• Previous Article
    Controllability of neutral stochastic functional integro-differential equations driven by fractional brownian motion with Hurst parameter lesser than $ 1/2 $
  • EECT Home
  • This Issue
  • Next Article
    Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems
doi: 10.3934/eect.2020099

Stability and stabilization for the three-dimensional Navier-Stokes-Voigt equations with unbounded variable delay

Faculty of Computer Science and Engineering, Thuyloi University, 175 Tay Son, Dong Da, Hanoi, Vietnam

Received  March 2019 Revised  September 2020 Published  October 2020

We consider the 3D Navier-Stokes-Voigt equations in a bounded domain with unbounded variable delay. We study the stability of stationary solutions by the classical direct method, and by an appropriate Lyapunov functional. We also give a sufficient condition of parameters for the polynomial stability of the stationary solution in a special case of unbounded variable delay. Finally, when the condition for polynomial stability is not satisfied, we stabilize the stationary by using the finite Fourier modes and by internal feedback control with a support large enough.

Citation: Vu Manh Toi. Stability and stabilization for the three-dimensional Navier-Stokes-Voigt equations with unbounded variable delay. Evolution Equations & Control Theory, doi: 10.3934/eect.2020099
References:
[1]

C. T. Anh and D. T. P. Thanh, Existence and long-time behavior of solutions to Navier-Stokes-Voigt equations with infinite delay, Bull. Korean Math. Soc., 55 (2018), 379-403.  doi: 10.4134/BKMS.b170044.  Google Scholar

[2]

C. T. Anh and P. T. Trang, Pull-back attractors for three-dimensional Navier-Stokes-Voigt equations in some unbounded domains, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 223-251.  doi: 10.1017/S0308210511001491.  Google Scholar

[3]

C. T. Anh and P. T. Trang, On the regularity and convergence of solutions to the 3D Navier-Stokes-Voigt equations, Comput. Math. Appl., 73 (2017), 601-615.  doi: 10.1016/j.camwa.2016.12.023.  Google Scholar

[4]

J. A. D. Appleby and E. Buckwar, Sufficient conditions for polynomial asymptotic behaviour of the stochastic pantograph equation, Proc. 10'th Coll. Qualitative Theory of Diff. Equ., Electron. J. Qual. Theory Differ. Equ., 2016 (2016), 1-32.  doi: 10.14232/ejqtde.2016.8.2.  Google Scholar

[5]

V. Barbu and C. Lefter, Internal stabilizability of the Navier-Stokes equations. Optimization and control of distributed systems, Systems Control Lett., 48 (2003), 161-167.  doi: 10.1016/S0167-6911(02)00261-X.  Google Scholar

[6]

L. C. Berselli and L. Bisconti, On the structural stability of the Euler-Voigt and Navier-Stokes-Voigt models, Nonlinear Anal., 75 (2012), 117-130.  doi: 10.1016/j.na.2011.08.011.  Google Scholar

[7]

C. Cao, D. D. Holm and E. S. Titi, On the Clark-$\alpha$ model of turbulence: Global regularity and long-time dynamics, J. Turbul., 6 (2005), 11 pp. doi: 10.1080/14685240500183756.  Google Scholar

[8]

T. Caraballo and X. Han, Stability of stationary solutions to 2D-Navier-Stokes models with delays, Dyn. Partial Differ. Equ., 11 (2014), 345-359.  doi: 10.4310/DPDE.2014.v11.n4.a3.  Google Scholar

[9]

T. Caraballo and X. Han, A survey on Navier-Stokes models with delays: Existence, uniqueness and asymptotic behavior of solutions, Discrete Contin. Dyn. Syst. Ser. S, 8 (2015), 1079-1101.  doi: 10.3934/dcdss.2015.8.1079.  Google Scholar

[10]

T. CaraballoA. M. Márquez-Durán and J. Real, Pullback and forward attractors for a 3D LANS-$\alpha$ model with delay, Discrete Contin. Dyn. Syst., 15 (2006), 559-578.  doi: 10.3934/dcds.2006.15.559.  Google Scholar

[11]

T. CaraballoA. M. Márquez-Durán and J. Real, Asymptotic behaviour of the three-dimensional $\alpha$-Navier-Stokes model with delays, J. Math. Anal. Appl., 340 (2008), 410-423.  doi: 10.1016/j.jmaa.2007.08.011.  Google Scholar

[12]

T. Caraballo and J. Real, Attractors for 2D-Navier-Stokes models with delays, J. Differential Equations, 205 (2004), 271-297.  doi: 10.1016/j.jde.2004.04.012.  Google Scholar

[13]

T. Caraballo and J. Real, Asymptotic behaviour of two-dimensional Navier-Stokes equations with delays, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 459 (2003), 3181-3194.  doi: 10.1098/rspa.2003.1166.  Google Scholar

