\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Well-posedness of linear first order port-Hamiltonian Systems on multidimensional spatial domains

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 765579.

Abstract / Introduction Full Text(HTML) Figure(1) Related Papers Cited by
  • We consider a port-Hamiltonian system on an open spatial domain $ \Omega \subseteq \mathbb{R}^n $ with bounded Lipschitz boundary. We show that there is a boundary triple associated to this system. Hence, we can characterize all boundary conditions that provide unique solutions that are non-increasing in the Hamiltonian. As a by-product we develop the theory of quasi Gelfand triples. Adding "natural" boundary controls and boundary observations yields scattering/impedance passive boundary control systems. This framework will be applied to the wave equation, Maxwell's equations and Mindlin plate model. Probably, there are even more applications.

    Mathematics Subject Classification: 47D06, 93C20, 35Q93, 47F05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Illustration of a quasi Gelfand triple, where $ D_{+} = \text{dom} \ \iota_{+} $ and $ D_{-} = \text{dom} \ \iota_{-} $

  • [1] J. Behrndt and M. Langer, Boundary value problems for elliptic partial differential operators on bounded domains, J. Funct. Anal., 243 (2007), 536-565.  doi: 10.1016/j.jfa.2006.10.009.
    [2] A. BrugnoliD. AlazardV. Pommier-Budinger and D. Matignon, Port-Hamiltonian formulation and symplectic discretization of plate models. Part Ⅰ: Mindlin model for thick plates, Appl. Math. Model., 75 (2019), 940-960.  doi: 10.1016/j.apm.2019.04.035.
    [3] L. Carbone and R. De Arcangelis, Unbounded Functionals in the Calculus of Variations, volume 125 of Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, Chapman & Hall/CRC, Boca Raton, FL, 2002.
    [4] R. Cross, Multivalued Linear Operators, volume 213 of Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 1998.
    [5] R. Dautray and J. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 3, Springer-Verlag, Berlin, 1990.
    [6] V. I. Gorbachuk and M. L. Gorbachuk, Boundary Value Problems for Operator Differential Equations, volume 48 of Mathematics and its Applications (Soviet Series), Kluwer Academic Publishers Group, Dordrecht, 1991. doi: 10.1007/978-94-011-3714-0.
    [7] L. Hörmander, The Analysis of Linear Partial Differential Operators I, Classics in Mathematics, Springer-Verlag, Berlin, 2003. doi: 10.1007/978-3-642-61497-2.
    [8] B. Jacob and H. J. Zwart, Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces, volume 223 of Operator Theory: Advances and Applications, Birkhäuser/Springer Basel AG, Basel, 2012. doi: 10.1007/978-3-0348-0399-1.
    [9] M. Kurula and H. Zwart, Linear wave systems on $n$-D spatial domains, Internat. J. Control, 88 (2015), 1063-1077.  doi: 10.1080/00207179.2014.993337.
    [10] A. Macchelli, C. Melchiorri and L. Bassi, Port-based modelling and control of the Mindlin plate, in Decision and Control, 2005 and 2005 European Control Conference, IEEE, (2005), 5989-5994. doi: 10.1109/CDC.2005.1583120.
    [11] J. Malinen and O. J. Staffans, Conservative boundary control systems, J. Differential Equations, 231 (2006), 290-312.  doi: 10.1016/j.jde.2006.05.012.
    [12] J. Malinen and O. J. Staffans, Impedance passive and conservative boundary control systems, Complex Anal. Oper. Theory, 1 (2007), 279-300.  doi: 10.1007/s11785-006-0009-3.
    [13] M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher, [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-8994-9.
    [14] A. van der Schaft and D. Jeltsema, Port-Hamiltonian systems theory: An introductory overview, Found. Trends Syst. Control, 1 (2014), 173-378. 
    [15] J. A. Villegas, A Port-Hamiltonian Approach to Distributed Parameter Systems, Ph.D thesis, University of Twente, Netherlands, 2007.
    [16] G. Weiss and O. J. Staffans, Maxwell's equations as a scattering passive linear system, SIAM J. Control Optim., 51 (2013), 3722-3756.  doi: 10.1137/120869444.
    [17] K. Yosida, Functional Analysis, volume 123 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin-New York, sixth edition, 1980.
  • 加载中
Open Access Under a Creative Commons license

Figures(1)

SHARE

Article Metrics

HTML views(3296) PDF downloads(456) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return