[8]

B. Jacob and H. J. Zwart, Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces, volume 223 of Operator Theory: Advances and Applications, Birkhäuser/Springer Basel AG, Basel, 2012. doi: 10.1007/978-3-0348-0399-1.  Google Scholar

[9]

M. Kurula and H. Zwart, Linear wave systems on $n$-D spatial domains, Internat. J. Control, 88 (2015), 1063-1077.  doi: 10.1080/00207179.2014.993337.  Google Scholar

[10]

A. Macchelli, C. Melchiorri and L. Bassi, Port-based modelling and control of the Mindlin plate, in Decision and Control, 2005 and 2005 European Control Conference, IEEE, (2005), 5989-5994. doi: 10.1109/CDC.2005.1583120.  Google Scholar

[11]

J. Malinen and O. J. Staffans, Conservative boundary control systems, J. Differential Equations, 231 (2006), 290-312.  doi: 10.1016/j.jde.2006.05.012.  Google Scholar

[12]

J. Malinen and O. J. Staffans, Impedance passive and conservative boundary control systems, Complex Anal. Oper. Theory, 1 (2007), 279-300.  doi: 10.1007/s11785-006-0009-3.  Google Scholar

[13]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher, [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-8994-9.  Google Scholar

[14]

A. van der Schaft and D. Jeltsema, Port-Hamiltonian systems theory: An introductory overview, Found. Trends Syst. Control, 1 (2014), 173-378.   Google Scholar

[15]

J. A. Villegas, A Port-Hamiltonian Approach to Distributed Parameter Systems, Ph.D thesis, University of Twente, Netherlands, 2007. Google Scholar

[16]

G. Weiss and O. J. Staffans, Maxwell's equations as a scattering passive linear system, SIAM J. Control Optim., 51 (2013), 3722-3756.  doi: 10.1137/120869444.  Google Scholar

[17]

K. Yosida, Functional Analysis, volume 123 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin-New York, sixth edition, 1980.  Google Scholar

show all references

References:
[1]

J. Behrndt and M. Langer, Boundary value problems for elliptic partial differential operators on bounded domains, J. Funct. Anal., 243 (2007), 536-565.  doi: 10.1016/j.jfa.2006.10.009.  Google Scholar

[2]

A. BrugnoliD. AlazardV. Pommier-Budinger and D. Matignon, Port-Hamiltonian formulation and symplectic discretization of plate models. Part Ⅰ: Mindlin model for thick plates, Appl. Math. Model., 75 (2019), 940-960.  doi: 10.1016/j.apm.2019.04.035.  Google Scholar

[3]

L. Carbone and R. De Arcangelis, Unbounded Functionals in the Calculus of Variations, volume 125 of Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, Chapman & Hall/CRC, Boca Raton, FL, 2002.  Google Scholar

[4]

R. Cross, Multivalued Linear Operators, volume 213 of Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 1998.  Google Scholar

[5]

R. Dautray and J. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 3, Springer-Verlag, Berlin, 1990.  Google Scholar

[6]

V. I. Gorbachuk and M. L. Gorbachuk, Boundary Value Problems for Operator Differential Equations, volume 48 of Mathematics and its Applications (Soviet Series), Kluwer Academic Publishers Group, Dordrecht, 1991. doi: 10.1007/978-94-011-3714-0.  Google Scholar

[7]

L. Hörmander, The Analysis of Linear Partial Differential Operators I, Classics in Mathematics, Springer-Verlag, Berlin, 2003. doi: 10.1007/978-3-642-61497-2.  Google Scholar

[8]

B. Jacob and H. J. Zwart, Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces, volume 223 of Operator Theory: Advances and Applications, Birkhäuser/Springer Basel AG, Basel, 2012. doi: 10.1007/978-3-0348-0399-1.  Google Scholar

[9]

M. Kurula and H. Zwart, Linear wave systems on $n$-D spatial domains, Internat. J. Control, 88 (2015), 1063-1077.  doi: 10.1080/00207179.2014.993337.  Google Scholar

[10]

A. Macchelli, C. Melchiorri and L. Bassi, Port-based modelling and control of the Mindlin plate, in Decision and Control, 2005 and 2005 European Control Conference, IEEE, (2005), 5989-5994. doi: 10.1109/CDC.2005.1583120.  Google Scholar

[11]

J. Malinen and O. J. Staffans, Conservative boundary control systems, J. Differential Equations, 231 (2006), 290-312.  doi: 10.1016/j.jde.2006.05.012.  Google Scholar

[12]

J. Malinen and O. J. Staffans, Impedance passive and conservative boundary control systems, Complex Anal. Oper. Theory, 1 (2007), 279-300.  doi: 10.1007/s11785-006-0009-3.  Google Scholar

[13]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher, [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-8994-9.  Google Scholar

[14]

A. van der Schaft and D. Jeltsema, Port-Hamiltonian systems theory: An introductory overview, Found. Trends Syst. Control, 1 (2014), 173-378.   Google Scholar

[15]

J. A. Villegas, A Port-Hamiltonian Approach to Distributed Parameter Systems, Ph.D thesis, University of Twente, Netherlands, 2007. Google Scholar

[16]