[14]

T. CaraballoJ. Real and L. Shaikhet, Method of Lyapunov functionals construction in stability of delay evolution equations, J. Math. Anal. Appl., 334 (2007), 1130-1145.  doi: 10.1016/j.jmaa.2007.01.038.  Google Scholar

[15]

M. Coti Zelati and C. G. Gal, Singular limits of Voigt models in fluid dynamics, J. Math. Fluid Mech., 17 (2015), 233-259.  doi: 10.1007/s00021-015-0201-1.  Google Scholar

[16]

J. García-LuengoP. Marín-Rubio and J. Real, Pullback attractors for three-dimensional non-autonomous Navier-Stokes-Voigt equations, Nonlinearity, 25 (2012), 905-930.  doi: 10.1088/0951-7715/25/4/905.  Google Scholar

[17]

J. K. Hale and J. Kato, Phase space for retarded equations with infinite delay, Funkcial. Ekvac., 21 (1978), 11-41.   Google Scholar

[18]

Y. Hino, S. Murakami and T. Naito, Functional Differential Equations with Infinite Delay, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1991. doi: 10.1007/BFb0084432.  Google Scholar

[19]

M. J. HolstM. A. Ebrahimi and E. Lunasin, The Navier-Stokes-Voight model for image inpainting, IMA J. Appl. Math., 78 (2013), 869-894.  doi: 10.1093/imamat/hxr069.  Google Scholar

[20]

V. K. KalantarovB. Levant and E. S. Titi, Gevrey regularity for the attractor of the 3D Navier-Stoke-Voight equations, J. Nonlinear Sci., 19 (2009), 133-152.  doi: 10.1007/s00332-008-9029-7.  Google Scholar

[21]

V. K. Kalantarov and E. S. Titi, Global attractors and determining modes for the 3D Navier-Stokes-Voight equations, Chin. Ann. Math. Ser. B, 30 (2009), 697-714.  doi: 10.1007/s11401-009-0205-3.  Google Scholar

[22]

T. Kato, Asymptotic behavior of solutions of the functional differential equation $y'(x) = ay(\lambda x)+by(x)$, in Delay and Functional Differential Equations and Their Applications, Proc. Conf., Park City, Utah, Academic Press, New York, (1972), 197–217.  Google Scholar

[23]

T. Kato and J. B. McLeod, The functional-differential equation $y'(x) = ay(\lambda x)+by(x)$, Bull. Amer. Math. Soc., 77 (1971), 891-937.  doi: 10.1090/S0002-9904-1971-12805-7.  Google Scholar

[24]

J. S. Linshiz and E. S. Titi, Analytical study of certain magnetohydrodynamic-$\alpha$ models, J. Math. Phys., 48 (2007), 065504, 28 pp. doi: 10.1063/1.2360145.  Google Scholar

[25]

L. LiuT. Caraballo and P. Marín-Rubio, Stability results for 2D Navier-Stokes equations with unbounded delay, J. Differential Equations, 265 (2018), 5685-5708.  doi: 10.1016/j.jde.2018.07.008.  Google Scholar

[26]

E. LunasinM. Holst and G. Tsogtgerel, Analysis of a general family of regularized Navier-Stokes and MHD models, J. Nonlinear Sci., 20 (2010), 523-567.  doi: 10.1007/s00332-010-9066-x.  Google Scholar

[27]

P. Marín-RubioA. M. Márquez-Durán and J. Real, Three dimensional system of globally modified Navier-Stokes equations with infinite delays, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 655-673.  doi: 10.3934/dcdsb.2010.14.655.  Google Scholar

[28]

P. Marín-RubioJ. Real and A. M. Márquez-Durán, On the convergence of solutions of globally modified Navier-Stokes equations with delays to solutions of Navier-Stokes equations with delays, Adv. Nonlinear Stud., 11 (2011), 917-927.  doi: 10.1515/ans-2011-0409.  Google Scholar

[29]

P. Marín-RubioA. M. Márquez-Durán and J. Real, Pullback attractors for globally modified Navier-Stokes equations with infinite delays, Discrete Contin. Dyn. Syst., 31 (2011), 779-796.  doi: 10.3934/dcds.2011.31.779.  Google Scholar

[30]

A. P. Oskolkov, The uniqueness and solvability in the large of boundary value problems for the equations of motion of aqueous solutions of polymers, Zap. Naučn. Sem. Leningrad. Otdel. Math. Inst. Steklov., (LOMI), 38 (173), 98–136. doi: 10.1007/BF01084613.  Google Scholar

[31]

Y. QinX. Yang and X. Liu, Averaging of a 3D Navier-Stokes-Voight equation with singularly oscillating forces, Nonlinear Anal. RWA, 13 (2012), 893-904.  doi: 10.1016/j.nonrwa.2011.08.025.  Google Scholar

[32]

G. Yue and C. Zhong, Attractors for autonomous and nonautonomous 3D Navier-Stokes-Voight equations, Discrete Contin. Dyn. Syst. Ser. B, 16 (2011), 985-1002.  doi: 10.3934/dcdsb.2011.16.985.  Google Scholar

show all references

References:
[1]

C. T. Anh and D. T. P. Thanh, Existence and long-time behavior of solutions to Navier-Stokes-Voigt equations with infinite delay, Bull. Korean Math. Soc., 55 (2018), 379-403.  doi: 10.4134/BKMS.b170044.  Google Scholar

[2]

C. T. Anh and P. T. Trang, Pull-back attractors for three-dimensional Navier-Stokes-Voigt equations in some unbounded domains, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 223-251.  doi: 10.1017/S0308210511001491.  Google Scholar

[3]

C. T. Anh and P. T. Trang, On the regularity and convergence of solutions to the 3D Navier-Stokes-Voigt equations, Comput. Math. Appl., 73 (2017), 601-615.  doi: 10.1016/j.camwa.2016.12.023.  Google Scholar

[4]

J. A. D. Appleby and E. Buckwar, Sufficient conditions for polynomial asymptotic behaviour of the stochastic pantograph equation, Proc. 10'th Coll. Qualitative Theory of Diff. Equ., Electron. J. Qual. Theory Differ. Equ., 2016 (2016), 1-32.  doi: 10.14232/ejqtde.2016.8.2.  Google Scholar

[5]

V. Barbu and C. Lefter, Internal stabilizability of the Navier-Stokes equations. Optimization and control of distributed systems, Systems Control Lett., 48 (2003), 161-167.  doi: 10.1016/S0167-6911(02)00261-X.  Google Scholar

[6]

L. C. Berselli and L. Bisconti, On the structural stability of the Euler-Voigt and Navier-Stokes-Voigt models, Nonlinear Anal., 75 (2012), 117-130.  doi: 10.1016/j.na.2011.08.011.  Google Scholar

[7]

C. Cao, D. D. Holm and E. S. Titi, On the Clark-$\alpha$ model of turbulence: Global regularity and long-time dynamics, J. Turbul., 6 (2005), 11 pp. doi: 10.1080/14685240500183756.  Google Scholar

[8]

T. Caraballo and X. Han, Stability of stationary solutions to 2D-Navier-Stokes models with delays, Dyn. Partial Differ. Equ., 11 (2014), 345-359.  doi: 10.4310/DPDE.2014.v11.n4.a3.  Google Scholar

[9]

T. Caraballo and X. Han, A survey on Navier-Stokes models with delays: Existence, uniqueness and asymptotic behavior of solutions, Discrete Contin. Dyn. Syst. Ser. S, 8 (2015), 1079-1101.  doi: 10.3934/dcdss.2015.8.1079.  Google Scholar

[10]

T. CaraballoA. M. Márquez-Durán and J. Real, Pullback and forward attractors for a 3D LANS-$\alpha$ model with delay, Discrete Contin. Dyn. Syst., 15 (2006), 559-578.  doi: 10.3934/dcds.2006.15.559.  Google Scholar

[11]

T. CaraballoA. M. Márquez-Durán and J. Real, Asymptotic behaviour of the three-dimensional $\alpha$-Navier-Stokes model with delays, J. Math. Anal. Appl., 340 (2008), 410-423.  doi: 10.1016/j.jmaa.2007.08.011.  Google Scholar

[12]

T. Caraballo and J. Real, Attractors for 2D-Navier-Stokes models with delays, J. Differential Equations, 205 (2004), 271-297.  doi: 10.1016/j.jde.2004.04.012.  Google Scholar

[13]

T. Caraballo and J. Real, Asymptotic behaviour of two-dimensional Navier-Stokes equations with delays, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 459 (2003), 3181-3194.  doi: 10.1098/rspa.2003.1166.  Google Scholar

[14]

T. CaraballoJ. Real and L. Shaikhet, Method of Lyapunov functionals construction in stability of delay evolution equations, J. Math. Anal. Appl., 334 (2007), 1130-1145.  doi: 10.1016/j.jmaa.2007.01.038.  Google Scholar

[15]

M. Coti Zelati and C. G. Gal, Singular limits of Voigt models in fluid dynamics, J. Math. Fluid Mech., 17 (2015), 233-259.  doi: 10.1007/s00021-015-0201-1.  Google Scholar

[16]

J. García-LuengoP. Marín-Rubio and J. Real, Pullback attractors for three-dimensional non-autonomous Navier-Stokes-Voigt equations, Nonlinearity, 25 (2012), 905-930.  doi: 10.1088/0951-7715/25/4/905.  Google Scholar