G. Weiss and O. J. Staffans, Maxwell's equations as a scattering passive linear system, SIAM J. Control Optim., 51 (2013), 3722-3756.  doi: 10.1137/120869444.  Google Scholar

[17]

K. Yosida, Functional Analysis, volume 123 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin-New York, sixth edition, 1980.  Google Scholar

Figure 1.  Illustration of a quasi Gelfand triple, where $ D_{+} = \text{dom} \ \iota_{+} $ and $ D_{-} = \text{dom} \ \iota_{-} $
[1]

Björn Augner, Birgit Jacob. Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems. Evolution Equations & Control Theory, 2014, 3 (2) : 207-229. doi: 10.3934/eect.2014.3.207

[2]

Jordi-Lluís Figueras, Àlex Haro. Triple collisions of invariant bundles. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2069-2082. doi: 10.3934/dcdsb.2013.18.2069

[3]

Katarzyna Grabowska, Marcin Zając. The Tulczyjew triple in mechanics on a Lie group. Journal of Geometric Mechanics, 2016, 8 (4) : 413-435. doi: 10.3934/jgm.2016014

[4]

Thanyarat JItpeera, Tamaki Tanaka, Poom Kumam. Triple-hierarchical problems with variational inequality. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021038

[5]

Amir Khan, Asaf Khan, Tahir Khan, Gul Zaman. Extension of triple Laplace transform for solving fractional differential equations. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 755-768. doi: 10.3934/dcdss.2020042

[6]

Atte Aalto, Jarmo Malinen. Compositions of passive boundary control systems. Mathematical Control & Related Fields, 2013, 3 (1) : 1-19. doi: 10.3934/mcrf.2013.3.1

[7]

Nasim Ullah, Ahmad Aziz Al-Ahmadi. A triple mode robust sliding mode controller for a nonlinear system with measurement noise and uncertainty. Mathematical Foundations of Computing, 2020, 3 (2) : 81-99. doi: 10.3934/mfc.2020007

[8]

Rahmat Ali Khan, Yongjin Li, Fahd Jarad. Exact analytical solutions of fractional order telegraph equations via triple Laplace transform. Discrete & Continuous Dynamical Systems - S, 2021, 14 (7) : 2387-2397. doi: 10.3934/dcdss.2020427

[9]

Josselin Garnier, George Papanicolaou. Resolution enhancement from scattering in passive sensor imaging with cross correlations. Inverse Problems & Imaging, 2014, 8 (3) : 645-683. doi: 10.3934/ipi.2014.8.645

[10]

Juan Sánchez, Marta Net, José M. Vega. Amplitude equations close to a triple-(+1) bifurcation point of D4-symmetric periodic orbits in O(2)-equivariant systems. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1357-1380. doi: 10.3934/dcdsb.2006.6.1357

[11]

Teemu Tyni, Valery Serov. Scattering problems for perturbations of the multidimensional biharmonic operator. Inverse Problems & Imaging, 2018, 12 (1) : 205-227. doi: 10.3934/ipi.2018008

[12]

Amadeu Delshams, Josep J. Masdemont, Pablo Roldán. Computing the scattering map in the spatial Hill's problem. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 455-483. doi: 10.3934/dcdsb.2008.10.455

[13]

Lu Zhao, Heping Dong, Fuming Ma. Inverse obstacle scattering for acoustic waves in the time domain. Inverse Problems & Imaging, 2021, 15 (5) : 1269-1286. doi: 10.3934/ipi.2021037

[14]

Jacek Banasiak, Adam Błoch. Telegraph systems on networks and port-Hamiltonians. I. Boundary conditions and well-posedness. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021046

[15]

Dario Bambusi, D. Vella. Quasi periodic breathers in Hamiltonian lattices with symmetries. Discrete & Continuous Dynamical Systems - B, 2002, 2 (3) : 389-399. doi: 10.3934/dcdsb.2002.2.389

[16]

Birgit Jacob, Hafida Laasri. Well-posedness of infinite-dimensional non-autonomous passive boundary control systems. Evolution Equations & Control Theory, 2021, 10 (2) : 385-409. doi: 10.3934/eect.2020072

[17]

Haijuan Hu, Jacques Froment, Baoyan Wang, Xiequan Fan. Spatial-Frequency domain nonlocal total variation for image denoising. Inverse Problems & Imaging, 2020, 14 (6) : 1157-1184. doi: 10.3934/ipi.2020059

[18]

Feng-Bin Wang, Junping Shi, Xingfu Zou. Dynamics of a host-pathogen system on a bounded spatial domain. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2535-2560. doi: 10.3934/cpaa.2015.14.2535

[19]

Lu Zhao, Heping Dong, Fuming Ma. Time-domain analysis of forward obstacle scattering for elastic wave. Discrete & Continuous Dynamical Systems - B, 2021, 26 (8) : 4111-4130. doi: 10.3934/dcdsb.2020276

[20]

Jeremy L. Marzuola. Dispersive estimates using scattering theory for matrix Hamiltonian equations. Discrete & Continuous Dynamical Systems, 2011, 30 (4) : 995-1035. doi: 10.3934/dcds.2011.30.995

2020 Impact Factor: 1.081

Metrics

  • PDF downloads (166)
  • HTML views (543)
  • Cited by (0)

Other articles
by authors

[Back to Top]