[17]

J. K. Hale and J. Kato, Phase space for retarded equations with infinite delay, Funkcial. Ekvac., 21 (1978), 11-41.   Google Scholar

[18]

Y. Hino, S. Murakami and T. Naito, Functional Differential Equations with Infinite Delay, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1991. doi: 10.1007/BFb0084432.  Google Scholar

[19]

M. J. HolstM. A. Ebrahimi and E. Lunasin, The Navier-Stokes-Voight model for image inpainting, IMA J. Appl. Math., 78 (2013), 869-894.  doi: 10.1093/imamat/hxr069.  Google Scholar

[20]

V. K. KalantarovB. Levant and E. S. Titi, Gevrey regularity for the attractor of the 3D Navier-Stoke-Voight equations, J. Nonlinear Sci., 19 (2009), 133-152.  doi: 10.1007/s00332-008-9029-7.  Google Scholar

[21]

V. K. Kalantarov and E. S. Titi, Global attractors and determining modes for the 3D Navier-Stokes-Voight equations, Chin. Ann. Math. Ser. B, 30 (2009), 697-714.  doi: 10.1007/s11401-009-0205-3.  Google Scholar

[22]

T. Kato, Asymptotic behavior of solutions of the functional differential equation $y'(x) = ay(\lambda x)+by(x)$, in Delay and Functional Differential Equations and Their Applications, Proc. Conf., Park City, Utah, Academic Press, New York, (1972), 197–217.  Google Scholar

[23]

T. Kato and J. B. McLeod, The functional-differential equation $y'(x) = ay(\lambda x)+by(x)$, Bull. Amer. Math. Soc., 77 (1971), 891-937.  doi: 10.1090/S0002-9904-1971-12805-7.  Google Scholar

[24]

J. S. Linshiz and E. S. Titi, Analytical study of certain magnetohydrodynamic-$\alpha$ models, J. Math. Phys., 48 (2007), 065504, 28 pp. doi: 10.1063/1.2360145.  Google Scholar

[25]

L. LiuT. Caraballo and P. Marín-Rubio, Stability results for 2D Navier-Stokes equations with unbounded delay, J. Differential Equations, 265 (2018), 5685-5708.  doi: 10.1016/j.jde.2018.07.008.  Google Scholar

[26]

E. LunasinM. Holst and G. Tsogtgerel, Analysis of a general family of regularized Navier-Stokes and MHD models, J. Nonlinear Sci., 20 (2010), 523-567.  doi: 10.1007/s00332-010-9066-x.  Google Scholar

[27]

P. Marín-RubioA. M. Márquez-Durán and J. Real, Three dimensional system of globally modified Navier-Stokes equations with infinite delays, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 655-673.  doi: 10.3934/dcdsb.2010.14.655.  Google Scholar

[28]

P. Marín-RubioJ. Real and A. M. Márquez-Durán, On the convergence of solutions of globally modified Navier-Stokes equations with delays to solutions of Navier-Stokes equations with delays, Adv. Nonlinear Stud., 11 (2011), 917-927.  doi: 10.1515/ans-2011-0409.  Google Scholar

[29]

P. Marín-RubioA. M. Márquez-Durán and J. Real, Pullback attractors for globally modified Navier-Stokes equations with infinite delays, Discrete Contin. Dyn. Syst., 31 (2011), 779-796.  doi: 10.3934/dcds.2011.31.779.  Google Scholar

[30]

A. P. Oskolkov, The uniqueness and solvability in the large of boundary value problems for the equations of motion of aqueous solutions of polymers, Zap. Naučn. Sem. Leningrad. Otdel. Math. Inst. Steklov., (LOMI), 38 (173), 98–136. doi: 10.1007/BF01084613.  Google Scholar

[31]

Y. QinX. Yang and X. Liu, Averaging of a 3D Navier-Stokes-Voight equation with singularly oscillating forces, Nonlinear Anal. RWA, 13 (2012), 893-904.  doi: 10.1016/j.nonrwa.2011.08.025.  Google Scholar

[32]

G. Yue and C. Zhong, Attractors for autonomous and nonautonomous 3D Navier-Stokes-Voight equations, Discrete Contin. Dyn. Syst. Ser. B, 16 (2011), 985-1002.  doi: 10.3934/dcdsb.2011.16.985.  Google Scholar

[1]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[2]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[3]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[4]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[5]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[6]

Manil T. Mohan. Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory". Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020105

[7]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

[8]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[9]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[10]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[11]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[12]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[13]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[14]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

[15]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[16]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[17]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[18]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[19]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[20]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (18)
  • HTML views (59)
  • Cited by (0)

Other articles
by authors

[Back to Top]